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We follow symmetric function notation and terminology from [4, Ch. 7].
Let λ ⊢ n, and let fλ denote the number of standard Young tableaux of
shape λ. Equivalently, fλ is the dimension of the irreducible representation
of the symmetric group Sn indexed by λ. Let ℓ be a prime, and let

n = α0 + α1ℓ+ α2ℓ
2 + · · · ,

with 0 ≤ αi < ℓ, the base ℓ expansion of n. Let

P (x) =
∏

n≥1

(1− xn)−1.

If G(x) is a power series, then [xα]G(x) denotes the coefficient of xα in G(x).
Finally, write mℓ(n) for the number of partitions λ ⊢ n for which fλ is
relatively prime to ℓ. I. G. Macdonald [1] showed that

mℓ(n) =
∏

r≥0

[xαr ]P (x)ℓ
r

. (1)

In particular, if each αr = 0 or 1, so n = ℓk1 + ℓk2 + · · · with k1 < k2 < · · · ,
then

mℓ(n) = ℓk1+k2+···. (2)

Equation (2) had earlier been conjectured by J. McKay for ℓ = 2, inspiring
Macdonald to write his paper.

In this note we give a simpler approach to equation (1) based on sym-
metric functions, allowing us to extend the result to some other irreducible
character values of Sn.
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Lemma 1. Let λ ⊢ n. The number of ways to add a border strip of size
m > n to λ is m.

Proof. Straightforward. �

First we do the special case (2).

Proof of equation (2). If f, g are symmetric functions over Z, then write
f ≡ g (mod ℓ) to mean that every coefficient of f − g is divisible by ℓ. Thus
pℓ

r

j ≡ pjℓr (mod ℓ), so

pn1 = pℓ
k1+ℓk2+···
1

≡ pℓk1pℓk2 · · · (mod ℓ)

By the Murhanghan-Nakayama rule,

pℓk1pℓk2 · · · =
∑

B

sgn(B)ssh(B),

where B is obtained by beginning with a hook B1 of size ℓk1 , then adjoining
a border strip B2 of size ℓk2, etc. Here sgn(B) = ±1 and sh(B) is the shape
of B. By Lemma 1, there are ℓk1 choices for B1, then ℓk2 choices for B2, etc.,
so N = ℓk1+k2+··· choices in all. It is easy to see that all the shapes obtained
in this way are distinct. Hence pℓk1pℓk2 · · · is a linear combination of N Schur
functions, each with sign ±1. Now pn1 =

∑

λ⊢n f
λsλ, so taking pn1 modulo ℓ

completes the proof. �

Proof of equation (1). Now we obtain

pn1 ≡ pα0

1 pα1

ℓ pα2

ℓ2
· · · (mod ℓ).

By Lemma 1 it follows that

mℓ(n) =
∏

r≥0

mℓ(αrℓ
r).

If we expand pαr

ℓr in terms of Schur functions, the shapes λ that appear will be
those partitions of αrℓ

r with empty ℓ-core. Let µ1, . . . , µαr
be the ℓr-quotient

of λ. Let ci = |µi|. Then by standard properties of cores and quotients [2,
Exam. I.1.8, p. 12, and Exam. I.5.2(b), p. 75],

〈pαr

ℓr , sλ〉 = ±

( ∑

µi

µ1, µ2, . . .

)

fµ1fµ2 · · · .
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Because αr < p, it follows easily that

〈pαr

ℓr , sλ〉 6≡ 0 (mod p).

Hence mℓ(αrℓ
r) is equal to the number of partitions of αrℓ

r with empty ℓr-
core. By [4, Exer. 7.59(e)] this number is [xαr ]P (x)ℓ

r

, and the proof follows.
�

Numerous generalizations suggest themselves.

• Can one determine for each 0 ≤ i < ℓ the number of λ ⊢ n for which
fλ ≡ i (mod ℓ)?

• Rather than using pn1 =
∑

λ⊢n f
λsλ, use

pnj =
∑

λ⊢jn

χλ(〈jn〉)sλ,

where 〈jn〉 denotes the partition with n parts equal to j. For instance,
taking j = ℓk gives:

Proposition 2. Let λ ⊢ ℓkn. The number of character values χλ(ℓk, ℓk, . . . )
(n terms equal to ℓk) that are not divisible by ℓ is equal to the number
of µ ⊢ ℓkn for which fµ is not divisible by ℓ (given by equation (1)).

What about other values of j, i.e., j 6= ℓk?

• Use hj instead of pj. Use [4, Exer. 7.61] to expand hℓr

j ≡ hj(x
ℓr

1 , x
ℓr

2 , . . . )
in terms of Schur functions. This will give Kostka number congruences.
For instance, let g(n) denote the number of odd Kostka numbersKλ,〈2n〉,
λ ⊢ 2n. Since h2(x

n
1 , x

n
2 , . . . ) = h2[pn] (plethysm) is a linear combina-

tion of
(

n+1
2

)

Schur functions with coefficients ±1, we get g(2r) =
(

2r+1
2

)

.
We apparently have

g(2r + 1) =

(

2r + 1

2

)

g(2r + 2) = 3

(

2r + 1

2

)

g(2r + 3) = 5

(

2r + 1

2

)

.

What about g(2r − 1)? the values of g(n) for 1 ≤ n ≤ 15 are 1, 3, 5,
10, 10, 30, 50, 36, 36, 108, 180, 312, 312, 840, 1368 (I think).
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• What about gλ (shifted SYT) instead of fλ? And projective charac-
ters of Sn instead of ordinary ones? A relevant exercise might be [2,
Exam. I.1.9, p. 14].

• What about differential posets? I.e., replace fλ for λ ⊢ n with the
number e(x) of saturated chains from 0̂ to an element x of rank n.
The Fibonacci differential poset in particular may be interesting. In
this case e(x) is the dimension of an irreducible representation of the
Okada algebra On [3], so we can also ask about congruence properties
of character values of On.
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