Some Congruence Properties of Symmetric Group Character Values

Richard P. Stanley

April 4, 2010

We follow symmetric function notation and terminology from [4, Ch. 7]. Let $\lambda \vdash n$, and let f^{λ} denote the number of standard Young tableaux of shape λ. Equivalently, f^{λ} is the dimension of the irreducible representation of the symmetric group \mathfrak{S}_{n} indexed by λ. Let ℓ be a prime, and let

$$
n=\alpha_{0}+\alpha_{1} \ell+\alpha_{2} \ell^{2}+\cdots
$$

with $0 \leq \alpha_{i}<\ell$, the base ℓ expansion of n. Let

$$
P(x)=\prod_{n \geq 1}\left(1-x^{n}\right)^{-1}
$$

If $G(x)$ is a power series, then $\left[x^{\alpha}\right] G(x)$ denotes the coefficient of x^{α} in $G(x)$. Finally, write $m_{\ell}(n)$ for the number of partitions $\lambda \vdash n$ for which f^{λ} is relatively prime to ℓ. I. G. Macdonald [1] showed that

$$
\begin{equation*}
m_{\ell}(n)=\prod_{r \geq 0}\left[x^{\alpha_{r}}\right] P(x)^{\ell^{r}} \tag{1}
\end{equation*}
$$

In particular, if each $\alpha_{r}=0$ or 1 , so $n=\ell^{k_{1}}+\ell^{k_{2}}+\cdots$ with $k_{1}<k_{2}<\cdots$, then

$$
\begin{equation*}
m_{\ell}(n)=\ell^{k_{1}+k_{2}+\cdots} . \tag{2}
\end{equation*}
$$

Equation (2) had earlier been conjectured by J. McKay for $\ell=2$, inspiring Macdonald to write his paper.

In this note we give a simpler approach to equation (1) based on symmetric functions, allowing us to extend the result to some other irreducible character values of \mathfrak{S}_{n}.

Lemma 1. Let $\lambda \vdash n$. The number of ways to add a border strip of size $m>n$ to λ is m.

Proof. Straightforward.
First we do the special case (2).
Proof of equation (2). If f, g are symmetric functions over \mathbb{Z}, then write $f \equiv g(\bmod \ell)$ to mean that every coefficient of $f-g$ is divisible by ℓ. Thus $p_{j}^{\ell^{r}} \equiv p_{j \ell^{r}}(\bmod \ell)$, so

$$
\begin{aligned}
p_{1}^{n} & =p_{1}^{\ell_{1}^{k_{1}}+\ell^{k_{2}}+\cdots} \\
& \equiv p_{\ell^{k_{1}}} p_{\ell^{k_{2}}} \cdots(\bmod \ell)
\end{aligned}
$$

By the Murhanghan-Nakayama rule,

$$
p_{\ell^{k_{1}}} p_{\ell^{k_{2}}} \cdots=\sum_{B} \operatorname{sgn}(B) s_{\operatorname{sh}(B)}
$$

where B is obtained by beginning with a hook B_{1} of size $\ell^{k_{1}}$, then adjoining a border strip B_{2} of size $\ell^{k_{2}}$, etc. Here $\operatorname{sgn}(B)= \pm 1$ and $\operatorname{sh}(B)$ is the shape of B. By Lemma 1 , there are $\ell^{k_{1}}$ choices for B_{1}, then $\ell^{k_{2}}$ choices for B_{2}, etc., so $N=\ell^{k_{1}+k_{2}+\cdots}$ choices in all. It is easy to see that all the shapes obtained in this way are distinct. Hence $p_{\ell^{k_{1}}} p_{\ell^{k_{2}}} \cdots$ is a linear combination of N Schur functions, each with sign ± 1. Now $p_{1}^{n}=\sum_{\lambda \vdash n} f^{\lambda} s_{\lambda}$, so taking p_{1}^{n} modulo ℓ completes the proof.

Proof of equation (1). Now we obtain

$$
p_{1}^{n} \equiv p_{1}^{\alpha_{0}} p_{\ell}^{\alpha_{1}} p_{\ell^{2}}^{\alpha_{2}} \cdots(\bmod \ell)
$$

By Lemma 1 it follows that

$$
m_{\ell}(n)=\prod_{r \geq 0} m_{\ell}\left(\alpha_{r} \ell^{r}\right)
$$

If we expand $p_{\ell^{r}}^{\alpha_{r}}$ in terms of Schur functions, the shapes λ that appear will be those partitions of $\alpha_{r} \ell^{r}$ with empty ℓ-core. Let $\mu_{1}, \ldots, \mu_{\alpha_{r}}$ be the ℓ^{r}-quotient of λ. Let $c_{i}=\left|\mu_{i}\right|$. Then by standard properties of cores and quotients [2, Exam. I.1.8, p. 12, and Exam. I.5.2(b), p. 75],

$$
\left\langle p_{\ell^{r}}^{\alpha_{r}}, s_{\lambda}\right\rangle= \pm\binom{\sum \mu_{i}}{\mu_{1}, \mu_{2}, \ldots} f^{\mu_{1}} f^{\mu_{2}} \cdots
$$

Because $\alpha_{r}<p$, it follows easily that

$$
\left\langle p_{\ell^{r}}^{\alpha_{r}}, s_{\lambda}\right\rangle \not \equiv 0(\bmod p)
$$

Hence $m_{\ell}\left(\alpha_{r} \ell^{r}\right)$ is equal to the number of partitions of $\alpha_{r} \ell^{r}$ with empty ℓ^{r} core. By [4, Exer. 7.59(e)] this number is $\left[x^{\alpha_{r}}\right] P(x)^{\ell^{r}}$, and the proof follows.

Numerous generalizations suggest themselves.

- Can one determine for each $0 \leq i<\ell$ the number of $\lambda \vdash n$ for which $f^{\lambda} \equiv i(\bmod \ell) ?$
- Rather than using $p_{1}^{n}=\sum_{\lambda \vdash n} f^{\lambda} s_{\lambda}$, use

$$
p_{j}^{n}=\sum_{\lambda \vdash j n} \chi^{\lambda}\left(\left\langle j^{n}\right\rangle\right) s_{\lambda},
$$

where $\left\langle j^{n}\right\rangle$ denotes the partition with n parts equal to j. For instance, taking $j=\ell^{k}$ gives:
Proposition 2. Let $\lambda \vdash \ell^{k} n$. The number of character values $\chi^{\lambda}\left(\ell^{k}, \ell^{k}, \ldots\right)$ (n terms equal to ℓ^{k}) that are not divisible by ℓ is equal to the number of $\mu \vdash \ell^{k} n$ for which f^{μ} is not divisible by ℓ (given by equation (1)).

What about other values of j, i.e., $j \neq \ell^{k}$?

- Use h_{j} instead of p_{j}. Use [4, Exer. 7.61] to expand $h_{j}^{\ell^{r}} \equiv h_{j}\left(x_{1}^{\ell^{r}}, x_{2}^{\ell^{r}}, \ldots\right)$ in terms of Schur functions. This will give Kostka number congruences. For instance, let $g(n)$ denote the number of odd Kostka numbers $K_{\lambda,\left(2^{n}\right\rangle}$, $\lambda \vdash 2 n$. Since $h_{2}\left(x_{1}^{n}, x_{2}^{n}, \ldots\right)=h_{2}\left[p_{n}\right]$ (plethysm) is a linear combination of $\binom{n+1}{2}$ Schur functions with coefficients ± 1, we get $g\left(2^{r}\right)=\binom{2^{r}+1}{2}$. We apparently have

$$
\begin{aligned}
& g\left(2^{r}+1\right)=\binom{2^{r}+1}{2} \\
& g\left(2^{r}+2\right)=3\binom{2^{r}+1}{2} \\
& g\left(2^{r}+3\right)=5\binom{2^{r}+1}{2} .
\end{aligned}
$$

What about $g\left(2^{r}-1\right)$? the values of $g(n)$ for $1 \leq n \leq 15$ are $1,3,5$, $10,10,30,50,36,36,108,180,312,312,840,1368$ (I think).

- What about g^{λ} (shifted SYT) instead of f^{λ} ? And projective characters of \mathfrak{S}_{n} instead of ordinary ones? A relevant exercise might be [2, Exam. I.1.9, p. 14].
- What about differential posets? I.e., replace f^{λ} for $\lambda \vdash n$ with the number $e(x)$ of saturated chains from $\hat{0}$ to an element x of rank n. The Fibonacci differential poset in particular may be interesting. In this case $e(x)$ is the dimension of an irreducible representation of the Okada algebra $\mathcal{O}_{n}[3]$, so we can also ask about congruence properties of character values of \mathcal{O}_{n}.

References

[1] I. G. Macdonald, On the degrees of the irreducible representations of symmetric groups, Bull. London Math. Soc. 3 (1971), 198-192.
[2] I. G. Macdonald, Symmetric Functions and Hall Polynomials, second ed., Oxford University Press, Oxford, 1995.
[3] S. Okada, Algebras associated to the Young-Fibonacci lattice, Trans. Amer. Math. Soc. 346 (1994), 549-568.
[4] R. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, New York/Cambridge, 1999.

