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We define a matrix A associated with an acyclic digraph 1, such that the coef-
ficient of z j in det(I+zA) is the number of j-vertex paths in 1. This result is
actually a special case of a more general weighted version. � 1996 Academic Press, Inc.

We will define a matrix A=A1 associated with an acyclic digraph 1,
such that the coefficients of the characteristic polynomial of A enumerate
the paths in 1 according to their length. Our result is actually an easy
consequence of a more general theorem of Goulden and Jackson, but this
special case seems never to have been explicitly noted before. We will give
two simple proofs, the first of which is essentially a specialization of the
proof of Goulden and Jackson.

Let 1 be an acyclic digraph without multiple edges on the vertex set
V=[x1 , ..., xn]. We say that 1 is natural if i< j whenever (xi , xj) is an
edge. We may assume without loss of generality throughout this paper that
1 is natural. Regard x1 , ..., xn as indeterminates, and define the diagonal
matrix D=diag(x1 , ..., xn). Define the n_n matrix A=A1 by

Aij={0,
1,

if (xi , xj) is an edge of 1
otherwise.

(1)

Let I denote the n_n identity matrix.

Theorem. We have

det(I+z DA)= :
n

j=0
\:

P

xk1
} } } xkj+ z j, (2)

where P ranges over all paths xk1
} } } xkj in 1 with j vertices.
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First Proof. The following result appears in [3, Lemma 3.12]. Let R
and S be n_n matrices such that R+S=J, the all 1's matrix. Let X be any
n_n matrix. Then

1+trace(I&XR)&1 XJ=
det(I+XS )
det(I&XR)

. (3)

This result is an immediate consequence of the fact that the matrix
(I&XR)&1 XJ has rank one, and that for any matrix M of rank one we
have 1+trace(M )=det(I+M ).

In equation (3) let X=z D and S=A. Since 1 is natural the matrix XR
is strictly upper triangular, so det(I&XR)=1 and the right-hand side
becomes det(I+z DA). On the other hand, the left-hand side becomes

1+trace(I&z D(J&A))&1 z DJ=1+trace :
i�0

zi+1[D(J&A)] i DJ.

Now J&A is just the adjacency matrix of 1, so

trace[D(J&A)]i DJ=:
P

xk1
} } } xki+1

,

where P ranges over all paths xk1
} } } xki+1

, and the proof follows. K

Second Proof. The coefficient of z j in det(I+z DA) is the sum of the
principal j_ j minors of DA. The rows and columns of a principal sub-
matrix DA[W ] are indexed by a j-element subset W of the vertex set V.
We claim that

det DA[W ]={ `
x # W

x, if W is the set of vertices of a path

0, otherwise.

from which the proof of the theorem is immediate. Note that

det DA[W ]=\ `
x # W

x+ det(A[W ]).

Hence we need to show that

det A[W ]={1,
0,

if W is is the set of vertices of a path
otherwise.

(4)

If W is the set of vertices of a path, then since 1 is natural the matrix
A[W ] is upper triangular with 1's on the diagonal, so (4) is true in this
case. Suppose that W is not the set of vertices of a path. Since 1 is natural
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the matrix A[W ] has all its entries on or below the main diagonal equal
to 1, and at least one entry on the diagonal just above the main diagonal
is equal to 1. The proof of (4) thus follows from the following lemma.

Lemma. Let B=(bij) be an n_n matrix such that bij=1 if i� j. Then

det B= `
n&1

i=1

(1&bi, i+1).

Proof of Lemma. The proof is by induction on n, the case n=1 being
trivial. Expand det B by the first row. By induction, the first two terms are

`
n&1

i=2

(1&bi, i+1)&b12 } `
n&1

i=2

(1&bi, i+1)= `
n&1

i=1

(1&bi, i+1).

In the remaining terms, the first two columns of the cofactor are equal, so
the term is 0. The proof of the lemma, and with it the theorem, follows. K

Define the path polynomial P1 (z)=� cj z j of a digraph 1 by letting cj

be the number of j-vertex paths in 1. For instance, if 1 is the graph of
proper relations of a poset Q (i.e., (x, y) is an edge of 1 if x<y in Q), then
cj is just the number of j-element chains of Q. We then write PQ(z) for
P1 (z). The following corollary follows immediately from (2) by setting
each xi=1.

Corollary. Let 1 be an acyclic digraph without multiple edges, and let
A be as in (1). Then

P1 (z)=det(I+zA).

There is considerable interest in determining when all the zeros of the
polynomial P1 (z) are real, or equivalently, when the matrix A1 has real
eigenvalues. For instance, it is equivalent to [4, Conj. 1] that if Q is a
distributive lattice, then the polynomial PQ(z) has only real zeros. It is not
difficult to see that if 1 is the digraph of strict incidences of a (natural)
semiorder, as defined in [2, p. 18], then A1 is totally positive (i.e., every
minor is nonnegative). Since totally positive matrices have real eigenvalues
[1, Thm. 6.2], it follows that the polynomial PQ(z) has real zeros for any
semiorder Q. However, using deeper aspects of the theory of total
positivity, an even more general result is proved in [5, Cor. 2.9].
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