POSETS OF WIDTH TWO AND SKEW YOUNG DIAGRAMS

RICHARD P. STANLEY

Abstract

Let P be a finite poset of width two, i.e., with no three-element antichain. We associate with P a skew Young diagram $\Upsilon(P)$ and discuss some of the properties of the map Υ. In particular, if we regard $\Upsilon(P)$ as a poset in a standard way, then the linear extensions of P are in bijection with the order ideals of $\Upsilon(P)$.

1. Introduction

We follow [4][5] for terminology involving posets, Young diagrams, etc. Let P be a finite poset of width at most two, i.e., with no threeelement antichain. We will associate with P a skew Young diagram (or skew shape) $\Upsilon(P)=\lambda / \mu$ with the property that the linear extensions w of P are in a natural bijection with the diagrams ν / μ contained in λ / μ, denoted $\nu / \mu=\Upsilon(w)$. Equivalently, regarding λ / μ as a poset in a standard way (defined in Section 3), the linear extensions of P correspond to the order ideals of λ / μ. The squares of λ / μ are in bijection with the incomparable pairs of elements of P. With this identification, the subdiagrams ν / μ are the inversion sets of the linear extensions w. Since there is a known determinantal formula for the generating function for subshapes of λ / μ according to size, the same is true for linear extensions of P according to number of inversions.

The map Υ is also well-behaved with respect to the descent sets of the linear extensions of P (with respect to a certain labeling of the elements of $P)$. In particular, define a corner square of ν / μ to be a square $u \in \nu / \mu$ with no square $v \in \nu / \mu$ directly to the right or directly below u. Then the corner squares of $\Upsilon(w)$ correspond to the descents of w, and the diagonals on which these corner squares lie determine the descent set.

The proofs of our results are straightforward; the main point of the paper is just to point out the connection between width two posets and skew Young diagrams.

[^0]

Figure 1. A poset P and its corresponding skew shape $\Upsilon(P)$

2. The correspondence Υ

A finite poset P of width at most two is obtained, up to isomorphism, by taking two disjoint chains $C_{1}: 1<2<\cdots<m$ and $C_{2}: m+1<$ $m+2<\cdots<m+n$ (one or both of which may be empty) and adjoining additional relations of the form $i<j$ or $i>j$ for $i \in C_{1}$ and $j \in C_{2}$. We call the triple $\left(P, C_{1}, C_{2}\right)$ an (m, n)-ladder, It costs us nothing in our treatment to assume that every element of P is contained in a two-element antichain; such width two posets we call full.

Consider an $n \times m$ array R of squares (i, j), where the columns of R are indexed by $m, m-1, \ldots, 1$ from left-to-right and the rows by $m+1, m+2, \ldots, m+n$ from top-to-bottom. Define $\Upsilon\left(P, C_{1}, C_{2}\right)$ to be the subarray of R consisting of those pairs (squares) (i, j) with $i>j$, such that i and j are incomparable in P. Thus $i \in C_{2}$ and $j \in C_{1}$. When no confusion will result we write $\Upsilon(P)$ for $\Upsilon\left(P, C_{1}, C_{2}\right)$. Figure 1 shows a poset P and the corresponding set $\Upsilon(P)$ of squares. The squares in $\Upsilon(P)$ are $52,51,64,63,62,74,73$. Note that by definition, the number $\# \Upsilon(P)$ of squares in $\Upsilon(P)$ is the number of two-element antichains (or incomparable pairs of elements) of P. The assumption that P is full is equivalent to the statement that no row and no column of R is empty, i.e., every row and every column of R contains at least one square of $\Upsilon(P)$. We say that $\Upsilon(P)$ is a full subset of R.

Theorem 2.1. $\Upsilon(P)$ is a skew Young diagram. Conversely, given a full skew Young diagram λ / μ contained in an $n \times m$ rectangle R, there is a unique full (m, n)-ladder $\left(P, C_{1}, C_{2}\right)$ such that $\lambda / \mu=\Upsilon\left(P, C_{1}, C_{2}\right)$.

Proof. To show that $\Upsilon(P)$ is a skew Young diagram, it suffices to prove the following three assertions.

Figure 2. The regions defined by a full skew shape in a rectangle
(1) If $(i, a) \in \Upsilon(P),(i, c) \in \Upsilon(P)$, and $a<b<c$, then $(i, b) \in$ $\Upsilon(P)$.
(2) If $(a, j) \in \Upsilon(P),(c, j) \in \Upsilon(P)$, and $a<b<c$, then $(b, j) \in$ $\Upsilon(P)$.
(3) If $(i, j) \in \Upsilon(P)$ and $(k, h) \in \Upsilon(P)$ with $i<k$ and $j<h$, then $(i, h) \in \Upsilon(P)$ and $(k, j) \in \Upsilon(P)$.

Write $u \| v$ to denote that u and v are incomparable in a poset Q. For the first assertion, note that for any poset Q, with elements i and $a<b<c$, if $i \| a$ and $i \| c$ then $i \| b$. The second assertion is similar (or equivalent to the first by symmetry). In any poset P, if $i<k$, $h<j, i \| j$, and $h \| k$, then it is easy to check that $i \| h$ and $k \| j$. This proves that $\Upsilon(P$ is a skew Young diagram.

Conversely, let λ / μ be as in the statement of the theorem. Let A be the set of squares in R above λ / μ and B the set of squares below. See Figure 2 for an example. Define a poset P with elements $[m+n]=\left\{1,2, \ldots, m_{n}\right\}$ as follows. If $(i, j) \in A$ then set $i<j$. If $(i, j) \in B$ then set $i>j$. It is straightforward to check that these relations define a poset P for which $\Upsilon(P)=\lambda / \mu$.

We claim that P is unique. Otherwise there is a different (m, n) ladder $\left(Q, C_{1}, C_{2}\right)$ with the same incomparable pairs, and hence the same comparable pairs $\{i, j\}$. Thus there exists $i \in C_{1}$ and $j \in C_{2}$ such that $i<j$ in P and $j<i$ in Q. If j is comparable to all $k>i$ in P then j is comparable to all elements of P; hence P is not full. Thus j is incomparable to some $k>i$ in P. But j cannot be incomparable to some $k>i$ in Q since $j<i$ in Q. This contradicts the assumption that P and Q have the same incomparable pairs.

Corollary 2.2. Let $m, n \geq 1$. The following sets have equal cardinality.

- Full (m, n)-ladders.
- Full skew Young diagrams λ / μ inside an $n \times m$ rectangle R.

Let us denote the cardinality in the previous corollary by $f(m, n)$. What can be said about this number? For instance,

$$
\begin{aligned}
& f(1, n)=1 \\
& f(2, n)=\frac{1}{2}\left(n^{2}+3 n-2\right) \\
& f(3, n)=\frac{1}{12}\left(n^{4}+8 n^{3}+11 n^{2}-20 n+12\right) \\
& f(4, n)=\frac{1}{144}\left(n^{6}+15 n^{5}+67 n^{4}+45 n^{3}-140 n^{2}+300 n-144\right)
\end{aligned}
$$

It's not hard to see that for fixed $m, f(m, n)$ is a polynomial in n of degree $2 m-2$.

Given a full poset P of width two, there is another poset (in fact, a distributive lattice) that we can associate with P and whose elements are in bijection with the incomparable pairs of P. See [5, Exer. 3.72]. We don't know, however, of any connection with the present paper.

3. Inversions and order ideals

Given P as above, let $\mathcal{L}(P)$ denote the set of linear extensions of P, regarded as permutations $w=a_{1} a_{2} \cdots a_{m+n}$ in the symmetric group \mathfrak{S}_{m+n}. Thus if $a_{i}<a_{j}$ in P then $i<j$. An inversion of w is a pair $\left(a_{i}, a_{j}\right)$ where $i<j$ and $a_{i}>a_{j}$. The inversion set $\mathcal{I}(w)$ is the set of all inversions of w. For instance, $w=5126374$ is a linear extension of the poset P of Figure 1, with inversion set (abbreviating (a, b) as ab) $\mathcal{I}(w)=\{51,52,53,54,63,64,74\}$. Note that 53 and 54 will be inversions for any $w \in \mathcal{L}(P)$. If $\Upsilon(P)=\lambda / \mu$, then these pairs 53 and 54 index the squares of μ. The inversion set $\mathcal{I}(w)$ consists of the squares of the shape $\nu=(4,2,1)$ contained in λ and (necessarily) containing μ. In fact (as we will soon prove), this construction gives a bijection between linear extensions $w \in \mathcal{L}(P)$ and skew shapes ν / μ contained in λ / μ. The squares (i, j) of ν are just the inversions of w.

We can regard λ / μ as a poset in a standard way, namely, a square u is covered by a square v if v borders u on the right or on the bottom. The skew shapes ν / μ contained in λ / μ are then just the order ideals of λ / μ. Thus we have the curious fact that Υ converts linear extensions to order ideals.

Theorem 3.1. Let $\Upsilon(P)=\lambda / \mu$. The map \mathcal{I} is a bijection from $\mathcal{L}(P)$ to partitions ν satisfying $\mu \subseteq \nu \subseteq \lambda$, where we are identifying ν with the set of squares (i, j) of its diagram (using the indexing defined in Section 2).

Proof. It follows directly from the definition of Υ that for all $w \in \mathcal{L}(P)$ and all $(i, j) \in \mu$, we have $(i, j) \in \mathcal{I}(w)$. Moreover, if $(i, j) \in \mathcal{I}(w)$ then $(i, j) \in \lambda$. To show that $\mathcal{I}(w)$ is an order ideal, it suffices to show that (1) if $(i, j) \in \mathcal{I}(w)$ and $i>m+1$ then $(i-1, j) \in \mathcal{I}(w)$, and (2) if $(i, j) \in \mathcal{I}(w)$ and $j<m$ then $(i, j+1) \in \mathcal{I}(w)$. To show (1), since $(i, j) \in \mathcal{I}(w)$ we have that i precedes j in w and $i>j$. But $i-1<i$ in P since $m+1<m+2<\cdots<m+n$. Hence $i-1$ precedes i and therefore also precedes j in w, so $(i-1, j) \in \mathcal{I}(w)$. The proof of (2) is similar.

It remains to show that if $\mu \subseteq \nu \subseteq \lambda$, then there is a $w \in \mathcal{L}(P)$ with $\mathcal{I}(w)=\nu$ (identifying ν with its set of squares (i, j)). Let $\nu^{\prime}=\left(\nu_{1}^{\prime}, \nu_{2}^{\prime}, \ldots, \nu_{m}^{\prime}\right)$ denote the conjugate partition to ν. Consider the sequence
$v=\left(\lambda_{n}^{\prime}+1, \lambda_{n-1}^{\prime}+2, \ldots, \lambda_{1}^{\prime}+m, m-\lambda_{1}+1, m-\lambda_{2}+2, \ldots, m-\lambda_{n}+n\right)$.
For instance, if $m=5, n=4$, and $\nu=(4,2,2,1)$, then $v=(1,3,4,7,9$, $2,5,6,8)$. It is straightforward to check that in general $v \in \mathfrak{S}_{m+n}$, and that $v^{-1} \in \mathcal{L}(P)$ with $\mathcal{I}\left(v^{-1}\right)=\nu$, completing the proof.

Example 3.2. We illustrate the above proof by continuing the example $m=5, n=4, \nu=(4,2,2,1)$, and $v=(1,3,4,7,9,2,5,6,8)(\mu$ and λ are irrelevant). In Figure 3 the row or column indexed by k as described in Section 2 and illustrated in Figure 1 is now indexed by v_{k} as defined in equation (3.1), where $v=\left(v_{1}, \ldots, v_{9}\right)$. It's not hard to see why $v_{1}<\cdots<v_{5}$ and $v_{6}<\cdots<v_{9}$ and $\left\{v_{1}, \ldots, v_{9}\right\}=[9]$. Moreover, for a square (i, j) of the rectangle, we have $v_{i}<v_{j}$ if and only if $(i, j) \in \nu$. This implies that $v^{-1} \in \mathcal{L}(P)$ and $\mathcal{I}\left(v^{-1}\right)=\nu$ (regarded as a set of pairs $(i, j))$.

There is a determinantal formula due to Handa and Mohanty [3] (see also Gessel and Loehr [2]) for the sum

$$
A_{\lambda / \mu}:=\sum_{\mu \subseteq \nu \subseteq \lambda} q^{|\nu|} .
$$

By Theorem 3.1 we can "transfer" this result to linear extensions of width two posets P, yielding the following corollary.

Figure 3. The shape $\nu=(4,2,2,1)$ from Example 3.2
Corollary 3.3. Let $\left(P, C_{1}, C_{2}\right)$ be an (m, n)-ladder with $\Upsilon(P)=\lambda / \mu$. Write $\operatorname{inv}(w)$ for the number of inversions of a permutation w. Then

$$
\sum_{w \in \mathcal{L}(P)} q^{\operatorname{inv}(w)}=\operatorname{det}\left[\binom{\boldsymbol{\lambda}_{\boldsymbol{i}}-\boldsymbol{\mu}_{\boldsymbol{j}}+\mathbf{1}}{\boldsymbol{i}-\boldsymbol{j}+\mathbf{1}} q^{(i-j+1}{ }_{2}^{(i-j+1) \mu_{j}}\right]_{1 \leq i, j \leq n}
$$

Here $\binom{\boldsymbol{\lambda}_{\boldsymbol{i}}-\boldsymbol{\mu}_{j}+\mathbf{1}}{\boldsymbol{i}-j+\mathbf{1}}$ denotes a q-binomial coefficient, and we set $\binom{\boldsymbol{a}}{\boldsymbol{b}}=0$ if $b<0$.

For instance, if P is given by Figure 1, then

$$
\begin{aligned}
\sum_{w \in \mathcal{L}(P)} q^{\operatorname{inv}(w)} & =\operatorname{det}\left[\begin{array}{ccc}
\binom{\mathbf{3}}{\mathbf{1}} q^{2} & 1 & 0 \\
q^{5} & \binom{\mathbf{4}}{\mathbf{1}} & 1 \\
0 & \binom{\mathbf{3}}{\mathbf{2}} q & \binom{\mathbf{3}}{\mathbf{1}}
\end{array}\right] \\
& =q^{9}+3 q^{8}+4 q^{7}+5 q^{6}+4 q^{5}+4 q^{4}+2 q^{3}+q^{2}
\end{aligned}
$$

The set $J(Q)$ of order ideals of any finite poset Q, ordered by inclusion, forms a finite distributive lattice $[5, \S 3.4]$. There is a nice way to see from the skew shape $\lambda / \mu=\Upsilon(P)$ what is the Hasse diagram of $J(P)$ for an (m, n)-ladder P. Adjoin to the $n \times m$ rectangle R containing $\Upsilon(P)$ another row at the top and column at the right to form an $(n+1) \times(m+1)$ rectangle R^{\prime}. Given a square u of R^{\prime}, let K_{u} be the largest subrectangle of R^{\prime} for which u is the lower left-hand corner. Call a square u of R^{\prime} sticky if $\lambda / \mu \cup K_{u}$ is a skew diagram (contained in $\left.R^{\prime}\right)$. Partially order the set \mathcal{S} of sticky squares by defining t to cover s if t borders s on the left or on the bottom. Thus the upper-right corner square of R^{\prime}, which is always sticky, is the minimal element $\hat{0}$ of this partial ordering. We omit the straightforward proof of the following result.

Figure 4. The distributive lattice corresponding to the skew shape $321 / 11$

Theorem 3.4. The poset \mathcal{S} is isomorphic to $J(P)$.
An example of Theorem 3.4 is given in Figure 4. We take $m=n=3$ and $\lambda / \mu=(3,2,1) /(1,1)$. The squares of λ / μ are marked with an X . The sticky squares are shaded. The Hasse diagram of the distributive lattice $J(P)$ is shown on the right.

There is a further corollary to Theorem 3.1. The weak (Bruhat) order $W\left(\mathfrak{S}_{N}\right)$ of the symmetric group \mathfrak{S}_{N} may be defined by $v \leq w$ if $\mathcal{I}(v) \subseteq \mathcal{I}(w)$. Thus from Theorem 3.4 we obtain the following result. (We give $\Upsilon(P)$ the poset structure defined preceding Theorem 3.1.) We omit the details of the proof.

Corollary 3.5. Let P be a poset of width two (not necessarily full) on $[m+n]$ containing the two chains $1<2<\cdots<m$ and $m+1<$ $m+2<\cdots<m+n$. Then the set $\mathcal{L}(P)$ is an interval in the weak order isomorphic to the distributive lattice $J(\Upsilon(P))$.

The fact that $\mathcal{L}(P)$ is a distributive lattice is also a consequence of the characterization by Stembridge [6, Thm. 3.2] of intervals in $W\left(\mathfrak{S}_{n}\right)$ (or more generally in the weak order of any Coxeter group) that are distributive lattices, together with the characterization by Billey-Jockusch-Stanley [1, Thm. 2.1] of fully commutative elements of \mathfrak{S}_{n} as the 321-avoiding permutations.

4. Descent sets and corner squares

In addition to the inversion set $\mathcal{I}(w)$ for $w \in \mathcal{L}(P)$, it is also easy to determine from $\Upsilon(P)$ the descent set of w. Recall that if $w=$ $a_{1} \cdots a_{m+n} \in \mathfrak{S}_{m+n}$, then the descent set $\operatorname{Des}(w)$ is defined as

$$
\operatorname{Des}(w)=\left\{1 \leq k \leq m+n-1: a_{k}>a_{k+1}\right\} .
$$

Figure 5. The corner squares of $\nu=(4,3,2,2,2)$
Let $D=\lambda / \mu$ be a skew diagram in an $n \times m$ rectangle R, with rows and columns indexed as before. We may assume that D is full, i.e., R has no empty row or column. For a square $u=(i, j) \in D$, define $e(u)=i+j-m-1$. Thus the the top right corner square u has $e(u)=1$.
Theorem 4.1. Let $\mathcal{I}(w)$ occupy the squares of the partition ν. Let $C(\nu)$ be the set of corner squares of ν. Then

$$
\operatorname{Des}(w)=\{e(u): u \in C(\nu)\}
$$

In particular, the number $\operatorname{des}(w)$ of descents of w is equal to the number $\# C(\nu)$ of corner squares of ν.
Example 4.2. Let $m=4, n=5$, and $\nu=(4,3,2,2,2)$. Then Figure 5 shows that $\operatorname{Des}(w)=\{1,3,7\}$. The three corner squares are shaded.
Proof of Theorem 4.1. Suppose that $w=w_{1} \cdots w_{N}$ is any sequence of integers, and there are numbers $a \leq b<c \leq d$ such that $w_{a}>w_{d}$ and $w_{b}>w_{c}$. We then say that the inversion $\left(w_{b}, w_{c}\right)$ is inside $\left(w_{a}, w_{d}\right)$. Note that if $\left(w_{a}, w_{d}\right)$ is an inversion, then there is a descent $\left(w_{c}, w_{c+1}\right)$ inside $\left(w_{a}, w_{d}\right)$. If $(i, j),(k, h) \in \Upsilon(P)$, then (k, h) is inside (i, j) if and only if $k \geq i$ and $j \leq h$ (using $1<2<\cdots<m$ and $m+1<\cdots<m+n$ in P). It follows that the inversion $(i, j) \in \Upsilon(P)$ corresponds to a descent in w if and only if (i, j) is a corner square.

Now let (i, j) be a corner square corresponding to the descent r of w, i.e., $i=w_{r}>w_{r+1}=j$. The elements of P less than j and
preceding j in w are $1,2, \ldots, j-1$. The elements of P greater than j and preceding j in w are $m+1, m+2, \ldots, i$. Thus the total number of elements preceding j is $i+j-m-1=e(i, j)$, completing the proof.

Acknowledgement. I am grateful to Ira Gessel for providing the references for Corollary 3.3.

References

[1] S. Billey, W. Jockusch, and R. Stanley, Some combinatorial properties of Schubert polynomials, J. Alg. Combin. 2 (1993), 345-374.
[2] I. M. Gessel and N. Loehr, Note on the enumeration of partitions contained in a given shape, Linear Algebra Appl. 432 (2010), 583-585.
[3] B. R. Honda and S. G. Mohanty, On q-binomial coefficients and some statistical applications, SIAM J. Math. Anal. 11 (1980), 1027-1035.
[4] R. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, New York/Cambridge, 1999.
[5] R. Stanley, Enumerative Combinatorics, vol. 1, second edition, Cambridge University Press, 2012.
[6] J. R. Stembridge, On the fully commutative elements of Coxeter groups, J. Alg. Combin. 5 (1996), 353-385.
Email address: rstan@math.mit.edu
Department of Mathematics, University of Miami, Coral Gables, FL 33124

[^0]: Date: April 25, 2023.

