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1 Introdution.

Let P be an n-element poset (partially ordered set), and let ! : P ! [n℄ =

f1; 2; : : : ; ng be a bijetion, alled a labeling of P . We all the pair (P; !)

a labelled poset. A linear extension of P is an order-preserving bijetion

f : P ! [n℄. We an regard f as de�ning a permutation � = �(f) of the

set [n℄ given by �(i) = j if f(!

�1

(j)) = i. We write � in the ustomary way

as a word a

1

a

2

� � �a

n

, where �(i) = a

i

= !(f

�1

(i)). We will say for instane

that f is an even linear extension of (P; !) if � is an even permutation (i.e.,

an element of the alternating group A

n

). Let E

P

denote the set of linear

extensions of P , and set L

P;!

= f�(f) : f 2 E

P

g

We say that (P; !) is sign-balaned if L

P;!

ontains the same number of

even permutations as odd permutations. Note that the parity of a linear

extension f depends on the labeling !. However, the notion of sign-balaned

depends only on P , sine hanging the labeling of P simply multiplies the

elements of L

P;!

by a �xed permutation in S

n

, the symmetri group of all

permutations of [n℄. Thus we an simply say that P is sign-balaned without

speifying !.

We say that a funtion # : E

P

! E

P

is parity-reversing (respetively,

parity-preserving) if for all f 2 E

P

, the permutations �(f) and �(#(f)) have

1
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opposite parity (respetively, the same parity). Note that the properties

of parity-reversing and parity-preserving do not depend on !; indeed, # is

parity-reversing (respetively, parity-preserving) if and only if for all f 2 E

P

,

the permutation #f Æ f

�1

2 S

n

is odd (respetively, even),

Sign-balaned posets were �rst onsidered by Ruskey [20℄. He established

the following result, whih shows that many ombinatorially ouring lasses

of posets, suh as geometri latties and Eulerian posets, are sign-balaned.

1.1 Theorem. Suppose #P � 2. If every nonminimal element of

the poset P is greater than at least two minimal elements, then P is sign-

balaned.

Proof. Let � = a

1

a

2

a

3

� � �a

n

2 L

P;!

. Let �

0

= �(1; 2) = a

2

a

1

a

3

� � �a

n

2

S

n

. (We always multiply permutations from right to left.) By the hypothesis

on P , we also have �

0

2 L

P;!

. The map � 7! �

0

is a parity-reversing involution

(i.e., exatly one of � and �

0

is an even permutation) on L

P;!

, and the proof

follows. 2

The above proof illustrates what will be our basi tehnique for showing

that a poset P is sign-balaned, viz., giving a bijetion � : L

P;!

! L

P;!

suh

that � and �(�) have opposite parity for all � 2 L

P;!

. Equivalently, we are

giving a parity-reversing bijetion # : E

P

! E

P

.

In 1992 Ruskey [21, x5, item 6℄ onjetured as to when the produtm�n

of two hains of ardinalities m and n is sign-balaned, viz., m;n > 1 and

m � n (mod 2). Ruskey proved this when m and n are both even by giving

a simple parity-reversing involution, whih we generalize in Proposition 4.1

and Corollary 4.2. Ruskey's onjeture for m and n odd was proved by D.

White [32℄, who also omputed the \imbalane" between even and odd linear

extensions in the ase when exatly one of m and n is even (stated here as

Theorem 3.5). None of our theorems below apply to the ase when m and n

are both odd. Ruskey [21, x5, item 5℄ also asked what order ideals I (de�ned

below) of m� n are sign-balaned. Suh order ideals orrespond to integer

partitions � and will be denoted P

�

; the linear extensions of P

�

are equivalent

to standard Young tableaux (SYT) of shape �. White [32℄ also determined

some additional � for whih P

�

is sign-balaned, and our results below will

give some further examples. In Setions 5 and 6 we onsider some analogous
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questions for the parity of the major index of a linear extension of a poset

P .

Given � = a

1

a

2

� � �a

n

2 L

P;!

, let inv(f) denote the number of inversions

of �, i.e.,

inv(�) = #f(i; j) : i < j; a

i

> a

j

g:

Let

I

P;!

(q) =

X

�2L

P;!

q

inv(f)

; (1)

the generating funtion for linear extensions of (P; !) by number of inversions.

Sine f is an even linear extension if and only if inv(f) is an even integer,

we see that P is sign-balaned if and only if I

P;!

(�1) = 0. In general I

P;!

(q)

seems diÆult to understand, even when P is known to be sign-balaned.

I am grateful to Mar van Leeuwen for his many helpful suggestions re-

garding Setion 3.

2 Promotion and evauation.

Promotion and evauation are ertain bijetions on the set E

P

of linear exten-

sions of a �nite poset P . They were originally de�ned by M.-P. Sh�utzenberger

[22℄ and have subsequently arisen is many di�erent situations (e.g., [6, x5℄[10,

x8℄[11, x4℄[16, x3℄). To be preise, the original de�nitions of promotion and

evauation require an insigni�ant reindexing to beome bijetions. We will

inorporate this reindexing into our de�nition. Let f : P ! [n℄ be a linear

extension of the poset P . De�ne a maximal hain u

0

< u

1

< � � � < u

`

of

P , alled the promotion hain of f , as follows. Let u

0

= f

�1

(1). One u

i

is

de�ned let u

i+1

be that element u overing u

i

(i.e., u

i

< u

i+1

and no s 2 P

satis�es u

i

< s < u

i+1

) for whih f(u) is minimal. Continue until reahing a

maximal element u

`

of P . Now de�ne the promotion g = �f of f as follows.

If t 6= u

i

for any i, then set g(t) = f(t) � 1. If 1 � i � k � 1, then set

g(u

i

) = f(u

i+1

)� 1. Finally set g(u

`

) = n. Figure 1 gives an example, with

the elements in the promotion hain of f irled. (The vertex labels in Fig-

ure 1 are the values of a linear extension and are unrelated to the (irrelevant)
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Figure 1: The promotion operator �

labeling !.) It is easy to see that �f 2 E

P

and that the map � : E

P

! E

P

is

a bijetion.

2.1 Lemma. Let P be an n-element poset. Then the promotion operator

� : E

P

! E

P

is parity-reversing if and only if the length ` (or ardinality `+1)

of every maximal hain of P satis�es n � ` (mod 2). Similarly, � is parity-

preserving if and only if the length ` of every maximal hain of P satis�es

n � `+ 1 (mod2).

Proof. Let f 2 E

P

, and let u

0

< u

1

< : : : < u

`

be the promotion hain

of f . Then (�f)f

�1

is a produt of two yles, viz.,

(�f)f

�1

= (n; n� 1; : : : ; 1)(b

0

; b

1

; : : : ; b

`

);

where b

i

= f(u

i

). This permutation is odd if and only if n � ` (mod2), and

the proof follows sine every maximal hain of P is the promotion hain of

some linear extension. 2

2.2 Corollary. Let P be an n-element poset, and suppose that the

length ` of every maximal hain of P satis�es n � ` (mod2). Then P is

sign-balaned.

Proof. By the previous lemma, � is parity-reversing. Sine it is also a
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Figure 2: The evauation operator eva.

bijetion, E

P

must ontain the same number of even linear extensions as odd

linear extensions. 2

We now onsider a variant of promotion known as evauation. For any

linear extension g of an m-element poset Q, let u

0

< u

1

< � � � < u

`

be

the promotion hain of g, so �g(u

`

) = m. De�ne �

g

(Q) = Q � fu

`

g. The

restrition of �g to �

g

(Q), whih we also denote by �g, is a linear extension

of �

g

(Q). Let

�

g;k

(Q) = �

�

k

g

�

�

k�1

g

� � � �

�g

�

g

(Q):

Now let #P = n and de�ne the evauation eva(f) of f to be the linear

extension of P whose value at the unique element of �

g;k�1

(P ) � �

g;k

(P ) is

n � k + 1, for 1 � k � n. Figure 2 gives an example of eva(f), where we

irle the values of eva(f) as soon as they are determined. A remarkable

theorem of Sh�utzenberger [22℄ asserts that eva is an involution (and hene

a bijetion E

P

! E

P

).

We say that the poset P is onsistent if for all t 2 P , the lengths of all

maximal hains of the prinipal order ideal �

t

:= fs 2 P : s � tg have the

same parity. Let �(t) denote the length of the longest hain of �

t

, and set

�(P ) =

X

t2P

�(t):

We also say that a permutation � of a �nite set has parity k 2 Z if either � and

k are both even or � and k are both odd. Equivalently, inv(�) � k (mod 2).

2.3 Proposition. Suppose that P is onsistent. Then eva: E

P

! E

P

is parity-preserving if

�

n

2

�

� �(P ) is even, and parity-reversing if

�

n

2

�

� �(P )

is odd.
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Proof. The evauation of a linear extension f of an n-element poset P

onsists of n promotions Æ

1

; : : : ; Æ

n

, where Æ

i

is applied to a ertain subposet

P

i�1

of P with n � i + 1 elements. Let f

i

be the linear extension of P

whose restrition to P

i

agrees with Æ

i

Æ

i�1

� � � Æ

1

, and whose value at the unique

element of P

j�1

� P

j

for j � i is n � i + 1. Thus f

0

= f and f

n

= eva(f).

(Figure 2 gives an example of the sequene f

0

; : : : ; f

5

.) Let u

i

be the end

(top) of the promotion hain for the promotion Æ

i

. Thus fu

1

; u

2

; : : : ; u

n

g = P .

Lemma 2.1 shows that if P is onsistent, then f

i

f

�1

i�1

has parity n� i + 1�

(�(u

i

) + 1). Hene the parity of eva(f)f

�1

is given by

n

X

i=1

(n� i� �(u

i

)) =

�

n

2

�

�

X

t2P

�(P ) =

�

n

2

�

� �(P );

from whih the proof follows. 2

2.4 Corollary. Suppose that P is onsistent and

�

n

2

�

� �(P ) is odd.

Then P is sign-balaned.

Note. In [25, pp. 50{51℄[26, Cor. 19.5℄ it was shown using the theory of

P -partitions that the number e(P ) of linear extensions of P is even if P is

graded of rank ` (i.e., every maximal hain of P has length `) and n � ` is

even, and it was stated that it would be interesting to give a diret proof.

Our Corollary 2.2 gives a diret proof of a stronger result. Similarly in [25,

Cor. 4.6℄[26, Cor. 19.6℄ it was stated (in dual form) that if for all t 2 P all

maximal hains of �

t

have the same length, and if

�

n

2

�

� �(P ) is odd, then

e(P ) is even. Corollary 2.4 gives a diret proof of a stronger result.

3 Partitions.

In this setion we apply our previous results and obtain some new results for

ertain posets orresponding to (integer) partitions. We �rst review some no-

tation and terminology onerning partitions. Further details may be found

in [29, Ch. 7℄. Let � = (�

1

; �

2

; : : :) be a partition of n, denoted � ` n or

j�j = n. Thus �

1

� �

2

� � � � � 0 and

P

�

i

= n. We an identify � with its

diagram f(i; j) 2 P � P : 1 � j � �

i

g. Let � be another partition suh that

6



� � �, i.e., �

i

� �

i

for all i. De�ne the skew partition or skew diagram �=�

by

�=� = f(i; j) 2 P � P : �

i

+ 1 � j � �

i

g:

Write j�=�j = n to denote that j�j � j�j = n, i.e., n is the number of squares

in the shape �=�, drawn as a Young diagram [27, p. 29℄. We an regard �=�

as a subposet of P � P (with the usual oordinatewise ordering). We write

P

�=�

for this poset. As a set it is the same as �=�, but the notation P

�=�

emphasizes that we are onsidering it to be a poset. In this setion we will

only be onerned with \ordinary" shapes �, but in Setion 5 skew shapes

�=� will arise as a speial ase of Proposition 5.3.

The posets P

�

are onsistent for any �, so we an ask for whih P

�

is

evauation parity-reversing, i.e.,

�

n

2

�

��(P

�

) is odd. To this end, the ontent

(i; j) of the ell (i; j) is de�ned by (i; j) = j � i [29, p. 373℄. Also let O(�)

denote the number of odd parts of the partition �. An order ideal of a poset

P is a subset K � P suh that if t 2 K and s < t, then s 2 K. Similarly

a dual order ideal or �lter of P is a subset F � P suh that if s 2 F and

t > s, then t 2 F . If we suessively remove two-element hains from P

�

whih are dual order ideals of the poset from whih they are removed, then

eventually we reah a poset ore

2

(P

�

), alled the 2-ore of P

�

, that ontains

no dual order ideals whih are two-element hains. The 2-ore is unique,

i.e., independent of the order in whih the dual order ideals are removed,

and is given by P

Æ

k

for some k � 1, where Æ

k

denotes the \stairase shape"

(k � 1; k � 2; : : : ; 1). For further information see [29, Exer. 7.59℄.

3.1 Proposition. Let � ` n. The following numbers all have the same

parity.

(a) �(P

�

)

(b)

P

t2P

�

(t)

()

1

2

(O(�)�O(�

0

))

(d)

1

2

(n�

�

k

2

�

), where

�

k

2

�

= #ore

2

(P

�

)

Hene if a

�

denotes any of the above four numbers, then evauation is partity-

reversing on P

�

if and only if

�

n

2

�

� a

�

is odd.

7



Proof. It is easy to see that if t 2 P

�

, then �(t) � (t) (mod2). Hene

(a) and (b) have the same parity. It is well-known and easy to see [17, Exam.

3, p. 11℄ that

X

t2P

�

(t) =

X

�

�

i

2

�

�

X

�

�

0

i

2

�

:

Sine

P

�

i

=

P

�

0

i

, we have

X

t2P

�

(t) =

1

2

�

X

�

2

i

�

X

(�

0

i

)

2

�

:

Sine a

2

� 0; 1 (mod4) depending on whether a is even or odd, we see that

(b) and () have the same parity. If we remove from P

�

a 2-element dual

order ideal whih is also a hain, then we remove exatly one element with an

odd ontent. A 2-ore is self-onjugate and hene has an even ontent sum.

Hene the number of odd ontents of P

�

is equal to the number of dominos

that must be removed from P

�

in order to reah ore

2

(P

�

). It follows that

(b) and () have the same parity, ompleting the proof. 2

It an be shown [30℄ that if t(n) denotes the number of partitions � ` n

for whih a

�

is even, then t(n) =

1

2

(p(n) + f(n)), where p(n) denotes the

total number of partitions of n and

X

n�0

f(n)x

n

=

Y

i�1

1 + x

2i�1

(1� x

4i

)(1 + x

4i�2

)

2

:

Hene the number g(n) of partitions � ` n for whih eva is parity-reversing

on P

�

is given by

g(n) =

(

1

2

(p(n) + f(n)); if

�

n

2

�

is odd

1

2

(p(n)� f(n)); if

�

n

2

�

is even

We onlude this setion with some appliations of the theory of domino

tableaux. A standard domino tableau (SDT) of shape � ` 2n is a sequene

� = �

0

� �

1

� � � � � �

n

= �

of partitions suh that eah skew shape �

i

=�

i�1

is a domino, i.e., two squares

with an edge in ommon. Eah of these dominos is either horizontal (two

8



squares in the same row) or vertial (two squares in the same olumn). Let

Dom

�

denote the set of all SDT of shape �. Given D 2 Dom

�

, de�ne ev(D)

to be the number of vertial dominos in even olumns of D, where an even

olumn means the 2ith olumn for some i 2 P. For the remainder of this

setion, �x the labeling ! of P

�

to be the usual \reading order," i.e., the

�rst row of � is labelled 1; 2; : : : ; �

1

; the seond row is labelled �

1

+ 1; �

1

+

2; : : : ; �

1

+ �

2

, et. We write I

�

(q) for I

P

�

;!

(q) and set I

�

= I

�

(�1), the

imbalane of the partition �. It is shown in [32, Thm. 12℄ (by analyzing the

formula that results from setting q = �1 in (13)) that

I

�

=

X

D2Dom

�

(�1)

ev(D)

:

Let � ` n. Lasoux, Leler and Thibon [14, (27)℄ de�ne a ertain lass

of symmetri funtions

~

G

(k)

�

(x; q) (de�ned earlier by Carr�e and Leler [4℄ for

the speial ase k = 2 and � = 2�). We will only be onerned with the ase

k = 2 and q = �1, for whih we write G

�

=

~

G

(2)

�

(x;�1). The symmetri

funtion G

�

vanishes unless ore

2

(�) = �, so we may assume n = 2m. If

ore

2

(�) = �, then G

�

is homogeneous of degreem = n=2. We will not de�ne

it here but only reall the properties relevant to us. The onnetion with the

imbalane I

�

is provided by the formula (immediate from the de�nition of

G

�

in [14℄ together with [32, Thm. 12℄)

[x

1

� � �x

m

℄G

�

= (�1)

r(�)

I

�

; (2)

where [x

1

� � �x

m

℄F denotes the oeÆient of x

1

� � �x

m

in the symmetri fun-

tion F , and r(�) is the maximum number of vertial dominos that an appear

in even olumns of a domino tableau of shape �. Also de�ne d(�) to be the

maximum number of disjoint vertial dominos that an appear in the diagram

of �, i.e.,

d(�) =

X

i

�

1

2

�

0

2i

�

:

Note that d(�) � r(�), but equality need not hold in general. For instane,

d(4; 3; 1) = 1, r(4; 3; 1) = 0. However, we do have d(2�) = r(2�) for any

partition �. Let us also note that our r(�) is denoted d(�) in [32℄ and is

de�ned only for � with an empty 2-ore.

9



3.2 Theorem. (a) We have

X

�`m

I

2�

= 1

for all m � 1.

(b) Let v(�) denote the maximum number of disjoint vertial dominos

that �t in the shape �. Equivalently,

v(�) =

X

i�1

�

1

2

�

0

i

�

:

Then

X

�`2m

(�1)

v(�)

I

2

�

= 0:

Proof. (a) Barbash and Vogan [2℄ and Gar�nkle [9℄ de�ne a bijetion

between elements � of the hyperotahedral group B

m

, regarded as signed

permutations of 1; 2; : : : ; m, and pairs (P;Q) of SDT of the same shape � `

2m. (See [15, p. 25℄ for further information.) A ruial property of this

bijetion, stated impliitly without proof in [12℄ and proved by Shimozono

and White [23, Thm. 30℄, asserts that

t(�) =

1

2

(v(P ) + v(Q)); (3)

where t(�) denotes the number of minus signs in � and v(R) denotes the

number of vertial dominos in the SDT R.

Carr�e and Leler [4, Def. 9.1℄ de�ne a symmetri funtion H

�

(x; q) whih

satis�es H

�

(x;�1) = (�1)

v(�)

G

2�

. In [12, Thm. 1℄ is stated the identity

X

�

H

�

(x; q) =

Y

i

1

1� x

i

Y

i<j

1

1� x

i

x

j

Y

i�j

1

1� qx

i

x

j

: (4)

The proof of (4) in [12℄ is inomplete, sine it depends on a semistandard

version of the P = Q ase of (3) (easily dedued from (3)), whih had not

yet been proved. The proof of (3) in [23℄ therefore ompletes the proof of

(4). A generalization of (4) was later given by Lam [13, Thm. 28℄.

10



Setting q = �1 in (4) gives

X

�

(�1)

v(�)

G

2�

=

Y

i

1

(1� x

i

)(1 + x

2

i

)

Y

i<j

1

1� x

2

i

x

2

j

:

Taking the oeÆient of x

1

� � �x

m

on both sides and using (2) together with

v(�) = d(2�) = r(2�) ompletes the proof.

(b) It is easy to see that for any SDT D we have

v(D) = v(�)� 2d(�) + 2ev(D):

Thus by (3) we have

0 =

X

�2B

m

(�1)

t(�)

=

X

P;Q

(�1)

1

2

(v(P )+v(Q))

=

X

�`2m

 

X

D2Dom

�

(�1)

1

2

v(D)

!

2

=

X

�`2m

(�1)

v(�)

 

X

D2Dom

�

(�1)

ev(D)

!

2

=

X

�`2m

(�1)

v(�)

I

2

�

: 2

In the same spirit as Theorem 3.2 we have the following onjeture.

3.3 Conjeture.

2

(a) For all n � 0 we have

X

�`n

q

v(�)

t

d(�)

x

v(�

0

)

y

d(�

0

)

I

�

= (q + x)

bn=2

: (5)

(b) If n 6� 1 (mod4), then

X

�`n

(�1)

v(�)

t

d(�)

I

2

�

= 0:

2

A ombinatorial proof of (a) was found by Thomas Lam [13℄ after this paper was

written. Later a ombinatorial proof of both (a) and (b) was given by Jonas Sj�ostrand [24℄.

Sj�ostrand's main result [24, Thm. 2.3℄ leads to further identities, suh as

P

�`n

q

v(�)

I

2�

=

1, thereby generalizing our Theorem 3.2(a).

11



Figure 3: d(86655431) = d(86655431

0

)

It is easy to see that d(�) = d(�

0

) for all �. (E.g., onsider the horizontal

and vertial line segments in Figure 3.) Hene the variable y is superuous in

equation (5), but we have inluded it for the sake of symmetry. In partiular,

if F

n

(q; t; x; y) denotes the left-hand side of (5) then

F

n

(q; 0; x; y) = F

n

(q; t; x; 0) = F

n

(q; 0; x; 0):

Note also that d(�) = 0 if and only � is a hook, i.e., a partition of the form

(n� k; 1

k

).

The ase t = 0 (or y = 0, or t = y = 0) of equation (5) follows from the

following proposition, whih in a sense \explains" where the right-hand side

(q + x)

bn=2

omes from.

3.4 Proposition. For all n � 0 we have

X

�=(n�k;1

k

)

q

v(�)

x

v(�

0

)

I

�

= (q + x)

bn=2

; (6)

where � ranges over all hooks (n� k; 1

k

), 0 � k � n� 1.

First proof. Let � = (n � k; 1

k

). Let ! denote the \reading or-

der" labeling of P

�

as above. The set L

P;!

onsists of all permutations

12



1; a

2

; : : : ; a

m

, where a

2

; : : : ; a

m

is a shu�e of the permutations 2; 3; : : : ; n�k

and n� k + 1; n� k + 2; : : : ; n. It follows e.g. from [27, Prop. 1.3.17℄ that

I

�

(q) =

�

n� 1

k

�

;

a q-binomial oeÆient.

Suppose �rst that n = 2m+ 1. By [27, Exer. 3.45(b)℄,

�

n� 1

k

�

q=�1

=

8

>

<

>

:

�

m

j

�

; k = 2j

0; k = 2j + 1:

Note that if � = (n� 2j; 1

2j

), then v(�) = j and v(�

0

) = m� j. Hene

X

�=(n�k;1

k

)

q

v(�)

x

v(�

0

)

I

�

=

m

X

j=0

q

j

x

m�j

�

m

j

�

= (q + x)

m

;

as desired. The proof for n even is similar and will be omitted. 2

Seond proof. Assume �rst that n = 2m. We use an involution argu-

ment analogous to the proof of Theorem 1.1 or to arguments in [32, x5℄ and

Setion 4 of this paper. Let T be an SYT of shape � = (n � k; 1

k

), whih

an be regarded as an element of L

P

�

;!

. Let i be the least positive integer

(if it exists) suh that 2i� 1 and 2i appear in di�erent rows and in di�erent

olumns of T . Let T

0

denote the SYT obtained from T by transposing 2i� 1

and 2i. Sine multiplying by a transposition hanges the sign of a permuta-

tion, we have (�1)

inv(T )

+ (�1)

inv(T

0

)

= 0. The surviving SYT are obtained

by �rst plaing 1; 2 in the same row or olumn, then 3; 4 in the same row or

olumn, et. If k = 2j or 2j + 1, then the number of survivors is easily seen

to be

�

m�1

j

�

. Beause the entries of T ome in pairs 2i� 1; 2i, the number of

inversions of eah surviving SYT is even. Moreover, if k = 2j then v(�) = j

and v(�

0

) = m�j, while if k = 2j+1 then v(�) = j+1 and v(�

0

) = m�1�j.

Hene

X

�=(n�k;1

k

)

q

v(�)

x

v(�

0

)

I

�

=

m�1

X

j=0

(q + x)

�

m� 1

j

�

q

j

x

m�1�j

= (q + x)

m

;

13



as desired.

The proof is similar for n = 2m + 1. Let i be the least positive integer

(if it exists) suh that 2i and 2i + 1 (rather than 2i � 1 and 2i) appear in

di�erent rows and in di�erent olumns of T . There are now no survivors

when k = 2j + 1 and

�

m

j

�

survivors when k = 2j. Other details of the proof

remain the same, so we get

X

�=(n�k;1

k

)

q

v(�)

x

v(�

0

)

I

�

=

m

X

j=0

�

m� 1

j

�

q

j

x

m�j

= (q + x)

m

;

ompleting the proof. 2

There are some additional properties of the symmetri funtions G

�

that

yield information about I

�

. For instane, there is a produt formula in [12,

Thm. 2℄ for

P

�

G

2�[2�

, where � ranges over all partitions and

2� [ 2� = (2�

1

; 2�

1

; 2�

2

; 2�

2

; : : :);

whih implies that

P

�`n

I

2�[2�

= 0. In fat, in [4, Cor. 9.2℄ it is shown

that G

2�[2�

(x) = �s

�

(x

2

1

; x

2

2

; : : :), from whih it follows easily that in fat

I

2�[2�

= 0. However, this result is just a speial ase of Corollary 2.2 and of

Proposition 2.3, so we obtain nothing new.

Also relevant to us is an expansion of G

�

into Shur funtions due to

Shimozono (see [32, Thm. 18℄) for ertain shapes �, namely, those whose

2-quotient (in the sense e.g. of [17, Exam. I.1.8℄) is a pair of retangles. This

expansion was used by White [32, Cor. 20℄ to evaluate I

�

for suh shapes.

White [32, x8℄ also gives a ombinatorial proof, based on a sign-reversing

involution, in the speial ase that � itself is a retangle. We simply state

here White's result for retangles.

3.5 Theorem. Let � be an m� n retangle. Then

I

�

=

8

<

:

1; if m = 1 or n = 1

0; if m � n (mod2) and m;n > 1

�g

�

; m 6� n (mod2);

14



where g

�

denotes the number of shifted standard tableaux (as de�ned e.g. in

[17, Exam. III.8.12℄) of shape

� =

�

m + n� 1

2

;

m + n� 3

2

; � � � ;

jn�mj+ 3

2

;

jn�mj + 1

2

�

:

(An expliit \hook length formula" for any g

�

appears e.g. in the referene

just ited.)

It is natural to ask whether Theorem 3.5 an be generalized to other

partitions �. In this regard, A. Eremenko and A. Gabrielov (private ommu-

niation) have made a remarkable onjeture. Namely, if we �x the number

` of parts and parity of eah part of �, then there are integers 

1

; : : : ; 

k

and

integer vetors 

1

; : : : ; 

k

2 Z

`

suh that

I

�

=

k

X

i=1



i

g

1

2

(�+

i

)

:

One defet of this onjeture is that the expression for I

�

is not unique.

We an insure uniqueness, however, by the additional ondition that all the

vetors 

i

have oordinate sum 0 when j�j is even and �1 when j�j is odd

(where j�j =

P

�

i

). In this ase, however, we need to de�ne properly g

�

when � isn't a stritly dereasing sequene of nonnegative integers. See the

disussion preeding Conjeture 3.6. For instane, we have

I

(2a;2b;2)

= g

(a;b;)

� g

(a+1;b;�1)

I

(2a+1;2b;2)

= g

(a;b;)

+ g

(a+1;b�1;)

I

(2a;2b+1;)

= 0

I

(2a;2b;2+1)

= �g

(a+1;b�1;)

� g

(a+1;b;�1)

I

(2a+1;2b+1;2)

= g

(a+1;b;)

+ g

(a+1;b+1;�1)

I

(2a+1;2b;2+1)

= 0

I

(2a;2b+1;2+1)

= g

(a+1;b;)

+ g

(a;b+1;)

I

(2a+1;2b+1;2+1)

= g

(a;b+1;)

+ g

(a+1;b+1;�1)

I

(2a;2b;2;2d)

= g

(a;b;;d)

� g

(a+1;b;�1;d)

� g

(a+1;b+1;�1;d�1)

� 2g

(a+1;b;;d�1)

:

It is easy to see that I

(2a;2b+1;)

= I

(2a+1;2b;2+1)

= 0, viz., the 2-ores of the

partitions (2a; 2b+1; ) and (2a+1; b; 2+1) have more than one square. More

generally, we have veri�ed by indution the formulas for I

�

when `(�) � 3.
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We have found a (onjetured) symmetri funtion generalization of the

Eremenko-Gabrielov onjeture. If f(x) is any symmetri funtion, de�ne

f(x=x) = f(p

2i�1

! 2p

2i�1

; p

2i

! 0):

In other words, write f(x) as a polynomial in the power sums p

j

and substi-

tute 2p

2i�1

for p

2i�1

and 0 for p

2i

. In �-ring notation, f(x=x) = f(X � X).

Let Q

�

denote Shur's shifted Q-funtion [17, x3.8℄. The Q

�

's form a basis for

the ring Q [p

1

; p

3

; p

5

; : : :℄. Hene f(x=x) an be written uniquely as a linear

ombination of Q

�

's.

We mentioned above that the symmetri funtion G

�

was originally de-

�ned only when ore

2

(�) = �. We an extend the de�nition to any � as

follows. The original de�nition has the form

G

�

(x) =

X

D

(�1)

ospin(D)

x

D

; (7)

summed over all semistandard domino tableaux of shape �, where ospin(�) is

a ertain integer and x

D

a ertain monomial depending on �. If #ore

2

(�) =

1, then de�ne G

�

exatly as in (7), exept that we sum over all semistandard

domino tableaux of the skew shape �=1. If #ore

2

(�) > 1, then de�ne

G

�

= 0. (In ertain ontexts it would be better to de�ne G

�

by (7), summed

over all semistandard domino tableaux of the skew shape �=ore

2

(�), but

this is not suitable for our purposes.) Equation (2) then ontinues to hold

for any � ` n, where m = bn=2.

We also need to de�ne G

�

(x=x) properly when � is not a stritly dereas-

ing sequene of positive integers. The following de�nition seems to be or-

ret, but perhaps some modi�ation is neessary. Let � = (�

1

; : : : ; �

k

) 2 Z

k

.

Trailing 0's are irrelvant and an be ignored, so we may assume �

k

> 0.

If � is not a sequene of distint nonnegative integers, then G

�

(x=x) = 0.

Otherwise G

�

(x=x) = "

�

G

�

(x=x), where � is the dereasing rearrangement

of � and "

�

is the sign of the permutation that onverts � to �.

3.6 Conjeture. Fix the number ` of parts and parity of eah part

of the partition �. Then there are integers 

1

; : : : ; 

k

and integer vetors



1

; : : : ; 

k

2 Z

`

suh that

(�1)

r(�)

G

�

(x=x) =

k

X

i=1



i

Q

1

2

(�+

i

)

(x): (8)
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Let � ` 2n or � ` 2n+1. Take the oeÆient of x

1

x

2

� � �x

n

on both sides

of (8). By (2) the left-hand side beomes 2

n

I

�

. Moreover, if � ` m then

the oeÆient of x

1

� � �x

m

in Q

�

is 2

m

g

�

[17, (8.16)℄. Hene Conjeture 3.6

speializes to the Eremenko-Gabrielov onjeture. At present we have no

onjeture for the values of the oeÆients 

i

. Here is a short table (due to

Eremenko and Gabrielov for I

�

; they have extended this table to the ase of

four and �ve rows) of the three-row ase of Conjeture 3.6. For simpliity we

write � for (�1)

r(�)

.

�G

(2a;2b;2)

(x=x) = Q

(a;b;)

(x)�Q

(a+1;b;�1)

(x)

�G

(2a+1;2b;2)

(x=x) = Q

(a;b;)

(x) +Q

(a+1;b�1;)

(x)

�G

(2a;2b+1;2)

(x=x) = 0

�G

(2a;2b;2+1)

(x=x) = �Q

(a+1;b�1;)

(x)�Q

(a+1;b;�1)

(x)

�G

(2a+1;2b+1;2)

(x=x) = Q

(a+1;b;)

(x) +Q

(a+1;b+1;�1)

(x)

�G

(2a+1;2b;2+1)

(x=x) = 0

�G

(2a;2b+1;2+1)

(x=x) = Q

(a+1;b;)

(x) +Q

(a;b+1;)

(x)

�G

(2a+1;2b+1;2+1)

(x=x) = Q

(a;b+1;)

(x) +Q

(a+1;b+1;�1)

(x):

We now disuss some general properties of the polynomial I

�

(q) and its

value I

�

(�1). Let C(�) denote the set of orner squares of �, i.e., those

squares of the Young diagram of � whose removal still gives a Young diagram.

Equivalently, Pieri's formula [29, Thm. 7.15.7℄ implies that

s

�=1

=

X

t2C(�)

s

��t

: (9)

Let f

�

denote the number of SYT of shape � [29, Prop. 7.10.3℄, so

f

�

=

X

t2C(�)

f

��t

: (10)

Note that I

�

(1) = f

�

, so I

�

(q) is a (nonstandard) q-analogue of f

�

. The

q-analogue of equation (10) is the following result.

3.7 Proposition. We have

I

�

(q) =

X

t2C(�)

q

b

�

(t)

I

��t

(q);
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where b

�

(t) denotes the number of squares in the diagram of � in a lower row

than that of t.

Proof. We have by de�nition

I

�

(q) =

X

T

q

inv(�(T ))

;

where T ranges over all SYT of shape � and �(T ) is the permutation obtained

by reading the entries of T in the usual reading order, i.e., left-to-right and

top-to-bottom when T is written in \English notation" as in [17℄[27℄[29℄.

Suppose � ` n. If T is an SYT of shape �, then the square t oupied by n

is a orner square. The number of inversions (i; j) of �(T ) = a

1

� � �a

m

suh

that a

i

= n is equal to b

�

(t), and the proof follows. 2

Now let D

1

denote the linear operator on symmetri funtions de�ned by

D

1

(s

�

) = s

�=1

. We then have the ommutation relation [29, Exerise 7.24(a)℄

D

1

s

1

� s

1

D

1

= I; (11)

the identity operator. This leads to many enumerative onsequenes, dis-

ussed in [28℄. There is an analogue of (11) related to I

�

, though we don't

know of any appliations. De�ne a linear operator D(q) on symmetri fun-

tions by

D(q)s

�

=

X

t2C(�)

q

b

�

(t)

s

��t

:

Let U(q) denote the adjoint of D(q) with respet to the basis fs

�

g of Shur

funtions, so

U(q)s

�

=

X

t

q

b

�+t

(t)

s

�+t

;

where t ranges over all boxes that we an add to the diagram of � to get the

diagram of a partition �+ t (for whih neessarily t 2 C(�+ t)). Note that

U(1) = s

1

(i.e., multipliation by s

1

) and D(1) = D

1

as de�ned above. It

follows from Proposition 3.7 that

U(q)

n

� 1 =

X

�`n

I

�

(q)s

�

;
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where U(q)

n

� 1 denotes U(q)

n

ating on the symmetri funtion 1 = s

�

.

Write U = U(�1) and D = D(�1). Let A be the linear operator on sym-

metri funtions given by As

�

= (2k(�) + 1)s

�

, where k(�) = #C(�), the

number of orner boxes of �.

3.8 Proposition. We have DU + UD = A.

Proof. The proof is basially a brute fore omputation. Write

�

�

i

=

�

i

+ �

i+1

+ � � �. Suppose � is obtained from � by adding a box in row r � 1

and deleting a box in row s � 1, where r < s. Then the oeÆient of s

�

in

(D(q)U(q) + U(q)D(q))s

�

is given by

hs

�

; (D(q)U(q) + U(q)D(q))s

�

i = q

�

�

r

q

�

�

s

+ q

�

�

s

q

�

�

r

�1

;

whih vanishes when q = �1. Similarly if r > s we get

hs

�

; (D(q)U(q) + U(q)D(q))s

�

i = q

�

�

s

q

�

�

r

+1

+ q

�

�

r

q

�

�

s

;

whih again vanishes when q = �1. On the other hand, if � = � we have

hs

�

; (D(q)U(q) + U(q)D(q))s

�

i = ((�) + 1)q

2

�

�

r

+ (�)q

2

�

�

r

= (2(�) + 1)q

2

�

�

r

:

When q = �1 the right-hand side beome 2(�) + 1, ompleting the proof.

2

4 Chains of order ideals.

Suppose that P is an n-element poset, and let � = (�

1

; : : : ; �

k

) be a om-

position of n, i.e., �

i

2 P = f1; 2; : : :g and

P

�

i

= n. De�ne an �-hain of

order ideals of P to be a hain

� = K

0

� K

1

� � � � � K

k

= P (12)

of order ideals satisfying #(K

i

� K

i�1

) = �

i

for 1 � i � k. The following

result is quite simple but has a number of onsequenes.
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4.1 Proposition. Let P be an n-element poset and � a �xed omposition

of n. Suppose that for every �-hain (12) of order ideals of P , at least one

subposet K

i

�K

i�1

is sign-balaned. Then P is sign-balaned.

Proof. Let C be the �-hain (12). We say that a linear extension f is

C-ompatible if

K

1

= f

�1

(f1; : : : ; �

1

g); K

2

�K

1

= f

�1

(f�

1

+ 1; : : : ; �

1

+ �

2

g);

et. Let inv(C) be the minimum number of inversions of a C-ompatible

linear extension. Clearly

X

f

q

inv(f)

= q

inv(C)

k

Y

i=1

I

K

i

�K

i�1

(q);

where the sum is over all C-ompatible f . Sine every linear extension is

ompatible with a unique �-hain, there follows

I

P;!

(q) =

X

C

q

inv(C)

k

Y

i=1

I

K

i

�K

i�1

(q); (13)

where C ranges over all �-hains of order ideals of P . The proof now follows

by setting q = �1. 2

De�ne a �nite poset P with 2m elements to be tilable by dominos if there

is a hain � = K

0

� K

1

� � � � � K

m

= P of order ideals suh that eah

subposet K

i

�K

i�1

is a two-element hain. Similarly, if #P = 2m + 1 and

1 � j � m + 1 then we say that P is j-tilable by dominos if there is a hain

� = K

0

� K

1

� � � � � K

m+1

= P of order ideals suh that #(K

i

�K

i�1

) = 2

if 1 � i � m+1 and i 6= j (so #(K

j

�K

j�1

) = 1). Note that being tilable by

dominos is stronger than the existene of a partition of P into over relations

(or two element saturated hains). For instane, the poset P with over

relations a < ; b < ; a < d; b < d an be partitioned into the two over

relations a <  and b < d, but P is not tilable by dominos. When n = 2m,

we de�ne a P -domino tableau to be a hain � = K

0

� K

1

� � � � � K

m

= P

of order ideals suh that K

i

� K

i�1

is a two-element hain for 1 � i � m.

Similarly, when n = 2m + 1, we de�ne a (standard) P -domino tableau to

be a hain � = K

0

� K

1

� � � � � K

m+1

= P of order ideals suh that
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K

i

�K

i�1

is a two-element hain for 1 � i � m (so that K

m+1

�K

m

onsists

of a single point). Thus for � ` 2n, a P

�

-domino tableau oinides with our

earlier de�nition of an SDT of shape �.

4.2 Corollary. Let #P = 2m, and assume that P is not tilable by

dominos. Then P is sign-balaned. Similarly if #P = 2m + 1 � 3 and P is

not j-tilable by dominos for some j, then P is sign-balaned.

Proof. Let � = (2; 2; : : : ; 2) (m 2's). If #P = 2m and P is not tilable

by dominos, then for any �-hain (12) there is an i for whih K

i

� K

i�1

onsists of two disjoint points. Sine a poset onsisting of two disjoint points

is sign-balaned, it follows from Proposition 4.1 that P is sign-balaned. The

argument is similar for #P = 2m + 1. 2

Corollary 4.2 was proved in a speial ase (the produt of two hains with

an even number of elements, with the

^

0 and

^

1 removed), using essentially the

same proof as we have given, by Ruskey [21, x5, item 6℄.

Corollary 4.2 is partiularly useful for the posets P

�

. From this orollary

and the de�nition of ore

2

(�) we onlude the following.

4.3 Corollary. If ore

2

(P

�

) onsists of more than one element, then

P

�

is sign-balaned.

It follows from [29, Exer. 7.59(e)℄ that if f(n) denotes the number of

partitions � ` n suh that #ore

2

(�) � 1, then

X

n�0

f(n)x

n

=

1 + x

Q

i�1

(1� x

2i

)

2

:

Standard partition asymptotis (e.g., [1, Thm. 6.2℄) shows that

f(n) �

C

n

5=4

exp

�

�

p

2n=3

�

for some C > 0. Sine the total number p(n) of partitions of n satis�es

p(n) �

C

0

n

exp

�

�

p

2n=3

�

;

it follows that lim

n�0

f(n)=p(n) = 0. Hene as n ! 1, P

�

is sign-balaned

for almost all � ` n.
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5 Maj-balaned posets.

If � = a

1

a

2

� � �a

m

is a permutation of [n℄, then the desent set D(�) of � is

de�ned as

D(�) = fi : a

i

> a

i+1

g:

An element of D(�) is alled a desent of �, and major index maj(�) is

de�ned as

maj(�) =

X

i2D(�)

i:

The major index has many properties analogous to the number of inversions,

e.g., a lassi theorem of MaMahon states that inv and maj are equidis-

tributed on the symmetri group S

n

[7℄[8℄. Thus it is natural to try to �nd

\maj analogues" of the results of the preeding setions. In general, the major

index of a linear extension of a poset an be more tratable or less tratable

than the number of inversions. Thus, for example, in Theorem 5.1 we are able

to ompletely haraterize naturally labelled maj-balaned posets. An anal-

ogous result for sign-balaned partitions seems very diÆult. On the other

hand, sine multiplying a permutation by a �xed permutation has no de�nite

e�et on the parity of the major index, many of the results for sign-balaned

posets are false (Theorem 1.1, Lemma 2.1, Proposition 2.3).

Let f be a linear extension of the labelled poset (P; !), and let � = �(f)

be the assoiated permutation of [n℄. In analogy to our de�nition of inv(f),

de�ne maj(f) = maj(�) and

W

P;!

(q) =

X

f2E

P

q

maj(f)

=

X

�2L

P;!

q

maj(�)

:

We say that (P; !) is maj-balaned if W

P;!

(�1) = 0, i.e., if the number of

linear extensions of P with even major index equals the number with odd

major index. Unlike the situation for sign-balaned posets, the property of

being maj-balaned an depend on the labeling !. Thus an interesting speial

ase is that of natural labelings, for whih !(s) < !(t) whenever s < t in P .

We write W

P

(q) for W

P;!

(q) when ! is natural. It is a basi onsequene of

the theory of P -partitions [27, Thm. 4.5.8℄ that W

P

(q) does not depend on

the hoie of natural labeling of P .
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Figure 4: Some ounterexamples

Figures 4(a) and (b) show two di�erent labelings of a poset P . The

�rst labeling (whih is natural) is not maj-balaned, while the seond one

is. Moreover, the dual poset P

�

to the poset P in Figure 4(b), whether

naturally labelled or labelled the same as P , is maj-balaned. Contrast that

with the trivial fat that the dual of a sign-balaned poset is sign-balaned.

As a further example of the ontrast between sign and maj-balaned posets,

Figure 4() shows a naturally labelled maj-balaned poset Q. However, if we

adjoin an element

^

0 below every element of Q and label it 0 (thus keeping the

labeling natural) then we get a poset whih is no longer maj-balaned. On

the other hand, it is lear that suh an operation has no e�et on whether a

poset is sign-balaned. (In fat, it leaves I

Q;!

(q) unhanged.)

Corollary 4.2 arries over to the major index in the following way.

5.1 Theorem. (a) Let P be naturally labelled. Then W

P

(�1) is equal

to the number of P -domino tableaux. In partiular, P is maj-balaned if and

only if there does not exist a P -domino tableau.

(b) A labelled poset (P; !) is maj-balaned if there does not exist a P -

domino tableau.

Proof. (a) Let � = a

1

� � �a

m

2 L

P;!

. Let i be the least number (if

it exists) for whih �

0

= a

1

� � �a

2i

a

2i+2

a

2i+1

a

2i+3

� � �a

m

2 L

P;!

. Note that

(�

0

)

0

= �. Now exatly one of � and �

0

has a desent at 2i + 1. The only

other di�erenes in the desent sets of � and �

0

our (possibly) for the even

numbers 2i and 2i + 2. Hene (�1)

maj(�)

+ (�1)

maj(�

0

)

= 0. The surviving

permutations � = b

1

� � � b

m

in L

P;!

are exatly those for whih � � fb

1

; b

2

g �
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2

31

4

Figure 5: A maj-balaned labelled poset tilable by dominos

fb

1

; : : : ; b

4

g � � � � is a P -domino tableau with !

�1

(b

2i�1

) < !

�1

(b

2i

) in P . (If

n is even, then the P -domino tableau ends as fb

1

; : : : ; b

n�2

g � P , while if n

is odd it ends as fb

1

; : : : ; b

n�1

g � P .) Sine ! is natural we have b

2i�1

< b

2i

for all i, so maj(�) is even. Hene W

P

(�1) is equal exatly to the number of

P -domino tableaux.

(b) Regardless of the labeling !, if there does not exist a P -domino

tableau then there will be no survivors in the argument of (a), so W

P

(�1) =

0. 2

The onverse to Theorem 5.1(b) is false. The labelled poset (P; !) of

Figure 5 is tilable by dominos and is maj-balaned.

Given an n-element poset P with dual P

�

, set �(P ) = �(P

�

). In [25,

Thm 4.4℄[26, Prop. 18.4℄[27, Thm. 4.5.2℄ it is shown that the following two

onditions are equivalent:

(i) For all t 2 P , all maximal hains of the prinipal dual order ideal

V

t

= fs 2 P : s � tg have the same length.

(ii) q

(

n

2

)

��(P )

W

P

(1=q) =W

P

(q).

It follows by setting q = �1 that if (i) holds and

�

n

2

�

��(P ) is odd, then P

is maj-balaned. Corollary 2.4 suggests in fat the following stronger result.
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5.2 Corollary. Suppose that P is naturally labelled and dual onsistent

(i.e., P

�

is onsistent). If

�

n

2

�

��(P ) is odd, then P is maj-balaned.

Proof. By Theorem 5.1 we need to show that there does not exist a

P -domino tableau. Given t 2 P , let Æ(t) denote the length of the longest

hain of V

t

, so �(P ) =

P

t2P

Æ(t). First suppose that n = 2m, and assume

to the ontrary that � = I

0

� I

1

� � � � � I

m

= P is a P -domino tableau.

If s; t 2 I

i

� I

i�1

then by dual onsisteny Æ(s) + Æ(t) � 1 (mod2). Hene

�(P ) � m (mod 2), so

�

n

2

�

��(P ) � m(2m� 1)�m � 0 (mod2);

a ontradition.

Similarly if n = 2m+1, then the existene of a P -domino tableau implies

�(P ) � m (mod 2), so

�

n

2

�

��(P ) � m(2m+ 1)�m � 0 (mod2);

again a ontradition. 2

Now let S be a �nite subset of solid unit squares with integer verties

in R � R suh that the set jSj =

S

S2S

is simply-onneted. For S; T 2 S,

de�ne S < T if the enter verties (s

1

; s

2

) of S and (t

1

; t

2

) of T satisfy either

(a) t

1

= s

1

and t

2

= s

2

+ 1 or (b) t

1

= s

1

+ 1 and t

2

= s

2

. Regard S as a

poset, denoted P

S

, under the transitive (and reexive) losure of the relation

<. Figure 6 gives an example, where (a) shows S as a set of squares and (b)

as a poset. Note that the posets P

�=�

are a speial ase.

A Shur labelling ! of P

S

is a labeling that inreases along rows and de-

reases along olumns, as illustrated in Figure 6. For the speial ase P

�=�

,

Shur labelings play an important role in the expansion of skew Shur fun-

tions s

�=�

in terms of quasisymmetri funtions [29, pp. 360{361℄. Suppose

that #P

S

is even and that P

S

is tilable by dominos. Then S itself is tilable

by dominos in the usual sense. It is known (impliit, for instane, in [31℄,

and more expliit in [5℄) that any two domino tilings of S an be obtained

from eah other by \2� 2 ips," i.e., replaing two horizontal dominos in a
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(a) (b)
Figure 6: A set S of squares and the Shur labelled poset P

S

2� 2 square by two vertial dominos or vie versa. It follows that if D is a

domino tiling of S with v(D) vertial dominos, then (�1)

v(D)

depends only

on S. Set sgn(S) = (�1)

v(D)

for any domino tiling of S.

5.3 Proposition. Let S be as above, and let ! be a Shur labeling of

P

S

, where #P

S

is even, say #P

S

= n. Then sgn(S)W

P

S

(�1) is the number

of P

S

-domino tableaux.

Proof. The proof parallels that of Theorem 5.1. De�ne the involution

� 7! �

0

as in the proof of Theorem 5.1. Eah survivor � = b

1

� � � b

m

orre-

sponds to a P

S

-domino tableau D. We have b

2i�1

> b

2i

if and only if the

domino labelled with b

2i�1

and b

2i

is vertial. As noted above, (�1)

v(D)

=

sgn(S), independent of D. Hene (�1)

maj(�)

= sgn(�), and the proof follows

as in Theorem 5.1(a). 2

A result analogous to Proposition 5.3 holds for #P

S

odd (with essen-

tially the same proof) provided P

S

has a

^

0 or

^

1. The speial ase P

�=�

of Proposition 5.3 (and its analogue for #P

S

odd) an also be proved us-

ing the theory of symmetri funtions, notably, [29, Prop. 7.19.11℄ and the

Murnaghan-Nakayama rule ([29, Cor. 7.17.5℄).
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6 Hook lengths.

In this setion we briey disuss a lass of posets P for whih W

P

(q), and

sometimes even I

P;!

(q), an be expliitly omputed. For this lass of posets

we get a simple riterion for being maj balaned and, if appliable, sign

balaned.

Following [26, p. 84℄, an n-element poset P is alled a hook length poset

if there exist positive integers h

1

; : : : ; h

n

, the hook lengths of P , suh that

W

P

(q) =

[n℄!

(1� q

h

1

) � � � (1� q

h

n

)

; (14)

where [n℄! = (1� q)(1� q

2

) � � � (1� q

n

). It is easy to see that if P is a hook

length poset, then the multiset of hook lengths is unique. In general, if P

is an \interesting" hook length poset, then eah element of P should have a

hook length assoiated to it in a \natural" ombinatorial way.

Note. We ould just as easily have extended our de�nition to labelled

posets (P; !), where now

W

P;!

(q) =

q



[n℄!

(1� q

h

1

) � � � (1� q

h

n

)

for some  2 N . However, little is known about the labelled situation exept

when we an redue it to the ase of natural labelings by subtrating ertain

onstants from the values of �.

The following result is an immediate onsequene of equation (14).

6.1 Proposition. Suppose that P is a hook length poset with hook

lengths h

1

; : : : ; h

n

. Then P is maj-balaned if and only if the number of

even hook lengths is less than bn=2. If P isn't maj-balaned, then the maj

imbalane is given by

W

P

(�1) =

bn=2!

Q

h

i

even

(h

i

=2)

:
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It is natural to ask at this point what are the known hook length posets.

The strongest work in this area is due to Protor [18℄[19℄. We won't state his

remarkable results here, but let us note that his d-omplete posets enompass

all known \interesting" examples of hook length posets. These inlude forests

(i.e., posets for whih every element is overed by at most one element) and

the duals P

�

�

of the posets P

�

of Setion 3.

Bj�orner and Wahs [3, Thm. 1.1℄ settle the question of what naturally

labelled posets (P; !) satisfy

I

P;!

(q) =W

P;!

(q): (15)

Namely, P is a forest and ! is a postorder labeling. Hene for postorder

labelled forests, Proposition 6.1 holds also for I

P;!

(�1). Bj�orner and Wahs

also obtain less de�nitive results for arbitrary labelings, whose relevane to

sign and maj imbalane we omit.
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