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ABSTRACT

Let G be the group of n�n upper-triangular matries with elements in a �nite �eld and

ones on the diagonal. This paper applies the harater theory of Andre, Carter and Yan to

analyze a natural random walk based on adding or subtrating a random row from the row

above.



1. Introdution

For a prime p, let G

n

(p) = G be the group of unipotent upper-triangular matries with

elements in the �nite �eld F

p

. This group has generating set

(1:0) S = fI � E

i;i+1

g 1 � i � n� 1:

A natural random walk may be performed, beginning at the identity, eah time hoosing one

of the 2(n � 1) generators at random, and multiplying. More formally, de�ne a probability

measure on G

n

(p) by

(1:1) Q

0

(g) =

(

1=2(n� 1) if g = I � E

i;i+1

1 � i � n� 1

0 otherwise :

Let Q

�2

0

(g) = �

h

Q

0

(h)Q

0

(gh

�1

), Q

�k

0

(g) = Q

0

� Q

�(k�1)

0

(g). These onvolution powers give

the hane that the walk is at g after k steps. Denote the uniform distribution by

(1:2) �(g) =

1

p

n(n�1)=2

:

If p is an odd prime, Q

�k

0

(g)! �(g) as k !1. To study the speed of onvergene let

(1:3) kQ

�k

0

� �k = max

A

jQ

�k

0

(A)� �(A)j =

1

2

X

g

jQ

�k

0

(g)� �(g)j :

Given � > 0, how large must k be so kQ

�k

0

� Uk < �? Partial results due to Zak, Diaonis,

Salo�-Coste, Stong and Pak are desribed at the end of this introdution. There are good

answers if n is �xed and p is large but the general problem is open.

The present paper develops an approah to the problem using harater theory as de-

sribed in Diaonis and Salo�-Coste [1993℄, Diaonis [2003℄. This involves bounding the rate

of onvergene of a random walk driven by a probability measure that is onstant on the

union of the onjugay lasses ontaining the generating set. Then, a omparison theorem is

used to bound the original walk. The harater theory of G

n

(p) is a well known nightmare.

In reent work, Carlos Andre, Roger Carter and Ning Yan have developed a theory based

on ertain unions of onjugay lasses (here alled super-lasses) and sums of irreduible

haraters (here alled super-haraters). The present paper gives a sharp analysis of the

onjugay lass walk and gives partial results for the original walk.

Here is one of our main results. The onjugay lass ontaining I + aE

i;i+1

onsists of

upper triangular matries with a in position (i; i+1), arbitrary �eld elements �

1

; �

2

; : : : ; �

i�1

in olumn i+1 above this a, arbitrary �eld elements �

1

; �

2

; : : : ; �

n�(i+1)

in row i to the right

of the a. In the blok bounded by these �

j

; �

k

, the (j; k) entry is a

�1

�

j

�

k

.

Call this lass C

i

(a); 1 � i � n� 1. Thus jC

i

(a)j = p

n�2

.

For p an odd prime, de�ne

(1:4) Q(g) =

(

1=[2(n� 1)p

n�2

℄ if g 2 C

i

(�1) 1 � i � n� 1

0 otherwise
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For p = 2, de�ne

(1:4) Q(g) =

8

>

<

>

:

1=n if g = id

1=[n2

n�2

℄ if g 2 C

i

(1) 1 � i � n� 1

0 otherwise:

Theorem 1. For the random walk (1.4) on the group of unipotent upper-triangular

matries G

n

(p), there are universal onstants 

i

so that for all n � 2 and all k,

(1:5) 

1

e

�

2

k=(p

2

n logn)

� kQ

�k

� �k � 

3

e

�

4

k=(p

2

n log n)

:

Remarks.

1. The natural analog of the walks (1.1) and (1.4) over the �nite �eld F

q

use generators

fI + a

j

E

i;i+1

g and C

i

(a

j

) where a

j

are an additive basis for F

q

over F

p

. If q = p

u

, then

(1.5) holds with p

2

(n logn) replaed by p

2

(nu log(nu)). See Setion 3B.

2. The walk (1.4) is easy to implement as a series of 'rank one steps'. To hoose an

element of the onjugay lass C

i

(a) uniformly, form a random vetor V by hoosing

�eld elements V

1

; V

2

; : : : ; V

i�1

uniformly in F

p

, setting V

i

= a and V

j

= 0 for j > i.

Form a random vetor W by setting W

k

= 0, 1 � k � i, W

i+1

= 1, W

j

= a

�1

U

j

with U

j

-hosen uniformly in F

p

; i + 2 � j � n. The matrix I + VW

T

is uniformly

distributed in C

i

(a).

Setion Two below reviews the super-lass theory needed. As new results, it derives

the basi upper bound lemma, proves that super-lass funtions form a ommutative, semi-

simple algebra indexed by set partitions and derives a losed formula for the value of a

super-harater on a super-lass with no restritions on n and q. Theorem 1 is proved

in Setion Three in a stronger norm than (1.3). This is needed for omparison theorems.

Setion Four gives a harater-free proof of Theorem 1 using a new form of stopping time

arguments whih may be of independent interest. Setion Five gives our analysis of the

original walk (1.1) by omparison. The main novelty in the present paper is showing that

super-lass theory an be used to solve problems usually solved by harater theory.

Literature Review. For bakground on random walk on �nite groups see Diaonis [1988℄,

Salo�-Coste [1997℄, [2003℄. The omparison approah is developed in Diaonis and Salo�-

Coste [1993℄ with reent developments surveyed in Diaonis [2002℄. There have been previous

appliations of omparison theory in the symmetri group and for �nite groups of Lie type.

The present paper is the �rst serious inursion into p-groups.

When n = 3, the random walk (1.1) on the Heisenberg Group was studied by Zak

[1984℄. For �xed n � 3 and large p, sharp rates of onvergene are given in joint work

with Salo�-Coste [1993A, 1994A,B℄. Roughly, order p

2

steps are neessary and suÆient for

onvergene. The solution was ahieved by three quite di�erent routes. In [1994B℄, geometri

volume growth arguments are used. In [1994A℄, the walk is realized as a projetion of a walk
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on the free nilpotent group. Deay bounds of Hebish and Salo�-Coste along with Harnak

inequalities are used. The impliit onstants depend badly on n. They are of order e

n

2

.

Perhaps the earliest large n-results follow from work of Ellenberg [1993℄. If  is the

diameter of G

n

(p) in the generating set S of (1.0) he shows there are expliit onstants ; C

suh that

(np+ n

2

log p) �  � C(np+ n

2

log p):

From this, standard bounds (see e.g. Diaonis and Salo�-Coste [1993A℄) show that there are

onstants �; � suh that

kQ

�k

0

� �k � p

n(n�1)=2

�

1�

2

n

2

�

k

:

Thus, for p �xed and n large, order n

7

steps suÆe.

Rihard Stong [1995℄ has given sharp estimates of the seond eigenvalue of the walk

(1.1). He showed there are universal onstants 

i

suh that the seond eigenvalue �

1

satis�es

1�



1

p

2

n

� �

1

� 1�



2

p

2

n

. He also showed that the smallest eigenvalue satis�es

�

min

� � 1 +



3

p

2

:

Using these, he shows that if k = 

4

p

2

n

3

log p+ p

2

n� then

kQ

k

0

� �k < e

�

5

�

:

Stong also shows that at least order n

2

steps are needed

Pak [2000℄ treats the ase of n large, with steps I + aE

i;i+1

for a hosen uniformly.

Using an elegant stopping time argument he shows that order n

2:5

steps are neessary and

suÆe for this ase. The arguments are extended to nilpotent groups in Atashkevih and

Pak [2001℄. Coppersmith and Pak [????℄ showed that order n

2

steps suÆe provided p� n.

To onlude this survey we note that the parallel walk on the generating lass of trans-

positions in the symmetri group S

n

had many appliations through projetions to quotient

walks on subgroups. The subgroup S

k

� S

n�k

yields the Bernoulli-Laplae Model of di�u-

sion. The subgroup S

n

w

r

S

2

yields a walk on perfet mathings, the walk projeted onto

onjugay lasses gives an analysis of oagulation-fragmentation proess appearing in hem-

istry. These and many further appliations are surveyed in Diaonis [2003℄. For the walk on

upper-triangular matries, the projetion onto the Frattini quotients gives the basi produt

walk on F

n�1

p

analyzed in Diaonis and Salo�-Coste [1993℄. The group G

n

(q) is a semi-diret

produt of G

n�1

(q) and F

n�1

q

with F

n�1

q

seen as all matries in G

n

(q) whih are zero exept in

the last olumn and G

n�1

(q) seen as all matries in G

n

(q) whih are zero in the last olumn.

The quotient walk on G

n

(q)=G

n�1

(q) is an example of a failitated kinematis model where

a site an turn on or o� only if its left most neighbor is on. See Aldous and Diaonis [2002℄

or Ritort and Sollih [2002℄ for extensive referenes. At this writing we do not have a simple

interpretation of the projetion of the walk (1.4) on super-lasses but we presume it will give

a natural walk on set partitions.

4



2. Bakground Throughout, q = p

u

for a prime p. The group G

n

(q) of n� n matries

whih are upper triangular with ones on the diagonal is the Sylow p-subgroup of the general

linear group GL

n

(F

q

). Throughout, we write G for G

n

(q). As is well known, G has enter

Z(G) onsisting of matries in G whih are zero in all oordinates exept (1; n). The om-

mutator G

0

equals the Frattini subgroup �(G) whih onsists of matries in G whih are

zero along the super-diagonal. It follows that the matries (I �E

i;i+1

) 1 � i � n� 1 form a

minimal generating set for G

n

(p) and that there are q

n�1

distint linear haraters.

The harater theory and onjugay lasses of G have been a persistent thorn in the

side of group theorists. They are not known for n � 7 and onsidered unknowable. Indeed,

Poljak [1966℄ shows that a nie desription of the onjugay lasses leads to a nie desription

of wild quivers. Presumably, this does not exist. The diÆulty of applying the orbit method

to G is reviewed by Kirilov in [1995, 1999℄. Further study is in Issas [1995℄ who shows that

the degree of a nonlinear harater is a power of q. Thompson [2003℄ studies the apparently

diÆult problem of proving that the number of onjugay lasses is a polynomial in q.

In a series of papers [1995A,B, 1996, 1996℄, Carlos Andre has developed what Roger

Carter alls super-lass and super-harater theory. Super-lasses are ertain unions of on-

jugay lasses and super-haraters are sums of irreduible haraters. These have nie

duality and orthogonality properties and a very useful super-harater formula.

We follow an elegant elementary approah of Ning Yan [2001℄. This does not have the

restritions of earlier work that p > n. It also ontains all that we need to analyze the

random walks of interest.

In Setion A, super-lasses are de�ned. The algebra A of super-lass funtions is in-

trodued. Setion B de�nes super-haraters and gives their dimension and intertwining

numbers. Setion C gives the Andre-Carter-Yan Charater formula. Setion D shows these

objets are naturally assoiated to Bell numbers and set partitions. Setion E derives a

Planherel formula and the basi upper bound lemma needed to prove Theorem 1.

A. Super-Classes. Let U

n

(q) denote the set of upper triangular matries with zeros on

the diagonal. The produt group G � G ats on U

n

(q) by left/right multipliation. Let 	

index the orbits of this ation. The orbits indexed by 	 will be alled transition orbits below.

Yan [Th 3.1℄ shows that eah transition orbit ontains a unique element with at most one

non-zero entry in eah row and eah olumn. If D denotes the positions of the non-zero

entries and � : D ! F

�

q

denotes the entries, 	 may be represented by pairs (D; �). For

example, when n = 3, there are �ve possible hoies of D shown in Figure 1 below

Figure 1

0

�

0 0 0

0 0 0

0 0 0

1

A

0

�

0 � 0

0 0 0

0 0 0

1

A

0

�

0 0 0

0 0 �

0 0 0

1

A

0

�

0 0 �

0 0 0

0 0 0

1

A

0

�

0 � 0

0 0 �

0 0 0

1

A

In Setion D below we show that the number of allowable on�gurationsD is the Bell number

B(n). Here B(1) = 1; B(2) = 2; B(3) = 5; B(4) = 15; B(5) = 52; : : : is the number of set

partitions of n.
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Figure 1 also shows two ombinatorial features of D that �gure prominently in later

developments. The Dimension Index d(D) denotes the sum of the vertial distanes from

the boxes in D to the super-diagonal f(i; i + 1)g

1�i�n�1

. Thus if all of the boxes in D are

on the super-diagonal d(D) = 0. The Intertwining Index i(D) ounts the number of pairs of

boxes in D, that is, (i; j); (k; `) in D, with 1 � i < k < j < ` � n so that the `orner' (k; j)

is above the diagonal. Pitorially

(i; j)

(k; j) (k; `)

The n = 3 example above was lose to trivial. Here is another with n = 5. On the left,

d(D) = 2; i(D) = 0; on the right, d(D) = 3; i(D) = 1.

0

B

B

B

B

�

0 0 � 0 0

0 0 0 0 0

0 0 0 0 �

0 0 0 0 0

0 0 0 0 0

1

C

C

C

C

A

0

B

B

B

B

�

0 0 � 0 0

0 0 0 0 �

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

C

C

C

C

A

As will emerge in Setion B, the super-haraters are also indexed by pairs (D; �). The

assoiated super-harater has dimension of q

d(D)

and intertwining number q

i(D)

. We will

all the positions in D \boxes" below.

Following Kirilov [1995℄ and Yan [2001℄ we may map transition orbits in U

n

(q) into the

group G by adding the identity to eah matrix in the orbit. These will be alled super-

lasses and labeled C(D; �). Subtrating the identity from eah element of C(D; �) gives

the transition lass K(D; �). It is lear that C(D; �) is a union of onjugay lasses. As

an example, the super-lass orresponding to transition orbit for a single box onsists of

matries in G with a �xed, non-zero �eld element a where the box is; arbitrary �eld elements

�

i

diretly above the box, arbitrary �eld elements �

j

diretly to the right of the box. In the

retangle above and to the right of the box it has element a

�1

�

i

�

j

. Note that the super-lass

with one box ontaining a in position (i; i + 1) ontains the generator I + aE

i;i+1

. Clearly,

the size of the super-lass orresponding to one box is q

s(D)

with s(D) equal to the number

of plaes above and to the right of the box. Yan shows that any transition lass is a sum of

the \elementary" transition-lasses it ontains:

K(D; �) =

X

d2D

K(d; �);

and further, eah x 2 K(D; d) an be written in exatly r(D) ways as suh a sum, where

(2:0) r(D) = # f(i; j); (k; `) 2 D : i < k; j < `g:

De�ne the super-lass funtions A via

(2:1) A = ff : G! C with f onstant on super-lassesg:
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Thus f 2 A if and only if f(g) = f(g

0

) whenever g � I = h

1

(g

0

� I)h

2

. We show below that

A is a ommutative, semi-simple sub-algebra of the lass funtions on G under onvolution

(2:2) f

1

� f

2

(g) =

X

h2G

f

1

(h)f

2

(gh

�1

):

B. Super-Charaters. Let U

�

n

(q) be the spae of linear maps from U

n

(q) to F

q

. The

group G ats on the left and right of U

�

n

(q) via

g � �(m) = �(mg); � � g(m) = �(gm); g 2 G; � 2 U

�

n

(q); m 2 U

n

(q):

The orbits of the produt group G � G on U

�

n

(q) are alled otransition orbits and indexed

by 	

�

. Fix a non-trivial homomorphism � : F

q

to C

�

. For � 2 U

�

n

(q), de�ne v

�

: G! C

�

by

v

�

(g) = �[�(g � I)℄

Yan [2001, se. 2℄ shows that fv

�

: � 2 U

�

n

(q)g is an orthonormal basis of C [G℄ with the

usual inner produt hf

1

jf

2

i =

1

jGj

X

g

f

1

(g)f

2

(g).

By diret omputation,

gv

�

(�) = v

�

(g)v

g�

(�):

It follows that if L is a left orbit of G ating on U

�

n

, the linear span of fv

�

g

�2L

is a submodule

of C [G℄. Let �

�

be the harater of this representation for any � 2 L. Yan [2001, R.2℄ shows

that if � and �

0

are in the same right orbit of G ating on U

�

n

then �

�

= �

�

0

. The haraters

f�

�

g

�2	

�

are alled super-haraters. Yan [2001, 2.6℄ shows that the super-haraters are in

fat super-lass funtions, that they are orthogonal and

(2:3) h�

D;�

j�

D

0

;�

0

i =

(

0 if (D; �) 6= (D

0

; �

0

)

q

i(d)

if (D; �) = (D

0

; �

0

)

Here, the set 	

�

is identi�ed with 	 and the labeling of (D; �) pairs will be used.

One further useful fat Yan [2001, 2.4℄: let �

G

be the harater of the regular represen-

tation of G; its deomposition into super-haraters is

(2:4) �

G

(�) =

X

D;�

j (D; �)j

�

D;�

(1)

�

D;�

(�);

where �

D;�

(1) = q

d(D)

is the harater degree and j (D; �)j = q

2d(D)�i(D)

is the size of the

G�G orbit in U

�

n

indexed by (D; �). The sum is over all otransition orbits.

These fats allow us to prove an apparently new result.

Proposition 1. The spae A of super-lass funtions de�ned at (2.1) is a ommutative

semi-simple algebra.
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Proof. We will show that A is losed under onvolution. It is thus a sub-algebra of the

lass funtions on G and so ommutative. Further, it has a basis of orthogonal idempotents,

the super-haraters, so it is semi-simple.

For eah (D; �), let S(D; �) be the labels of the irreduible haraters of G ontained

in �

D;�

. By orthogonality of �

D;�

, the S(D; �) are disjoint. From (2.4), every irreduible

harater appears in a unique S(D; �). Sine eah irreduible harater �

s

appears in the

regular harater �

s

(1) times, (2.4) yields that the multipliity of �

s

in the appropriate �

D;�

is q

i(D)�d(D)

�

s

(1). Thus

(2:5) �

D;�

(�) = q

i(D)�d(D)

X

s2S(D;�)

�

s

(1)�

s

(�):

It is lassial that for two irreduible haraters

�

s

� �

t

= Æ

st

jGj

�

s

(1)

� �

s

(�)

See e.g. Isaas [1976, 2.13℄. Thus, �

D;�

� �

D

0

;�

0

is zero unless (D; �) = (D

0

; �

0

) and then

(2:6) �

D;�

� �

D;�

(�) = q

2(i(D)�d(D))

X

s2S(D;�)

�

2

s

(1)

jGj

�

s

(1)

�

s

(�) = q

i(D)�d(D)

jGj�

D;�

(�) 2

We may identify the super-haraters as tensor produts of ertain indued haraters

studied by Lehrer [1974℄. First, for 1 � i � n � 1 identify the i-dimensional group G

i

(q)

with a subgroup of G

n

(q) having non-zero entries only in the left i � i upper orner. This

subgroup has a normal omplement H

i

(q) onsisting of matries in G

n

(q) having the identity

in the left i� i left upper orner. Thus G

n

(q) is the semi-diret produt of G

i

(q) with H

i

(q).

It follows that any harater of G

i

(q) extends trivially to G

n

(q). Let G

i;k

; 1 � k � i � 1

be the subgroup of G

i

onsisting of matries that are zero in the kth row (to the right of

the diagonal). For � a harater of F

�

q

, let �

i;k

be the harater (0; : : : ; 0; �; 0; : : : ; 0) (zeros

exept in the kth plae) of the Abelian subgroup of G

i

onsisting of matries whih are zero

exept in the last olumn. Using the trivial harater of G

i�1

gives a harater ??? of G

i

.

Induing this up to G

n

gives preisely �

D;�

with D = f(k; i)g and � uniquely assoiated to �.

Further, for any D, �

D;�

=

N

d2D

�

d;�

. Details may be found in Lehrer [1974℄ and Yan [2001℄.

C. The Charater Formula. There is a remarkable losed form formula for the value

of a super-harater on a super-lass. Andre [1996℄ gave suh a result for p suÆiently large

ompared to n. Using tools developed by Yan, we are able to show that Andre's formula

holds for all values of n and p.

Theorem 2. On the group G

n

(q) of upper-triangular matries, with ones on the diagonal

and entries in F

q

, the value of the super-harater �

D;�

on the super-lass C(D

0

; �

0

) equals

(2:7)

8

>

>

>

<

>

>

>

:

q

p(D;D

0

)

�

 

Y

(i;j)2D\D

0

�(i; j)�

0

(i; j)

!

if D � R(D

0

)

0 Otherwise
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where R(D

0

) is the omplement in f1 � i < j � ng of the positions diretly above and

to the right of positions in D

0

(thus D

0

� R(D)) and p(D;D

0

) is the number of positions

diretly below positions in D whih are also in R(D

0

). Finally, � is an isomorphism from F

q

(additively) to C .

Remarks and Examples.

1. D

0

= ; orresponds to the identity, whih forms a super-lass by itself. Then, R(D

0

)

is the full upper triangle, the produt in (2.7) is one, and p(D;D

0

) = d(D) de�ned in

Setion 2A above. Thus

dim �

D;�

= �

D;�

(1) = q

d(D)

2. The random walk Q of (1.4) is supported on the union of 2(n� 1) super-lasses

C

i

(�1) = C((i; i+ 1); �1); 1 � i � n� 1:

For D

0

= C

i

(�1), R(D

0

) onsists of all positions in the upper-triangle whih are not

stritly above or stritly to the right of (i; i + 1). The produt in (2.7) has a single

term and p(D;D

0

) ounts the distane from the entries inD down to the super-diagonal

ounting only positions inR(D

0

). Thus, ifD

i

is the set of positions inD in the retangle

stritly above and to the right of (i; i+ 1)

�

D;�

(C

i

(�1))

�

D;�

(;)

=

�

q

�jD

i

j

�(��(i; i + 1)) if D � R(f(i; i+ 1)g)

0 Otherwise

We make areful use of this in Setion 3. We begin the proof of the theorem with a duality

lemma. The super-haraters of G = G

n

(q) are indexed by orbits of G � G on U

�

n

(q) the

set of F

q

-valued linear funtions of U

n

(q) taken as a vetor spae over F

q

. Yan shows these

may also be indexed by Pairs (D; �) as above. Call the set of orbits �

�

with typial element

 (D; �).

Lemma 1. Fix � 2  (D; �) and g 2 C(D

0

; �

0

). Then,

(2:8) �

D;�

(g) =

q

d(D)

j (D; �)j

X

�

0

2 (D;�)

�(�

0

(g � I)) =

q

d(D)

jC(D

0

; �)j

X

h2C(D

0

;�

0

)

�(�(h� I)):

Proof. The �rst equality in (2.8) is 2.5 of Yan [2001℄. Write the �rst sum as

X

�

0

2 (D;�)

�(�

0

(g � I)) =

1

jGj

2

X

s;t2G

X

�

0

2 (D;�)

�(s � �

0

� t(g � I))

=

1

jGj

2

X

�

0

2 (D;�)

X

s;t2G

�(s � �

0

� t(g � I))

=

j (D; �)j

jGj

2

X

s;t2G

�(s � � � t(g � I))

=

j (D; �)j

jGj

2

X

s;t2G

�(�(t(g � I)s):
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The last sum equals

jGj

2

jC(D

0

; �

0

)j

X

h2C(D

0

;�

0

)

�(�(h� I)):

Combining formulae gives the seond equality in (2.8) 2

Proof of Theorem 2. Observe �rst that the laimed formula (2.7) is multipliative: If

D = fÆ

1

; Æ

2

; : : : ; Æ

r

g and the formula is known, then

�

D;�

=

r

Y

i=1

�

Æ

i

;�

:

Now, Yan [2001, th 6.1℄ has shown the super-haraters �

D;�

is multipliative. Thus it is

enough to verify for any position Æ

�

Æ;�

(C(D

0

; �

0

)) =

8

>

<

>

:

q

p(Æ;D

0

)

�(�(Æ)�

0

(Æ)) if Æ 2 D

0

q

p(Æ;D

0

)

if Æ 2 R(D

0

) nD

0

0 if Æ 62 R(D

0

)

It will be onvenient to use the orrespondene g $ g�I whih takes C(D

0

; �

0

) to K(D

0

; �

0

).

As explained in Setion 2A above, every transition lass K(D

0

; �

0

) an be written as a sum

of lasses:

K(D

0

; �

0

) =

X

Æ

0

2D

0

K(Æ

0

; �

0

);

with eah m 2 K(D

0

; �

0

) expressible in exatly r(D

0

) ways { see (2.0). Thus

(2:9): jK(D

0

; �

0

)j =

1

r(D

0

)

Y

Æ

0

2D

0

jK(Æ

0

; �

0

)j

Using (2.8), for any � 2  

�

(Æ; �)

�

Æ;�

(C(D

0

; �

0

)) =

q

d(Æ)

jK(D

0

; �

0

)j

X

m2K(D

0

;�

0

)

�(�(m)):

Using the deomposition of m as a sum

(2:10)

X

m2K(D

0

;�

0

)

�(�(m)) =

1

r(D

0

)

Y

Æ

0

2D

0

X

m2K(Æ

0

;�

0

)

�(�(m)):

Using properties of trigonometri sums,

X

m2K(Æ

0

;�

0

)

�(�(m)) =

8

>

>

>

<

>

>

>

:

jK(Æ; �

0

)j �(�(Æ)�

0

(Æ)) if Æ = Æ

0

jK(Æ

0

; �

0

)j if Æ 2 R(Æ

0

) nR

+

(Æ

0

)

jK(Æ

0

; �

0

)j q

�1

if Æ 2 R

+

(Æ

0

)

0 if Æ 62 R(Æ

0

)
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We use the following notations.

0

B

B

B

B

�

0 0 � � �

0 0 � � �

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

C

C

C

C

A

� is in position Æ

0

, � are in positions belonging to R(Æ

0

)

C

and � are in positions belonging

to R

+

(Æ

0

). It follows that the sum (2.10) is

q

�

P

Æ

0

2D

0

1

R

+

(Æ

0

)

(Æ)

�(�(Æ)�

0

(Æ))

1

D

0

(Æ)

1

r(D

0

)

Y

Æ

0

2D

0

jK(Æ

0

; �

0

)j:

The theorem folows from this, (2.8), (2.9) and the obvious fat

p(Æ;D

0

) = d(Æ)�

X

Æ

0

2D

0

1

R

+

(Æ

0

)

(Æ) 2

D. Set Partitions and Bell Numbers. The algebra A of Proposition 1 has a lose

onnetion with set partitions and Bell numbers. Indeed, the allowable sets D orre-

spond to set partitions of [n℄ by delaring i and j to be in the same blok if D ontains

(i; j). For example, when n = 3, the �ve subsets D displayed in Figure 1 orrespond to

1=2=3; 12=3; 1=23; 13=2; 123. Given a set partition, we assoiate D, a set of pairs (i; j) with

1 � i < j � n, by beginning with 1 and adding a box (1; j) to D for the smallest distint

entry j in the same blok with one (if one is a singleton,no box is added). Then add a box

(2; j) if j is the smallest entry in the blok with 2 (no box is added if there is no larger

entry). Continue with 3; 4; : : : ; n� 1. As an example, 25=14=3 orresponds to

0

B

B

B

B

�

0 0 0 � 0

0 0 0 0 �

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

C

C

C

C

A

Under this orrespondene, partitions with b bloks map to patterns with n� b boxes.

There is an extensive enumerative theory of set partions, see e.g. Fristed [1987℄ or Pitman

[2003℄ for authoritative surveys. We have not seen previous study of the statistis d(D) or

i(D). From the deomposition of the regular representation (2.4) we have the generating

funtion

q

n(n�1)=2

=

X

D

q

2d(D)�i(D)

(q � 1)

jDj

:

Andre [1996℄ had earlier proved a dual formula orresponding to the deomposition into

super-lasses.
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The number B(n; q) of super-lasses equals the dimension of the algebra A. Yan [2001,

4.1℄ gives the following reurrene

B(n + 1; q) =

n

X

k=0

�

n

k

�

(q � 1)

n�k

B(k; q); B(0; q) = 1:

This is easy to see: a on�guration ounted by B(n+1; q) ontains some number of boxes on

the super-diagonal. Call this n�k; 0 � k � n. Any hoie rules out n�k rows and olumns

and leaves at most k boxes to be further plaed. This an be done in B(k; q) ways; of ourse

the (q � 1) fator aounts for the labeling by F

�

q

. Note that when q = 2, this beomes the

usual reurrene for Bell numbers.

Lehrer [1974℄ has shown that the irreduible haraters of maximal degree are also

super-haraters orresponding to boxes (1; n); (2; n� 1); (3; n� 2); : : : along the main anti-

diagonal. He shows that `most' representations (aording to Planherel measure) have

maximal degree.

Finally, Borodin [1995℄ has derived elegant probabilisti limit theorems for the number of

Jordan Bloks in a random element of G. These and other results are desribed in Fulman's

Survey [2002, Se. 4℄.

E. Some Fourier Analysis. Throughout, G = G

n

(q) and A is the algebra of super-lass

funtions of G. The Fourier Transform of f 2 A at the lass indexed by D; � is

b

f(D; �) =

X

g

f(g)��

D;�

(g) = jGjhf j�

D;�

i:

From the onvolution formula (2.4) and linearity we have, for f , h 2 A,

(2:11)

[

f � h(D; �) = q

�d(D)

b

f(D; �)

b

h(D; �):

As usual, the Fourier transform of the uniform distribution �(g) = 1=jGj is

b�(D; �) =

(

1 if D is empty

0 otherwise:

Also, for any probability distribution Q 2 A,

b

Q(;) = 1. The following version of the

Planherel Theorem is basi to what follows.

Proposition 3. Let Q 2 A be a probability distribution. Then

kQ

�k

� �k

2

2

=

1

jGj

2

X

D;�

Non�empty

q

�i(D)

�

�

�

�

�

b

Q(D; �)

q

d(D)

�

�

�

�

�

2k

:

Proof. For any h 2 A,

h =

X

D;�

hhj�

D;�

i

h�

D;�

j�

D;�

i

�

D;�

:
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Thus

khk

2

2

=

X

D;�

jhhj�

D;�

ij

2

q

�i(D)

:

This implies

kQ

�k

� �k

2

2

=

1

jGj

X

g

jQ

�k

(g)� �(g)j

2

=

X

D;�

Non�empty

jhQ

�k

j�

D;�

ij

2

q

�i(D)

:

Now use (2.11). 2

Corollary. (Upper Bound Lemma) Let Q 2 A be a probability distribution, then

4kQ

�k

� �k

2

TV

�

X

D;�

Non�empty

q

�i(D)

�

�

�

�

�

b

Q(D; �)

q

d(D)

�

�

�

�

�

2k

:

Proof. 4kQ

�k

� �k

2

TV

=

�

X

g

jQ

�k

(g)� �(g)j

�

2

� jGj

X

g

jQ

�k

(g)� �(g)j

2

= jGj

2

kQ

�k

� �k

2

2

2

Remark. Let us relate the analysis of this setion to the lass-funtion analysis of Diaonis

[2003℄. If G is any �nite group and h is a lass funtion of G,

h =

X

�

hhj�

�

i�

�

where the sum is over all irreduibles representations and �

�

(g) = Trae(�(g)).

Orthonormality of haraters implies khk

2

2

=

X

�

jhhj�

�

ij

2

.

If G = G

n

(q) and h is a super-lass funtion, Proposition 3 gives h as a sum of super-

haraters.

(2:12) h =

X

 

hhj�

 

i

h�

 

j�

 

i

�

 

:

Thus khk

2

2

=

X

 

jhhj�

 

ij

2

q

�i( )

where  runs over (D; �) pairs. Deompose the super-

harater �

 

into irreduibles as in (2.7)

(2:13) �

 

=

X

�2S( )

m(�;  )�

�

:
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using (2.12), (2.13)

(2:14) hhj�

�

i =

hhj�

 

i

h�

 

j�

 

i

m(�;  )

thus

X

�

jhhj�

�

ij

2

=

X

 

X

�2S( )

�

�

�

hhj�

 

i

h�

 

j�

 

i

m(�;  )

�

�

�

2

=

X

 

jhhj�

 

ij

2

j�

 

j�

 

ij

2

X

�2S( )

m

2

(�;  )

=

X

 

jhhj�

 

ij

2

h�

 

j�

 

i

:

Thus, as must be, the two formulae for khk

2

2

agree.

From (2.14) we see that if h 2 A and

b

h( ) = 0 then

b

h(�) = 0 for eah � in S( ).

3. Proof of Theorem 1 and Extensions

In this setion we use the Fourier transform of the probability measureQ of (1.4) together

with the upper bound lemma of Setion 2E to prove Theorem 1. Throughout, the L

2

norms

are bounded. We �rst treat the ase when q = 2 with holding at the identity, both to have

a theorem for this ase and beause the analysis is easiest here. We then treat the ase of a

general �nite �eld F

q

; Theorem 1 is the speial ase where q = p. Finally we give the lower

bounds whih show our upper bounds are essentially sharp.

A. q = 2. On GL

n

(2) onsider the probability measure Q, de�ned in (1.4).

The Fourier transform at the super-harater indexed by (D; �) is

(3:2)

b

Q(D)

2

d(D)

=

1

n

+

1

n

n�1

X

i=1

2

�jD

i

j

(�1)

Æ(D;i)

Æ(R

i

; D):

When q = 2, � doesn't enter. We write D

i

for the number of positions in D stritly inside the

retangle with lower left orner at (i; i+ 1). The indiator 1(D; i) is one or zero as (i; i+ 1)

is in D or not and 1(R

i

; D) is one or zero as D is disjoint from positions in the row (and

olumn) stritly to the right (above) (i; i + 1).

From proposition three, the L

2

or hi-square distane is given by

(3:3) jGj

2

kQ

�k

� �k

2

2

=

X

D 6=;

2

�i(d)

�

�

�

b

Q(D)

2

d(D)

�

�

�

2k

�

X

D 6=;

�

�

�

b

Q(D)

2

d(D)

�

�

�

2k

:

This is an upper bound for the total variation distane (1.3). Thus the following theorem

proves the upper bound for Theorem 1 when q = 2.

Theorem 3. On G

n

(2), with Q de�ned by (3.1), let k = n(5=2 logn + =2), for  > 0.

Then

jGj

2

kQ

�k

� �k

2

2

� 4e

�

:
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Proof. Fix a non-empty set of positionsD and onsider the transform

b

Q(D)=2

d(D)

at (3.2).

Let m be the number of positions in D stritly above the super-diagonal and let ` be the

number of positions in D on the super-diagonal. We always have m+ ` � n� 1. Also, sine

D is non-empty, m+ ` � 1.

We may upper bound the transform by replaing negative terms in the sum by 0 and

positive terms in the sum by 1. Eah of the ` super-diagonal positions in D ontributes a

zero and eah of the m non-super-diagonal positions ontributes a zero. This shows that

b

Q(D)

2

d(D)

� 1�

m + `

n

:

We may lower bound the transform by replaing positive terms in the sum by 0 and negative

terms in the sum by -1. Eah of the ` super-diagonal positions in D ontributes a -1 and

eah of the m non-super-diagonal positions ontributes a 0. This shows that

b

Q(D)

2

d(D)

�

`

n

:

Hene,

�

�

�

�

�

b

Q(D)

2

d(D)

�

�

�

�

�

� max

�

1�

m + `

n

;

`

n

�

:

To bound the sum in (3.3) note that there are at most

 

n

2

m

! 

n

`

!

� minfn

2(m+`)

; n

2(m+n�`)

g:

suh sets D.

We know an bound the rightmost sum in (3.3) by

X

1�m+`�n�1

n

2(m+`)

�

1�

m+ `

n

�

2k

+

X

1�m+`�n�1

n

2(m+n�`)

�

`

n

�

2k

:

The �rst sum is bounded above by

n

n�1

X

s=1

n

2s

�

1�

s

n

�

2k

;

while the seond sum is bounded above by

n

n�1

X

s=1

n

4s

�

1�

s

n

�

2k

:

In both ases, use 1� x � e

�x

to bound by e

�

for k = n(5=2 logn+ =2). 2

Remark. The onstants an be slightly improved (our estimates were made simple for

didati purposes). The lower bound in Setion 3C shows they annot be improved by muh.
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3B. Proof of Theorem 1 (Upper Bound). Let p be an odd prime. We want to upper

bound

S =

X

D;�

�

�

�

�

�

Q(D; �)

p

d(D)

�

�

�

�

�

2k

:

We impliitly extend � to all (i; j) by zero outside D.

Let D be a set of \positions". Deompose it into D = on(D) [ o�(D), where on(D)

(resp. o�(D)) are the positions in D that are on (resp. o�, i.e. above) the super-diagonal.

We know from Theorem 2 that

(3:4)

Q(D; �)

p

d(D)

=

1

n� 1

n�1

X

i=1

w

i

(D)os(2��(i; i+ 1)=p);

where the \weights" w

i

(D) satisfy 0 � w

i

(D) � 1 and w

i

(D) = 0 whenever there is s suh

that (i; s) 2 D or (s; i+1) 2 D. Let Z(D) be the set of i = 1; : : : ; n�1 suh that w

i

(D) = 0.

Also, nowhere in (3.4) do the values �(i; j); j > i + 1, appear.

Let I

+

(�) (resp. I

�

(�)) be the set of i = 1; : : : ; n� 1 suh that os(2��(i; i+1)=p) > 0

(resp. < 0). Then,

Q(D; �)

p

d(D)

�

1

n� 1

X

i2I

�

(�)\Z(D)



os(2��(i; i+ 1)=p); and;

Q(D; �)

p

d(D)

�

1

n� 1

X

i2I

+

(�)\Z(D)



os(2��(i; i + 1)=p):

Hene, S � S

+

+ S

�

, where

S

�

=

X

D;�

 

1

n� 1

X

i2I

�

(�)\Z(FD)



os(2��(i; i+ 1)=p)

!

2k

:

Let us fous on S

+

{ the omputations for S

�

are similar. What we are summing

does not depend on the values that � takes on o�(D) [ (on(D) \ I

�

(�)). Let a(D) be the

ardinality of Z(D) and b(D) be the ardinality of o�(D). Notie that a(D) > b(D). Also,

let 

�

(D) be the ardinality on (D) \ I

�

(�).

Replaing �(i; i + 1) by h

i

, we thus get

S

+

=

X

D

(p� 1)

b(D)

[p=2℄



�

(D)

X

h

1

;:::;h



+

(D)

 

1

n� 1



+

(D)

X

i=1

os(2�h

i

=p)

!

2k

;

where the h

i

runs through f�p=4; : : : ; p=4g, exluding the ase where all h

i

are zero. In the

sum, p

b(D)

(resp. [p=2℄



�

(D)

) omes from summing over all possibilities for the values of � on

o�(D) (resp. on(D) \ I

�

(�)).
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Rewrite as

S

+

=

X

D

(p� 1)

b(D)

[p=2℄



�

(D)

 



+

(D)

n� 1

!

2k

X

h

1

;:::;h



+

(D)

 

1



+

(D)



+

(D)

X

i=1

os(2�h

i

=p)

!

2k

;

where D runs through sets of positions satisfying 

+

(D) � 1.

First, we laim that, for all 1 �  � n� 1, and the range of the h

i

restrited as above,

X

h

1

;:::;h



 

1





X

i=1

os(2�h

i

=p)

!

2k

� �e

�� k=(p

2

n log n)

;

for universal �; �, uniformly in p; n and . Indeed, this follows from Theorem 1 in [Diaonis

and Salo�-Coste, Setion 5℄ with an expliit bound. See in partiular, example two of Setion

5. Salo�-Coste [2003, Th 8.10℄, gives another proof.

Seond, we prove that,

X

D

(p� 1)

b(D)

[p=2℄



�

(D)

 



+

(D)

n� 1

!

2k

� 1 + �

m

;

where �

m

! 0 as n!1, also for m = �p

2

n log(n) with � large enough, uniformly in p. (All

we need here is to bound by a onstant.)

Call the sum T . Sine a(D) + 

+

(D) + 

�

(D) � n� 1 and a(D) > b(D), we have

T �

X

D

p

b(D)+

�

(D)

 

1�

b(D) + 

�

(D)

n� 1

!

2k

:

There are at most

�

n

2

b

�

�

�

n� 1



�

sets of positions with b(D) = b and 

�

(D) = . This

number is bounded by n

2(b+)

. Hene,

T � 1 +

X

1�b+�n�1

n

2(b+)

p

b+

 

1�

b+ 

n� 1

!

2k

:

(The 1 takes are of the ase b +  = 0.)

Call T

0

the sum on the right. We have

T

0

� n

n�1

X

`=1

(pn)

2`

 

1�

`

n� 1

!

2k

� n

n�1

X

`=1

(pn)

2`

e

�2m`=(n�1)

:

17



Now,

(pn)

2`

e

�2m`=(n�1)

� e

�2`(�p

2

log(n)�log(p)�log(n))

� e

�2` log(n)(�p

2

�log(p))

:

Choose � > 0 so that �p

2

� log(p) � 1, for all p � 3. Then,

T

0

� n

e

�2 log(n)

1� e

�2 log(n)

� 2=n;

and that tends to zeros as n inreases. This ompletes the proof of the upper bound for

Theorem 1.

Remark. It is straight-forward to give a bound for the analogous walk over F

q

. Let

q = p

u

. Let a

1

; a

2

; : : : ; a

u

2 F

q

be a basis for F

q

as a vetor spae over F

p

. For a 2 F

q

,

de�ne Tr(a) = a + a

p

+ a

p

2

+ : : : + a

p

u�1

. As in Lidl and Niederreiter [1997, 2.30℄, let

b

1

; b

2

; : : : ; b

u

2 F

q

be a dual basis, thus Tr(a

i

b

j

) = 1

i=j

. Choose � in Theorem 2 as

�(a) = e

i

2�

p

Tr(a)

:

In Theorem 2, �eld elements

�(i; j) =

u

X

k=1

�

k

a

k

;

are written in basis a

k

and transform variables

�

0

(i; j) =

u

X

k=1

�

k

b

k

;

are written in basis b

k

. Then

�(�(i; j)�

0

(i; j)) = e

2�i

p

P

�

k

�

k

:

From here, the analysis follows more or less as above with n replaed by nu, if Q

0

is de�ned

on G

n

(q) by

Q

0

(g) =

8

>

<

>

:

1

2u(n�1)

if g = I � a

j

E

i; i+1

1 � j � a; 1 � i � n� 1

0 Otherwise

Theorem 1 holds as stated provided q is odd and m = p

2

nu log(nu). Further details are

omitted.

3C. Lower Bounds. A lower bound on the L

2

or hi-squared distane whih mathes the

upper bound of Theorems 2 and 3 an be obtained from the expression for jGj

2

kQ

�m

� �k

2

2

18



in terms of the Fourier transform (3.4). Keep only terms orresponding to D having a single

position on the super diagonal and � = 1 on that entry. Then

jGj

2

kQ

�m

� �k

2

2

� (n� 1)

"

1�

1

n� 1

 

1� os

 

2�

p

!!#

2k

:

Elementary alulus estimates show that the right side is not small when m � p

2

n logn for

 �xed.

A lower bound for total variation omes from onsidering the quotient walk on G=�. As

explained in the introdution, this evolves as the walk on F

n�1

p

whih proeeds by piking

a oordinate at random and adding �1 to this oordinate. For this walk a p

2

n logn lower

bound (for total variation) is well known. See e.g. Salo�-Coste [2003, Th 8.10℄. Further

details are omitted.

4. A Probabilisti Argument.

In this setion we give a oneptually simple probabilisti proof of Theorem 1 for the

walk based on generating onjugay lasses. The argument is a hybrid of strong stationary

times as in Aldous and Diaonis [1986℄, Diaonis and Fill [1990℄ and Fourier analysis on

F

n�1

p

. It is related to the stopping time arguments used by Pak [2000℄ and Uyemura-Reyes

[2002℄.

Consider the measure Q de�ned at (1.4). As explained there, the random walk based on

multiplying by suessive hoies from Q may be desribed as follows: If the urrent position

of the walk is X

t

2 G

n

(p), the next position is determined by multiplying on the left by

a matrix having � = �1 in position (i; i + 1), independent, uniformly hosen �eld elements

�

1

; : : : ; �

i�1

in the olumn above (i; i + 1), independent uniformly hosen �eld elements

�

1

; : : : ; �

n�(i+1)

in the row to the right of (i; i + 1). The entries in the (k; `) position in the

retangle with orner at (i; i+1) are ��

k

�

`

. The �rst proposition shows that the elements in

the row above (i; i + 1) and in the olumn to the right of (i; i + 1) in X

t+1

are independent

and identially distributed and remain so in suessive steps of the walk.

Proposition 1. Let S be a subset of f(i; j); 1 � i < j � ng. Let M be a random matrix

in G

n

(q) with fM

ij

g

(i;j)2S

uniformly distributed and independent of eah other and other

other entries in M . Let N be a seond random matrix independent of M . Then, the entries

in positions of S in the produt MN (or NM) are uniformly distributed, and independent

of eah other and the other entries in the produt.

Proof. Start with

(MN)

ij

=

X

k

M

ik

N

kj

=M

ij

+ T

ij

;

where T

ij

is a term involving elements ofM and N distint fromM

ij

. It follows that (MN)

ij

is uniform for all (i; j) 2 S. To prove independene, argue olumn by olumn, working from

the right. Entries in (MN) with the largest values of j ourring in S have unique entries

whih do not our in other terms in S. These are thus independent of eah other and the
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rest of the entries. Then onsider entries with the seond largest value of j in S, and so on.

The argument for NM is similar. 2

The above proposition says, one an entry is random, it stays random. Returning to the

random walk generated by Q, let T be the �rst time eah position (i; i + 1) 1 � i � n � 1

has been hosen at least one. It follows from the proposition that at time T = t, all the

entries at or above the seond diagonal are independent and uniformly distributed, even

given T = t. This last is a partial analog of strong stationarity.

Let � = �(G

n

(q)) be the Frattini subgroup. This onsists of matries M in G with

M

i;i+1

= 0 1 � i � n�1. We thus see that for any s; t with n�1 � t � s, PfX

s

2 AjT � tg

is right � invariant. The following proposition gives a preise sense in whih the distribution

of T and the rate of onvergene of the the indued walk on G=� ombine to give a bound on

the rate of onvergene of the walk on G

n

(p) to the uniform distribution �. The proposition

is a variation of proposition (2.2) of Uyemura-Reyes (2002).

Proposition 2. Let H be a normal subgroup of the �nite group G. Let Q be a probability

on G with X

t

; 0 � t < 1 the assoiated random walk. Let

�

Q be the indued probability

on G=H with Z

t

; 0 � t <1 the assoiated random walk. Suppose T is a stopping time for

X

t

, with

PfX

t

2 AjT � tg

right H invariant. Then, for 1 � t <1,

kQ

�t

� �k � k

�

Q

�t

� ��k+ 2PfT > tg:

Proof. Choose oset representatives z

i

1 � i � jG=Hj. Write the walk as X

t

= (Z

t

; H

t

).

Observe

PfZ

t

= z;H

t

= hg �

1

jGj

= PfT � tg[PfZ

t

= z;H

t

= hjT � tg �

1

jGj

℄ +

PfT > tg[PfZ

t

= z;H

t

= hjT > tg �

1

jGj

℄:

Thus,

2kQ

�t

��k � PfT � tg

P

z;h

jPfZ

t

= z;H

t

= hjT � tg �

1

jGj

j+

PfT > tg

P

z;h

jPfZ

t

= z;H

t

= hjT > tg �

1

jGj

j:

The seond term is bounded by 2PfT > tg. For the �rst sum use

(PfZ

t

= zjT � tg � 1=jG=Hj)P (T � t) =

�

P (Z

t

= z)�

1

jG=Hj

�

�

(P (Z

t

= zjT > t)� 1=jG=Hj)P (T > t)

ombining bounds (and dividing by two) gives the result �

Propositions one and two lead to another proof of Theorem 1. Indeed, use Proposition 2 with

t as given. For the stopping time T take the �rst time all positions (i; i+1) have been hosen
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at least one. The lassial oupon olletors problem (Feller [1968℄) gives PfT > tg � e

�

.

The proess Z

i

on G=� was analyzed in Diaonis and Salo�-Coste [1993A, Se. 6.1℄. They

show universal �; � with

kPfZ

t

2 �g � �

Gj�

k � �e

��t=p

2

n log n

:

Combining bounds ompletes the proof.

Remark. Our �rst proof of Theorem 1 used harater theory to prove an approximation in

L

2

(�). This allows the walk to stand as a base of omparison. There is no sharp omparison

based on total variation bounds.

5. A Comparison Argument

This setion uses omparison tehniques and the bounds on the onjugay walk Q in

Theorem 1 to get rates for the original walk Q

0

supported on generators I �E

i; i+1

, 1 � i �

n�1, as at (1.1). Throughout, p is an odd prime,G isG

n

(p), and � is the uniform distribution

on G. Let L

2

(�) be the real funtions of G with inner produt hf

1

jf

2

i =

X

g

f

1

(g)f

2

(g)�(g).

We aution the reader that we use results from Diaonis and Salo�-Coste [1993A℄ whih uses

this inner produt multiplied by jGj.

The quadrati form E (resp. E

0

) assoiated with Q (resp. Q

0

) is

E(f jf) =

X

s;t

(f(s)� f(t))

2

�(s)Q(ts

�1

);

(resp. Q

0

in plae of Q).

Lemma 5 of Diaonis and Salo�-Coste [1993A℄ shows that if there is a onstant A suh that

E � AE

0

then

(5:1) jGj

2

kQ

�k

0

� �k

2

2

� jGj

2

(�

2k

min

+ e

�k=A

+ kQ

�bk=2A

� �k

2

2

)

with �

min

the smallest eigenvalue of the Q

0

-walk. To give a suitable A, write eah element

in the support of Q as a produt of generators (I � E

i; i+1

). Let jgj be the length of g 2 G

and N(�i; g) the number of times I � E

i; i+1

, is used in the hosen representation for g.

Theorem 1 of Diaonis and Salo�-Coste [1993A℄ shows that

(5:2) E � AE

0

with A = max

s

1

Q

0

(s)

X

g

jgjN(s; g)Q(g);

with the maximum taken over s = �i; 1 � i � n� 1.

Lemma 1. Any element g 2 supp(Q) an be written with jgj � 2np and N(�i; g) � 4p.

Proof. The elements of the onjugay lasses C

i

(�1) are desribed in Remark Three

following Theorem 1. They are matries in G with �1 in position (i; i + 1), arbitrary �eld
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elements �

1

; �

2

; : : : ; �

i�1

in the olumn above (i; i + 1), arbitrary �eld elements �

j

i + 2 �

j � n in the row to the right of (i; i + 1) and entry ��

a

�

b

in position (a; b) 1 � a �

i� 1; x+ 2 � b � n, with zeros elsewhere.

It is straight-forward to write suh an element as a produt of generators. Begin by

writing down I +E

i; i+1

. Conjugating this by I �E

i�1; i

puts a one in position (i� 1; i+1)

leaving remaining entries unperturbed. Next onjugating by I � E

i�2; i�1

puts a one in

position (i � 2; i + 1). Continuing, gives a matrix with ones above entry (i; i + 1). With

these ones, general entries �

1

; �

2

; : : : �

i�1

an now be built up, working from the top down.

This results in a matrix with �1 in position (i; i+1), �

1

; : : : ; �

i�1

in the olumn above this

entry and zeros elsewhere.

From here, onjugate by (I + E

i+1; i+2

); : : : ; (I + E

n�1; n

) to put ones in the i

th

row.

Then, working from the right, build up the required pattern of �

j

. The remaining entries in

the matrix are all as they need to be to give the general entry of C

i

(�1).

Eah onjugation uses two generators so the �nal representing word has length at most

2np. Further, any �xed generator is used at most 4p. 2

Using the bounds in Lemma 1 in (5.2) gives

(5:3) E � AE

0

with A = 8n

2

p

2

:

The �nal ingredient needed is a bound of Stong for the smallest eigenvalue. Using basi

path arguments, Stong [1995℄ shows

�

min

� �1 +

2

p

2

:

Combining bounds we see that

jGj

2

kQ

�k

0

� �k

2

2

� jGj

2

n

(1� 2=p

2

)

2k

+ �e

k=8n

2

p

2

+ kQ

bk=16n

2

p

2



� �k

2

2

o

:

This is small provided k � (n

4

logn)(p

2

log p).

Remarks.

1. The �nal result is \o�". Stong's results show order n

3

steps suÆe for �xed p, and

Pak [2000℄ shows that n

2:5

steps suÆe when p = 2. It is possible to improve the

dependene on p by building up �

a

=�

b

in Lemma 1 more leverly. An indiation of the

problem an be seen in the bound (5.3). From our work on Theorem 1, we know that

the seond eigenvalue of the Q hain is from the super-harater with D = f(1; 2)g

and �(1; 2) = 1; this eigenvalue is

b

�

1

= 1 �

1

n�1

�

1 � os

�

2�

p

��

= 1 �

2�

2

(1+o(1))

np

2

. The

minimax haraterization of eigenvalues shows that (5.3) implies �

i

� 1 �

(1�

e

�

i

)

A

this

gives �

1

� 1�



n

3

p

4

while Stong's results show 1�



1

np

2

� �

1

� 1 �



2

np

2

. This suggests

that the paths we have hosen an be improved, perhaps by randomization.

2. There is an amazing development of Mathematis onneted to minimal fatorizations

in Berenstein, Formin and Zelevinsky [1996℄. Las, this does not seem to help improve

our bounds.
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We have inluded this setion to show what a straight-forward use of omparison yields.

We hope that someone will be motivated to improve our results.
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