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Abstrat

The rank of an ordinary partition of a nonnegative integer n is the length

of the main diagonal of its Ferrers or Young diagram. Nazarov and Tarasov

gave a generalization of this de�nition for skew partitions and proved some

basi properties. We show the lose onnetion between the rank of a skew

partition �=� and the minimal number of border strips whose union is �=�.

A general theory of minimal border strip deompositions is developed and

an appliation is given to the evaluation of ertain values of irreduible har-

aters of the symmetri group.

1 Introdution.

Let � = (�

1

; �

2

; : : :) be a partition of the integer n, i.e., �

1

� �

2

� � � � � 0

and

P

�

i

= n. The (Durfee or Frobenius) rank of �, denoted rank(�), is the

length of the main diagonal of the diagram of �, or equivalently, the largest

integer i for whih �

i

� i [11, p. 289℄. We will assume familiarity with

the notation and terminology involving partitions and symmetri funtions
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found in [7℄ and [11℄. Nazarov and Tarasov [9, x1℄, in onnetion with ten-

sor produts of Yangian modules Y (gl

n

), de�ned a generalization of rank to

skew partitions (or skew diagrams) �=�. There are several simple equivalent

de�nitions of rank(�=�) whih we summarize in Proposition 2.2. In parti-

ular, rank(�=�) is the least integer r suh that �=� is a disjoint union of r

border strips (also alled ribbons or rim hooks). In Setion 4 we onsider

the struture of the deompositions of �=� into this minimal number r of

border strips. For instane, we show that the number of ways to write �=�

as a disjoint union of r border strips is a perfet square. A onsequene of

our results will be that if �

�=�

is the skew harater of the symmetri group

S

n

indexed by �=� and if w is a permutation in S

n

with rank(�=�) yles

(in its disjoint yle deomposition) for whih exatly m

i

yles have length

i, then �

�=�

(w) is divisible by m

1

!m

2

! � � �.

In addition to the various haraterizations of rank(�=�) given by Propo-

sition 2.2 we have a further possible haraterization whih we have been

unable to prove or disprove. Namely, let s

�=�

(1

t

) denote the skew Shur

funtion s

�=�

evaluated at x

1

= � � � = x

t

= 1, x

i

= 0 for i > t. For �xed

�=�, s

�=�

(1

t

) is a polynomial in t. Let zrank(�=�) denote the exponent of the

largest power of t dividing s

�=�

(1

t

) (as a polynomial in t). It is easy to see

(Proposition 3.1) that zrank(�=�) � rank(�=�), and we ask whether equality

always holds. We know of two main ases where the answer is aÆrmative:

(1) when �=� is an ordinary partition (i.e., � = ;), a trivial onsequene of

known results on Shur funtions (Theorem 3.2(a)), and (2) when every row

of the Jaobi-Trudi matrix for �=� whih ontains an entry equal to 0 also

ontains an entry equal to 1 (Theorem 3.2(b)).

2 Charaterizations of Frobenius rank.

Let �=� be a skew shape, whih we identify with its Young diagram f(i; j) :

�

i

< j � �

i

g. While all our results are stated in terms of the partitions � and

�, it should be mentioned that these results depend on � and � only up to

translation of the skew shape �=�. We regard the points (i; j) of the Young

diagram as squares. An outside top orner of �=� is a square (i; j) 2 �=�

suh that (i� 1; j); (i; j � 1) 62 �=�. An outside diagonal of �=� onsists of
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Figure 1: Outside and inside diagonals of the skew shape 8874=411

all squares (i + p; j + p) 2 �=� for whih (i; j) is a �xed outside top orner.

Similarly an inside top orner of �=� is a square (i; j) 2 �=� suh that

(i� 1; j); (i; j� 1) 2 �=� but (i� 1; j� 1) 62 �=�. An inside diagonal of �=�

onsists of all squares (i+ p; j+ p) 2 �=� for whih (i; j) is a �xed inside top

orner. If � = ;, then �=� has one outside diagonal (the main diagonal) and

no inside diagonals. Figure 1 shows the skew shape 8874=411, with outside

diagonal squares marked by + and inside diagonal squares by �.

Let d

+

(�=�) (respetively, d

�

(�=�)) denote the total number of outside

diagonal squares (respetively, inside diagonal squares) of �=�. Following

Nazarov and Tazarov [9, x1℄, we de�ne the (Durfee or Frobenius) rank of

�=�, denoted rank(�=�), to be d

+

(�=�)� d

�

(�=�). Clearly when � = ; this

redues to the usual de�nition of rank(�) mentioned in the introdution. We

see, for instane, from Figure 1 that rank(8874=411) = 4.

We wish to give several equivalent de�nitions of rank(�=�). First we

disuss the neessary bakground. A skew shape �=� is onneted if the

interior of the Young diagram of �=�, regarded as a union of solid squares, is

a onneted (open) set. A border strip [11, p. 345℄ is a onneted skew shape

with no 2�2 square. (The empty diagram ; is not a border strip.) A border

strip is uniquely determined, up to translation, by its row lengths; there are

exatly 2

n�1

border strips with n squares (up to translation). We say that

a border strip B � �=� is a border strip of �=� if �=�� B is a skew shape

�=� (so B = �=�). Equivalently, we say that B an be removed from �=�. A

border strip B of �=� is determined by its lower left-hand square init(B) and

upper right-hand square �n(B). A border strip deomposition [11, p. 470℄

of �=� is a partitioning of the squares of �=� into (pairwise disjoint) border
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Figure 2: A minimal border strip deomposition of the skew shape 8874=411

strips. Let N = j�=�j :=

P

�

i

�

P

�

i

and � = (�

1

; : : : ; �

`

) ` N , where

�

`

> 0. We say that a border strip deomposition D has type � ` N if the

sizes (number of squares) of the border strips appearing inD are �

1

; : : : ; �

`

. A

border strip deomposition of �=� is minimal if the number of border strips

is minimized, i.e., there does not exist a border strip deomposition with

fewer border strips. Figure 2 shows a minimal border strip deomposition of

the skew shape 8874=411.

A onept losely related to border strip deompositions is that of border

strip tableaux [11, p. 346℄. Let �=� ` N . Let � = (�

1

; �

2

; : : : ; �

m

) be a

omposition of N , i.e., �

i

2 P = f1; 2; : : :g and

P

�

i

= N . A border strip

tableau of (shape) �=� and type � is a sequene

� = �

0

� �

1

� � � � � �

r

= � (1)

suh that �

i

=�

i�1

is a border strip of size �

i

. (Note that the type of a

border strip deomposition is a partition but of a border strip tableau is a

omposition.) Often in the de�nition of a border strip tableau there is allowed

�

i

=�

i�1

= ;, but it will be onvenient for us not to permit this. Every border

strip tableau T of shape �=� de�nes a border strip deompositionD of �=�,

viz., the border strips �

i

=�

i�1

of T are just the border strips of D. We say

thatD orresponds to T and onversely that T orresponds toD. Of ourse

given T , the orrespondingD is unique, but not onversely. If T orresponds

to a minimal border strip deompositionD, then we all T a minimal border

strip tableau.

Now suppose that `(�) � n, where `(�) denotes the number of (nonzero)

parts of �. Reall that the Jaobi-Trudi identity for the skew Shur funtion
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s

�=�

[11, Thm. 7.16.1℄ asserts that

s

�=�

= det

�

h

�

i

��

j

�i+j

�

n

i;j=1

;

where h

k

denotes the omplete homogeneous symmetri funtion of degree

k, with the onvention h

0

= 1 and h

k

= 0 for k < 0. Denote the ma-

trix

�

h

�

i

��

j

�i+j

�

appearing in the Jaobi-Trudi identity by JT

�=�

, alled the

Jaobi-Trudi matrix of the skew shape �=�. Let jrank(�=�) denote the num-

ber of rows of JT

�=�

that don't ontain a 1. Note that JT

�=�

impliitly

depends on n, but jrank(�=�) does not depend on the hoie of n.

Our �nal piee of bakground material onerns the (Com�et) ode of a

shape � [11, Exer. 7.59℄, generalized to skew shapes �=�. Let �=� be a skew

shape, with its left-hand edge and upper edge extended to in�nity, as shown

in Figure 3 for �=� = 8874=411. Put a 0 next to eah vertial edge and a 1

next to eah horizontal edge of the \lower envelope" and \upper envelope"

of �=� (whose de�nition should be lear from Figure 3). If we read these

numbers as we move north and east along the lower envelope we obtain a

binary sequene C

�=�

= � � � 

�2



�1



0



1



2

� � � beginning with in�nitely many

0's and ending with in�nitely many 1's. Similarly if we read these numbers

as we move north and east along the upper envelope we obtain another suh

binary sequene D

�=�

= � � �d

�2

d

�1

d

0

d

1

d

2

� � �. The indexing of the terms of

C

�=�

and D

�=�

is arbitrary (it doesn't a�et the sequenes themselves), but

we require them to \line up" in the sense that ommon steps in the two

envelopes should have ommon indies. We all the resulting two-line array

ode(�=�) =

� � � 

�2



�1



0



1



2

� � �

� � � d

�2

d

�1

d

0

d

1

d

2

� � �

; (2)

the (Com�et) ode of �=� (also known as the partition sequene of �=� [1℄[2℄).

If we omit the in�nitely many initial olumns

0

0

and �nal olumns

1

1

from

ode(�=�), then we all the resulting array the redued ode of �=�, denoted

ode(�=�). Thus for instane from Figure 3 we see that

ode(8874=411) =

1 1 1 1 0 1 1 1 0 1 0 0

0 1 0 0 1 1 1 0 1 1 1 1

:

A two-line array (2) with in�nitely many initial olumns

0

0

and �nal

olumns

1

1

is the ode of some �=� if and only if for all i,

#fj � i : (

j

; d

j

) = (1; 0)g � #fj � i : (

j

; d

j

) = (0; 1)g; (3)
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Figure 3: Construting the ode of 8874=411

and

#fj 2 Z : (

j

; d

j

) = (1; 0)g = #fj 2 Z : (

j

; d

j

) = (0; 1)g: (4)

If � = ; then the seond row of ode(�=�) is redundant, so we de�ne ode(�)

to be the �rst row of ode(�=�). If ode(�=�) is given by (2) then we write

s(

i

) (respetively, s(d

i

)) for the (unique) square of �=� that ontains the edge

of the lower envelope (respetively, upper envelope) of �=� orresponding to 

i

(respetively, d

i

). The following fundamental property of ode(�=�) appears

e.g. in [11, Exer. 7.59(b)℄ for ordinary shapes and arries over diretly to

skew shapes.

2.1 Proposition. Let ode(�=�) be given by (2). Then removing a

border strip of size p from �=� is equivalent to hoosing i with 

i

= 1 and



i+p

= 0, and then replaing 

i

with 0 and 

i+p

with 1, provided that (3)

ontinues to hold. Spei�ally, suh a pair (i; i+p) orresponds to the border

strip B of size p de�ned by

init(B) = s(

i

); �n(B) = s(

i+p

):

Moreover, ode(�=� � B) is obtained from ode(�=�) by setting 

i

= 0 and



i+p

= 1.
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We an now state several haraterizations of rank(�=�).

2.2 Proposition. For any skew shape �=�, the following numbers are

equal.

(a) rank(�=�)

(b) the number of border strips in a minimal border strip deomposition of

�=�

() jrank(�=�)

(d) the number of olumns of ode(�=�) equal to

0

1

(or to

1

0

)

Proof. By equations (3) and (4) there exists a bijetion

# : fi : (

i

; d

i

) = (1; 0)g ! fi : (

i

; d

i

) = (0; 1)g

suh that #(i) > i for all i in the domain of #. By Proposition 2.1, as we

suessively remove border strips from �=� the bottom line � � �d

�1

d

0

d

1

� � � of

ode(�=�) remains the same, while the top line � � � 

�1



0



1

� � � interhanges

a 0 and 1. We will exhaust all of �=� when the top line beomes equal to

the bottom. Hene the number of border strips appearing in a border strip

deomposition of �=� is at least the number of olumns

0

1

of ode(�=�). On

the other hand, we an ahieve exatly this number by interhanging 

i

with



#(i)

for all i suh that (

i

; d

i

) = (0; 1). It follows that (b) and (d) are equal.

Let B be the (unique) largest border strip of �=� suh that init(B) is

the bottom square of the leftmost olumn of �=�. B will interset eah di-

agonal (running from upper-left to lower-right) of its onneted omponent

� of �=� exatly one. The number of outside diagonals of � is one more

than the number of inside diagonals. Hene rank(�=�) = rank(�=��B)+1.

Continuing to remove the largest border strip results in a minimal border

strip deomposition of �=�. (Minimality is an easy onsequene of Proposi-

tion 2.1.) Sine eah border strip removal redues the rank by one, it follows

that (a) and (b) are equal.

Finally onsider the Jaobi-Trudi matrix JT

�=�

. We prove by indution

on the number of rows of JT

�=�

that (b) and () are equal. The assertion

7



is lear when JT

�=�

has one row, so assume that JT

�=�

has more than one

row. We may assume that �=� has no empty rows, sine \ompressing" �=�

by removing all empty rows does not hange (). Let JT

0

�=�

denote JT

�=�

with the �rst row and last olumn removed. Let �=� be the shape obtained

by removing a maximal border strip from eah onneted omponent of �=�

and deleting the bottom (empty) row. If �=� has  onneted omponents,

then rank(�=�) = rank(�=�)� . Now the (i; j)-entry h

�

i+1

��

j

�i+j�1

of the

matrix JT

0

�=�

satis�es

h

�

i+1

��

j

�i+j�1

=

8

<

:

h

�

i

��

j

�i+j

; if row i of �=� is not the last row of a

onneted omponent of �=�

h

�

i

��

j

�i+j+1

; otherwise.

Moreover, if row i is the last row of a onneted omponent of �=� (other than

the bottom row of �=�) then the (i; i)-entry of JT

�=�

is 1, while the ith row

of JT

�=�

does not ontain a 1. It follows that jrank(�=�) = jrank(�=�)� ,

and the equality of (b) and () follows by indution. 2

The equivalene of (a) and () in Proposition 2.2 is also an immediate

onsequene of [9, Prop. 1.32℄.

The following orollary was �rst proved by Nazarov and Tarasov [9, Thm.

1.4℄ using the de�nition rank(�=�) = d

+

(�=�) � d

�

(�=�). The result is

not obvious (even for nonskew shapes �) using this de�nition, but it is an

immediate onsequene of parts (b) or (d) of Proposition 2.2.

2.3 Corollary. Let (�=�)

\

denote the skew shape obtained by rotating

the diagram of �=� 180

Æ

, i.e, replaing (i; j) 2 �=� with (h � i; k � i) for

some h and k. Then rank(�=�) = rank((�=�)

\

).

3 An open haraterization of rank(�=�)

Reall that in Setion 1 we de�ned zrank(�=�) to be the largest power of t

dividing the polynomial s

�=�

(1

t

).
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Open problem. Is it true that

rank(�=�) = zrank(�=�) (5)

for all �=�?

3.1 Proposition. For all �=� we have rank(�=�) � zrank(�=�).

Proof. We have (see [11, Prop. 7.8.3℄)

h

i

(1

t

) =

�

t+ i� 1

i

�

=

t(t+ 1) � � � (t + i� 1)

i!

:

Hene by the Jaobi-Trudi identity,

s

�=�

(1

t

) = det

��

t + �

i

� �

j

� i+ j � 1

�

i

� �

j

� i + j

��

n

i;j=1

: (6)

By Proposition 2.2 exatly rank(�=�) rows of this matrix have every entry

equal either to 0 or a polynomial divisible by t. Hene s

�=�

(1

t

) is divisible

by t

rank(�=�)

, so rank(�=�) � zrank(�=�) as desired.

Alternatively, we an expand s

�=�

in terms of power sums p

�

instead of

omplete symmetri funtions h

�

. If

s

�=�

=

X

�

z

�1

�

�

�=�

(�)p

�

; (7)

then by the Murnaghan-Nakayama rule [11, Cor. 7.17.5℄ �

�=�

(�) = 0 unless

there exists a border strip tableau of �=� of type �. By Proposition 2.2 it

follows that �

�=�

(�) = 0 unless `(�) � rank(�=�). Sine p

�

(1

t

) = t

`(�)

, it

again follows that s

�=�

(1

t

) is divisible by t

rank(�=�)

. 2

The next result establishes that rank(�=�) = zrank(�=�) in two speial

ases.

3.2 Theorem. (a) If � = ; (so �=� = �) then rank(�) = zrank(�).

(b) If every row of JT

�=�

that ontains a 0 also ontains a 1, then

rank(�=�) = zrank(�=�).

9



Proof. (a) A basi formula in the theory of symmetri funtions [11,

Cor. 7.21.4℄ asserts that

s

�

(1

t

) =

Y

(i;j)2�

t� i + j

h(i; j)

;

where h(i; j) = �

i

+ �

0

j

� i� j + 1, the hook length of � at (i; j). Hene

zrank(�) = #fi : (i; i) 2 �g = rank(�):

(b) Let

y(�=�) =

�

t

�rank(�=�)

s

�=�

(1

t

)

�

t=0

:

By Proposition 3.1 y(�=�) is �nite (and in fat is just the oeÆient of

t

rank(�=�)

in s

�=�

(1

t

)), and the assertion that rank(�=�) = zrank(�=�) is equiv-

alent to y(�=�) 6= 0. Now fator out t from every row not ontaining a 1 of

the matrix on the right-hand side of equation (6). By Proposition 2.2 the

number of suh rows is rank(�=�). Divide by t

rank(�=�)

and set t = 0. Denote

the resulting matrix by R

�=�

, so

y(�=�) = detR

�=�

�

�

t=0

:

Note that

�

t

�1

h

i

(1

t

)

�

t=0

=

1

i

; i � 1: (8)

If row i of JT

�=�

ontains a 1, say in olumn j, then row i of R

�=�

has

all entries equal to 0 exept for a 1 in olumn j. Hene we an remove row i

and olumn j from R

�=�

without hanging the determinant detR

�=�

, exept

possibly for the sign. When we do this for all rows i of JT

�=�

ontaining a 1,

then using (8) we obtain a matrix of the form

R

0

�=�

=

�

1

a

i

+ b

j

�

r

i;j=1

; (9)

where a

1

> a

2

> � � � > a

r

> 0 and 0 = b

1

< b

2

< � � � < b

r

. In partiular,

the denominators a

i

+ b

j

are never 0. But it was shown by Cauhy (e.g., [8,

x353℄) that

detR

0

�=�

=

Q

i<j

(a

i

� a

j

)(b

i

� b

j

)

Q

i;j

(a

i

+ b

j

)

6= 0;

as was to be shown. 2
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4 Minimal border strip deompositions of �=�

In the proof of Proposition 3.1 we mentioned the Murnaghan-Nakayama rule

[11, Cor. 7.17.5℄ in onnetion with the expansion of s

�=�

in terms of power

sums. This rule asserts that if �

�=�

(�) is de�ned by equation (7), then

�

�=�

(�) =

X

T

(�1)

ht(T )

; (10)

summed over all border-strip tableaux T of shape �=� and type �. Here

ht(T ) =

X

B

ht(B);

where B ranges over all border strips in T and ht(B) is one less than the

number of rows of B. In fat, in equation (10) � an be a omposition rather

than just a partition. In other words, let � = (�

1

; : : : ; �

m

) be a omposition

of N = j�=�j and let

�

�=�

(�) =

X

T

(�1)

ht(T )

;

summed over all border strip tableaux T of shape �=� and type �. Then

�

�=�

(�) = �

�=�

(�), where � is the dereasing rearrangement of �. The seond

proof of Proposition 3.1 showed that s

�=�

has minimal degree r = rank(�=�)

as a polynomial in the p

i

's (with deg p

i

= 1 for i � 1). Sine p

�

(1

t

) = t

`(�)

we see that the oeÆient y(�=�) of t

rank(�=�)

in s

�=�

(1

t

) is given by

y(�=�) =

X

�`N

`(�)=r

z

�1

�

�

�=�

(�): (11)

As mentioned above, an aÆrmative answer to (5) is equivalent to y(�=�) 6= 0.

Although we are unable to resolve this question here, we will show that

there is some interesting ombinatoris assoiated with minimal border strip

deompositions and border tableaux of shape �=�. In partiular, a more

ombinatorial version of equation (11) is given by (30).

Let e be an edge of the lower envelope of �=�, i.e., no square of �=� has e

as its upper or left-hand edge. We will de�ne a ertain subset S

e

of squares

of �=�, alled a snake. If e is also an edge of the upper envelope of �=�, then

11



set S

e

= ;. Otherwise, if e is horizontal and (i; j) is the square of �=� having

e as its lower edge, then de�ne

S

e

= (�=�)\f(i; j); (i�1; j); (i�1; j�1); (i�2; j�1); (i�2; j�2); : : :g: (12)

Finally if e is vertial and (i; j) is the square of �=� having e as its right-hand

edge, then de�ne

S

e

= (�=�)\f(i; j); (i; j�1); (i�1; j�1); (i�1; j�2); (i�2; j�2); : : :g: (13)

In Figure 4 the nonempty snakes of the skew shape 8744=411 are shown with

dashed paths through their squares, with a single bullet in the two snakes

with just one square. The length `(S) of a snake S is one fewer than its

number of squares; a snake of length k � 1 (so with k squares) is alled a

k-snake. In partiular, if S

e

= ; then `(S

e

) = �1. Call a snake of even

length a right snake if it has the form (12) and a left snake if it has the form

(13). (We ould just as well make the same de�nitions for snakes of odd

length, but we only need the de�nitions for those of even length.) It is lear

that the snakes are linearly ordered from lower left to upper right. In this

linear ordering replae a left snake of length 2k with the symbol L

k

, a right

snake of length 2k with R

k

, and a snake of odd length with O. The resulting

sequene (whih does not determine �=�), with in�nitely many initial and

�nal O's removed, is alled the snake sequene of �=�, denoted SS(�=�). For

instane, from Figure 4 we see that

SS(8874=411) = L

0

OL

1

L

2

R

2

OOL

2

R

2

OR

1

R

0

:

Snakes (though not with that name) appear in the solution to [11, Exer-

ise 7.66℄. Call two onseutive squares of a snake S (i.e., two squares with

a ommon edge) a link of S. Thus a k-snake has k � 1 links. A link of a

left snake is alled a left link, and similarly a link of a right snake is alled

a right link. Two links l

1

and l

2

are said to be onseutive if they have a

square in ommon. We say that a border strip B uses a link l of some snake

if B ontains the two squares of l. Similarly a border strip deomposition D

or border strip tableau T uses l if some border strip in D or T uses l. The

exerise ited above shows the following.

4.1 Lemma. Let D be a border strip deomposition of �=�. Then no

B 2 D uses two onseutive links of a snake. Conversely, if we hoose a

12



Figure 4: Snakes for the skew shape 8874=411

set L of links from the snakes of �=� suh that no two of these links are

onseutive, then there is a unique border strip deomposition D of �=� that

uses preisely the links in L (and no other links).

Lemma 4.1 sets up a bijetion between border strip deompositions of

�=� and sets L of links of the snakes of �=� suh that no two links are

onseutive. In partiular, if F

n

denotes a Fibonai number (F

1

= F

2

= 1,

F

n+1

= F

n

+ F

n�1

for n > 1), then there are F

k+1

ways to hoose a subset

L of links of a k-snake suh that no two links are onseutive. Hene if

the snakes of �=� have sizes a

1

; : : : ; a

r

, then the number of border strip

deompositions of �=� is F

a

1

+1

� � �F

a

r

+1

(as is lear from the solution to [11,

Exer. 7.66℄). Moreover, the size (number of border strips) of the border strip

deomposition D is given by

#D = j�=�j �#L: (14)

Consider now the minimal border strip deompositions D of �=�, i.e.,

#D is minimized. Thus by Proposition 2.2 we have #D = rank(�=�). By

equation (14) we wish to maximize the number of links, no two onseutive.

For snakes with an odd number 2m� 1 of links we have no hoie | there is

a unique way to hoose m links, no two onseutive, and this is the maximum

number possible. For snakes with an even number 2m of links there are m+1

ways to hoose the maximum number m of links. Thus if mbsd(�=�) denotes

the number of minimal border strip deompositions of �=�, then we have

proved the following result (whih will be improved in Theorem 4.5).

13



4.2 Proposition. We have

mbsd(�=�) =

Y

S

�

1 +

`(S)

2

�

;

where S ranges over all snakes of �=� of even length.

To proeed further with the struture of the minimal border strip de-

ompositions of �=�, we will develop their onnetion with ode(�=�). Let

p be the bottom-leftmost point of (the diagram of) �=�, and let q be the

top-rightmost point. We regard the boundary of �=� as onsisting of two

lattie paths from p to q with steps (1; 0) or (0; 1), or in other words, the

restrition of the upper and lower envelopes of �=� between p and q. The

top-left path (regarded as a sequene of edges e

1

; : : : ; e

k

) is denoted �

1

(�=�),

and the bottom-right path f

1

; : : : ; f

k

by �

2

(�=�). Note that if in the two-line

array

f

1

f

2

� � � f

k

e

1

e

2

� � � e

k

we replae eah vertial edge by 1 and eah horizontal edge by 0, then we

obtain ode(�=�).

Continue the zigzag pattern of the links of eah snake of �=� one further

step in eah diretion, as illustrated in Figure 5 for �=� = 8874=411. These

steps will ross an edge on the boundary of �=�. Denote the top-left boundary

edge rossed by the extended link of the snake S by �(S), alled the top

edge of S. Similarly denote the bottom-right boundary edge rossed by

the extended link of the snake S by �(S), alled the bottom edge of the

snake S. (In fat, the snake S

e

has �(S

e

) = e.) When S

e

= ; we have

�(S

e

) = �(S

e

) = e. See Figure 6 for the ase �=� = 43111=2211, whih has

three edges e for whih S

e

= ;.

We thus have the following situation. Write S

i

as short for S

f

i

, so �(S

i

) =

e

i

and �(S

i

) = f

i

. Let

ode(�=�) =

�



1



2

� � � 

k

d

1

d

2

� � � d

k

�

: (15)

It is easy to see that S

i

is a left snake if and only if (

i

; d

i

) = (1; 0). In this

ase, if S

i

has length 2m then

m + 1 = #fj > i : (

j

; d

j

) = (0; 1)g �#fj > i : (

j

; d

j

) = (1; 0)g: (16)
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Figure 5: Extended links for the skew shape 8874=411

Figure 6: Extended links for the skew shape 43111=2211
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Similarly S

i

is a right snake if and only if (

i

; d

i

) = (0; 1); and if S

i

has length

2m then

m + 1 = #fj < i : (

j

; d

j

) = (1; 0)g �#fj < i : (

j

; d

j

) = (0; 1)g: (17)

4.3 Proposition. The snake sequene SS(�=�) = q

1

q

2

� � � q

k

is \well-

parenthesized" in the following sense. There exists a (unique) set P(�=�) =

f(u

1

; v

1

); : : : ; (u

r

; v

r

)g, where r = rank(�=�), suh that:

(a) The u

i

's and v

i

's are all distint integers.

(b) 1 � u

i

< v

i

� k

() q

u

i

= L

t

and q

v

i

= R

t

for some t (depending on i)

(d) For no i and j do we have u

i

< u

j

< v

i

< v

j

.

Proof. Equations (3) and (4) assert that for any 1 � i � k we have

#fj : 1 � j � i; q

j

= L

s

for some sg � #fj : 1 � j � i; q

j

= R

s

for some sg;

(18)

and that the total number of L's in SS(�=�) equals the total number of R's.

It now follows from a standard bijetion (e.g., [11, solution to Exer. 6.19(n)

and (o)℄) that there is a unique set P(�=�) satisfying (a), (b), and (d). But

() is then a onsequene of equations (16) and (17). 2

We an depit the set P(�=�) by drawing ars above the terms of SS(�=�),

suh that the left and right endpoints of an ar are some L

t

and R

t

, and suh

that the ars are nonrossing. For instane,

P(8874=411) = f(1; 12); (3; 11); (4; 5); (8; 9)g;

as illustrated in Figure 7.

Let SS(�=�) = q

1

q

2

� � � q

k

as in Proposition 4.3, and de�ne an interval set

of �=� to be a olletion I of r ordered pairs,

I = f(u

1

; v

1

); : : : ; (u

r

; v

r

)g;

satisfying the following onditions:
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L O L L R OOL R OR R1  2 2 2 2 10 0

Figure 7: Parenthesization of the snake sequene SS(8874=411)

L O L L R OOL R OR R1  2 2 2 2 10 0

Figure 8: An interval set of the skew shape 8874=411

� The u

i

's and v

i

's are all distint integers.

� 1 � u

i

< v

i

� k

� q

u

i

= L

s

and q

v

i

= R

t

for some s and t (depending on i)

Thus P(�=�) is itself an interval set. Figure 8 illustrates the interval set

f(1; 5); (3; 12); (4; 9); (8; 11)g of the skew shape 8874=411. Let is(�=�) denote

the number of interval sets of �=�.

4.4 Theorem. Let T

1

; : : : ; T

r

be the left snakes (or right snakes) of

�=�. Then

is(�=�) =

r

Y

i=1

�

1 +

`(T

i

)

2

�

:

Proof. Let SS(�=�) = q

1

q

2

� � � q

k

. Let q

u

1

; : : : ; q

u

r

be the positions of the

terms L

s

, with u

1

< � � � < u

r

. Let q

u

i

= L

m

i

. We an obtain an interval set

by pairing q

u

r

with some R

s

to the right of q

u

r

, then pairing q

u

r�1

with some

R

s

to the right of q

u

r�1

not already paired, et. By equation (16) the number

of hoies for pairing q

u

i

is just m

i

+ 1, and the proof follows. 2
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We are now in a position to ount the number of minimal border strip

deompositions and minimal border strip tableaux of shape �=�. Let us

denote this latter number by mbst(�=�).

4.5 Theorem. Let rank(�=�) = r. Then

mbsd(�=�) = is(�=�)

2

(19)

mbst(�=�) = r! is(�=�): (20)

Proof. Equation (19) is an immediate onsequene of Proposition 4.2 and

Theorem 4.4 (using that in Theorem 4.4 we an take T

1

; : : : ; T

r

to onsist of

either all left snakes or all right snakes).

To prove equation (20) we use Proposition 2.1. Let

ode(�=�) =



1



2

� � � 

k

d

1

d

2

� � � d

k

and let r = rank(�=�). It follows from Proposition 2.1 that a minimal border

strip tableau of shape �=� is equivalent to hoosing a sequene (u

1

; v

1

); : : :,

(u

r

; v

r

) where 1 � u

i

< v

i

� k, 

u

i

= 1, 

v

i

= 0, the u

i

's and v

i

's are

distint, and then suessively hanging (u

i

; v

i

) from (1; 0) to (0; 1), so that

at the end we obtain the sequene d

1

; : : : ; d

k

. Sine there are exatly r pairs

(

i

; d

i

) equal to (0; 1) and r pairs equal to (1; 0), the ondition that we end

up with d

1

; : : : ; d

k

is equivalent to d

u

i

= 0 and d

v

i

= 1. Hene the possible

sets f(u

1

; v

1

); : : : ; (u

r

; v

r

)g are just the interval sets of �=�. There are is(�=�)

ways to hoose an interval set and r! ways to linearly order its elements, so

the proof follows. 2

As disussed in the above proof, every interval set I of �=� gives rise

to r! minimal border strip tableaux T of shape �=�. The set of border

strips appearing in suh a tableau is a border strip deomposition D of �=�.

Extending our terminology that T and D orrespond to eah other, we will

say that I, D, and T all orrespond to eah other.

How many of the above r! border strip deompositions orresponding to

I are distint? Rather remarkably, the number is is(�=�), independent of
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the interval set I. This is a onsequene of Theorem 4.8 below. Our proof

of this result is best understood in the ontext of posets. Let P be a �nite

poset with p elements x

1

; : : : ; x

p

. A bijetion f : P ! [p℄ = f1; 2; : : : ; pg

is alled a dropless labeling of P if we never have f

�1

(i + 1) < f

�1

(i). Let

in(P ) denote the inomparability graph of P , i.e, the vertex set of in(P )

is fx

1

; : : : ; x

p

g, with an edge between x

i

and x

j

if and only if x

i

and x

j

are

inomparable in P . The next result is impliit in [5, Thm. 2℄ and [3, Theorem

on p. 322℄ (namely, in [5, Th. 2℄ put x = �1 and in [3, Theorem on p. 322℄

put � = �1, and use (22) below) and expliit in [12, Thm. 4.12℄. For the

sake of ompleteness we repeat the essene of the proof in [12℄.

4.6 Lemma. The number dl(P ) of dropless labelings of P is equal to

the number ao(in(P )) of ayli orientations of in(P ).

Proof. Given the dropless labeling f : P ! [p℄, de�ne an ayli ori-

entation o = o(f) as follows. If x

i

x

j

is an edge of in(P ), then let x

i

! x

j

in o if f(x

i

) < f(x

j

), and let x

j

! x

i

otherwise. Clearly o is an ayli

orientation of in(P ). Conversely, let o be an ayli orientation of in(P ).

The set of soures (i.e., verties with no arrows into them) form a hain in

P sine otherwise two are inomparable, so there is an arrow between them

that must point into one of them. Let x be the minimal element of this hain,

i.e., the unique minimal soure. If f is a dropless labeling of P with o = o(f),

then we laim f(x) = 1. Suppose to the ontrary that f(x) = i > 1. Let

j be the largest integer satisfying j < i and y := f

�1

(j) 6< x. Note that

j exists sine f

�1

(1) > x. We must have y > x sine x is a soure. But

then f

�1

(j + 1) � x < y = f

�1

(j), ontraditing the fat that f is dropless.

Thus we an set f(x) = 1, remove x from in(P ), and proeed indutively to

onstrut a unique f satisfying o = o(f). 2

Now given any set

I = f(u

1

; v

1

); : : : ; (u

r

; v

r

)g (21)

with u

i

< v

i

, de�ne a partial order P

I

on I by setting (u

i

; v

i

) < (u

j

; v

j

) if

v

i

< u

j

. If we regard the pairs (u

i

; v

i

) as losed intervals [u

i

; v

i

℄ in R, then

P

I

is just the interval order orresponding to these intervals (e.g., [4℄[13℄).
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4.7 Lemma. Let I be as in equation (21). For 1 � i � r let

'(i) = #fj : v

j

> v

i

g �#fj : u

j

> v

i

g:

Then

dl(P

I

) = ('(1) + 1)('(2) + 1) � � � ('(r) + 1):

Proof. Let �

I

(q) denote the hromati polynomial of the graph in(P

I

).

We may suppose that the elements of I are indexed so that v

1

> v

2

> � � � >

v

r

. We an properly olor the verties of in(P

I

) (i.e., adjaent verties have

di�erent olors) in q olors as follows. First olor vertex (u

1

; v

1

) in q ways.

Suppose that verties (u

1

; v

1

); : : : ; (u

i

; v

i

) have been olored, where i < r.

Now for 1 � j � i, (u

i+1

; v

i+1

) is inomparable in P

I

to (u

j

; v

j

) if and only

v

i+1

> u

j

. These verties (u

j

; v

j

) form an antihain in P

I

; else either some

v

j

< v

i+1

or some u

j

> v

i+1

. The number of these verties is '(i+ 1). Sine

they form a a lique in in(P

I

) there are exatly q � '(i + 1) ways to olor

vertex (u

i+1

; v

i+1

), independent of the olors previously assigned. It follows

that

�

I

(q) =

r

Y

i=1

(q � '(i + 1)):

For any graph G with r verties it is known [10℄ that

ao(G) = (�1)

r

�

G

(�1): (22)

Hene

ao(in(P

I

)) =

r

Y

i=1

('(i) + 1):

The proof follows from Lemma 4.6. 2

Note. The fat (shown in the above proof) that we an order the verties

of in(P

I

) so that eah vertex is adjaent to a set of previous verties forming

a lique is equivalent to the statement that the inomparability graph of an

interval order is hordal. Note that the above proof shows that for any interval

order P oming from intervals [u

1

; v

1

℄; : : : ; [u

r

; v

r

℄, the hromati polynomial

of in(P ) depends only on the sets fu

1

; : : : ; u

r

g and fv

1

; : : : ; v

r

g.

We now ome to the result mentioned in the paragraph before Lemma 4.6.
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4.8 Theorem. Let I be an interval set of �=�, thus giving rise to

r! minimal border strip tableaux of shape �=�. Then the number of distint

border strip deompositions that orrespond to these r! border strip tableaux

is is(�=�).

Proof. Let (u

i

; v

i

); (u

j

; v

j

) 2 I. We say that (u

i

; v

i

) and (u

j

; v

j

) overlap

if [u

i

; v

i

℄\ [u

j

; v

j

℄ 6= ;, where [a; b℄ = fu

i

; u

i

+1; : : : ; v

i

g. Two linear orderings

� and � of I orrespond to the same border strip deomposition if and only

if any two overlapping elements (u

i

; v

i

) and (u

j

; v

j

) appear in the same order

in � and �. Suppose that � is given by the linear ordering

� = ((u

i

1

; v

i

1

); : : : ; (u

i

r

; v

i

r

)): (23)

If (u

i

m

; v

i

m

) and (u

i

m+1

; v

i

m+1

) are onseutive terms of � whih do not overlap

and if i

m

> i

m+1

, then we an transpose the two terms without a�eting the

border strip deomposition de�ned by �. By a series of suh transpositions

we an put � in the \anonial form" where onseutive nonoverlapping pairs

appear in inreasing order of their subsripts. The number of distint border

strip deompositions that orrespond to the r! permutations � is the number

of � that are in anonial form. Let � be given by (23), and de�ne f : P

I

! [r℄

by f(u

i

m

; v

i

m

) = m. Then � is in anonial form if and only if f is dropless.

Comparing equation (16), Theorem 4.4, and Lemma 4.7 ompletes the proof.

2

Note that Theorem 4.8 gives a re�nement of equation (19), sine we have

partitioned the is(�=�)

2

minimal border strip deompositions of �=� into

is(�=�) bloks, eah of size is(�=�).

Now let I = f(u

1

; v

1

); : : : ; (u

i

; v

i

)g be an interval set of �=�. De�ne the

type of I to be the partition � whose parts are the integers v

1

�u

1

; : : : ; v

r

�u

r

.

Hene by Proposition 2.1 � is also the type of any of the border strip deom-

positions orresponding to I. Let is

�

(�=�) denote the number of interval sets

of �=� of type �, and let mbsd

�

(�=�) denote the number of minimal border

strip deompositions of �=� of type �. The following result is a re�nement

of equation (19).

4.9 Corollary. Let N = j�=�j. For any partition � ` N , we have

mbsd

�

(�=�) = is

�

(�=�)is(�=�):

21



Proof. Immediate onsequene of Theorem 4.8 and the observation above

that type(I) = type(D) for any interval set I and border strip deomposition

D orresponding to I. 2

We an improve the above orollary by expliitly partitioning the minimal

border strip deompositions of �=� into is(�=�) bloks, eah of whih ontains

exatly mbsd

�

(�=�) border strip deompositions of type �.

4.10 Theorem. For eah right snake S of �=� �x a set F

S

of `(S)=2

links of S, no two onseutive, and let F =

S

S

F

S

. Let Q

F

be the set of all

minimal border strip deompositions D of �=� whih use the links in Q

F

.

Then for eah � ` N = j�=�j, Q

F

ontains exatly is

�

(�=�) minimal border

strip deompositions of type �.

Figure 9 illustrates Theorem 4.10 for the ase �=� = 332=1. We are using

dots rather than squares in the diagram of �=�. The �rst olumn shows the

right snakes, with the hoie of links as a solid line and the remaining links

as dashed lines. The �rst row shows the same for the left snakes. The re-

maining 16 entries are the minimal border strip deompositions of �=� using

the right snake links for that row and the left snake links for that olumn.

Theorem 4.10 asserts that eah row (and hene by symmetry eah olumn)

ontains the same number of minimal border strip deompositions of eah

type, viz., one of type (5; 1; 1), two of type (4; 2; 1), and one of type (3; 2; 2).

For general �=� there will also be snakes of odd length 2m � 1 yielding m

links that must be used in every minimal border strip deomposition.

Proof of Theorem 4.10. Let I be an interval set of �=� of type �.

By Theorem 4.8 there are exatly is(�=�) border strip deompositions (all of

type �) orresponding to I.

Claim. Any two of the above is(�=�) border strip deompositionsD have

a di�erent set of left links and a di�erent set of right links.

By symmetry it suÆes to show that any two, say D and D

0

, have a

di�erent set of left links. Let ode(�=�) be given by (15), and let S

i

= S

f

i

as

de�ned just before (15). Thus S

i

is a left snake if and only if (

i

; d

i

) = (0; 1).
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left

right

Figure 9: Minimal border strip deompositions of the skew shape 332=1
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Figure 10: Intersetion of border strips with a left snake

Moreover, if S

i

is a left snake and I = f(u

1

; v

1

); : : : ; (u

r

; v

r

)g is any interval

set for �=�, then it follows from (16) that `(S

i

) = 2m where

m = #fj : u

j

< i < v

j

g:

Let j

1

; : : : ; j

m

be those j for whih u

j

< i < v

j

. In a linear ordering � of I

there are m + 1 hoies for how many of the pairs (u

j

s

; v

j

s

) preede (u

i

; v

i

).

The linear ordering � de�nes a border strip tableau with orresponding bor-

der strip deomposition D. In turn D is de�ned by a hoie of a maximum

number of links, no two onseutive, from eah left and right snake. The

hoies of links from the snake S

i

are equivalent to hoosing the number of

pairs (u

j

s

; v

j

s

) preeding (u

i

; v

i

) in �, sine S

i

intersets preisely the bor-

der strips B

i

and B

j

s

orresponding to (u

i

; v

i

) and the (u

j

s

; v

j

s

)'s, and the

position of B

i

within the snake determines the unique two onseutive un-

used links of the snake S

i

extended by adding one square in eah diretion.

Moreover, B

i

will be the unique border strip whose initial square (reading

from lower-left to upper-right) begins on S

i

. As an example see Figure 10,

whih shows the skew shape �=� = 66554=1 with the left snake S

6

shaded.

There are four border strips interseting S

6

, and the third one (reading from

bottom-right to upper-left) begins on the square (2; 3) of S

6

. The two links

of S

6

involving this square are not used in the border strip deompositionD.

A dropless labeling of I is uniquely determined by speifying for eah left
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snake S

i

how many of the (u

j

s

; v

j

s

)'s, as de�ned above, preede (u

i

; v

i

); for

we an indutively determine, preeding from left-to-right in ode(�=�), the

relative order of any pair (u

i

; v

i

) and (u

j

; v

j

) of elements whih ross, while all

remaining ambiguities in the labeling are resolved by the dropless ondition.

Thus the is(�=�) dropless labelings of I de�ne border strip tableaux of shape

�=� and type �, no two of whih have the same left links. Sine these border

strip tableaux orrespond to di�erent border strip deompositions (by the

proof of Theorem 4.8), the proof of the laim follows.

By the laim, for eah interval set I the is(�=�) border strip deompo-

sitions orresponding to I all have the same type and belong to di�erent

Q

F

's. Sine there are is(�=�) di�erent Q

F

's it follows that eah Q

F

ontains

exatly is

�

(�=�) minimal border strip deompositions of type �, as was to

be proved. 2

Another way to state Theorem 4.10 is as follows. Let A be the square

matrix whose olumns (respetively, rows) are indexed by the maximum size

sets G (respetively, F ) of links, no two onseutive, of right snakes (respe-

tively, left snakes) of �=�. The entry A

FG

is de�ned to be the minimal border

strip deomposition of �=� using the links F and G. Figure 9 shows this ma-

trix for �=� = 332=1. Let t = is(�=�) and let I

1

; : : : ; I

t

be the interval sets

of �=�. If the border strip deomposition A

FG

orresponds to I

j

, then let

L be the matrix obtained by replaing A

FG

with the integer j. Then the

matrix L is a Latin square, i.e., every row and every olumn is a permutation

of 1; 2; : : : ; t. For instane, when �=� = 332=1 the interval sets are

I

1

= f(1; 6); (2; 3); (4; 5)g; I

2

= f(1; 3); (2; 6); (4; 5)g

I

3

= f(1; 5); (2; 3); (4; 6)g; I

4

= f(1; 3); (2; 5); (4; 6)g:

The matrix A of Figure 9 beomes the Latin square

L =

2

6

6

4

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

3

7

7

5

:
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5 An appliation to the haraters of S

n

.

Expand the skew Shur funtion s

�=�

in terms of power sums as in equa-

tion (7). De�ne deg(p

i

) = 1, so deg(p

�

) = `(�). As mentioned after (7),

the Murnaghan-Nakayama rule (10) implies that if p

�

appears in s

�=�

then

deg(p

�

) � r = rank(�=�). In fat, at least one suh p

�

atually appears in

s

�=�

, viz., let �

1

be the length of the longest border strip B

1

of �=�, then �

2

the length of the longest border strip B

2

of �=� � B

1

, et. All border strip

tableaux of �=� of type � involve the same set of border strips, so there is

no anellation in the right-hand side of (10). Hene the oeÆient of p

�

in

s

�=�

in nonzero. (See [11, Exer. 7.52℄ for the ase � = ;.) Let us write ŝ

�=�

for the lowest degree part of s

�=�

, so

ŝ

�=�

=

X

� : `(�)=r

z

�1

�

�

�=�

(�)p

�

; (24)

where r = rank(�=�). Also write ~p

i

= p

i

=i. For instane,

s

332=1

=

1

120

p

7

1

�

1

12

p

4

1

p

3

+

1

24

p

3

1

p

2

2

+

1

5

p

2

1

p

5

�

1

4

p

1

p

2

p

4

+

1

12

p

2

2

p

3

:

Hene

ŝ

332=1

=

1

5

p

2

1

p

5

�

1

4

p

1

p

2

p

4

+

1

12

p

2

2

p

3

= ~p

2

1

~p

5

� 2~p

1

~p

2

~p

4

+ ~p

2

2

~p

3

:

If I = f(w

1

; y

1

); : : : ; (w

r

; y

r

)g is an interval set, then let (I) denote the num-

ber of rossings of I, i.e., the number of pairs (i; j) for whih w

i

< w

j

< y

i

<

y

j

. Moreover, let P(�=�) = f(u

1

; v

1

); : : : ; (u

r

; v

r

)g be as in Proposition 4.3,

and let

ode(�=�) =



1



2

� � � 

k

d

1

d

2

� � � d

k

:

For 1 � i � r de�ne

z(i) = #fj : u

i

< j < v

i

; 

j

= 0g

z(�=�) = z(1) + z(2) + � � �+ z(r):

It is easy to see (see the proof of Theorem 5.2 for more details) that z(�=�)

is just the height ht(T ) of a \greedy border strip tableau" T of shape �=�
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obtained by starting with �=� and suessively removing the largest possi-

ble border strip. (Although T may not be unique, the set of border strips

appearing in T is unique, so ht(T ) is well-de�ned.)

5.1 Lemma. Let I be an interval set of �=�. If T and T

0

are two

border strip tableaux orresponding to I, then ht(T ) � ht(T

0

) (mod 2).

Proof. When we remove a border strip B of size p from a skew shape

�=� with ode(�) = � � � 

0



1



2

� � �, then by Proposition 2.1 we replae some

(

i

; 

i+p

) = (1; 0) with (0; 1). It is easy to hek (and is also equivalent to the

disussion in [1, top of p. 3℄) that

ht(B) = #fh : i < h < i+ p; 

h

= 0g: (25)

Suppose we have (

i

; 

i+p

) = (

j

; 

j+q

) = (1; 0), where the four numbers



i

; 

i+p

; 

j

; 

j+q

are all distint. Let B

1

be the the border strip orresponding

to (i; i + p) and B

2

the border strip orresponding to (j; j + q) after B

1

has

been removed. Similarly let B

0

1

orrespond to (j; j + q) and B

0

2

to (i; i + p)

after B

0

1

has been removed. If i + p < j or j + q < i then B

1

= B

0

2

and

B

2

= B

0

1

, so ht(B

1

) + ht(B

2

) = ht(B

0

1

) + ht(B

0

2

). In partiular,

ht(B

1

) + ht(B

2

) � ht(B

0

1

) + ht(B

0

2

) (mod 2): (26)

If 

i

< 

j

< 

i+p

< 

j+q

, then using (25) we see that ht(B

1

) = ht(B

0

2

)� 1 and

ht(B

2

) = ht(B

0

1

)� 1 so again (26) holds. Similarly it is easy to hek (26) in

all remaining ases.

Iterating the above argument and using the fat that every permutation

is a produt of adjaent transpositions ompletes the proof. 2

5.2 Theorem. For any skew shape �=� of rank r we have

ŝ

�=�

= (�1)

z(�=�)

X

I=f(u

1

;v

1

);:::;(u

r

;v

r

)g

(�1)

(I)

r

Y

i=1

~p

v

i

�u

i

; (27)

where I ranges over all interval sets of �=�.

Proof. Let I be an interval set of �=�, and let T be a border strip

tableau orresponding to I. We laim that

ht(T ) � z(�=�) + (I) (mod 2): (28)
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The proof of the laim is by indution on (I).

First note that by Lemma 5.1, it suÆes to prove the laim for some T

orresponding to eah I. Suppose that (I) = 0, so I = P. Let T be a

greedy border strip tableau as de�ned before Lemma 5.1. The orresponding

interval set is just P, the unique interval set without rossings, sine if u

i

<

u

j

< v

i

< v

j

we would pik the border strip orresponding to (u

i

; v

j

) rather

than (u

i

; v

i

) or (u

j

; v

j

). Sine by (25) we have z(�=�) = ht(T ), equation (28)

holds when (I) = 0.

Now let (I) > 0. Suppose that (u

i

; v

i

) and (u

j

; v

j

) de�ne a rossing in

I, say u

i

< u

j

< v

i

< v

j

. Let I

0

be obtained from I by replaing (u

i

; v

i

)

and (u

j

; v

j

) with (u

i

; v

j

) and (u

j

; v

i

). It is easy to see that (I)� (I

0

) is an

odd positive integer. By the indution hypothesis we may assume that (28)

holds for I

0

. Let T

0

be a border strip tableau orresponding to I

0

suh that

the border strips B

1

and B

2

indexed by (u

1

; v

1

) and (u

2

; v

2

) are removed �rst

(say in the order B

1

; B

2

). Let T be the border strip tableau that di�ers from

T

0

by replaing B

1

; B

2

with the border strips indexed by (u

j

; v

i

) and (u

i

; v

j

).

It is straightforward to verify, using (25) or a diret argument, that ht(T )

and ht(T

0

) di�er by an odd integer. Hene (28) holds for I, and the proof of

the laim follows by indution.

Now let `(�) = r and m

i

(�) = #fj : �

j

= ig, the number of parts of �

equal to i. Sine z

�

= 1

�

1

�

1

! 2

�

2

�

2

! � � �, we have

ŝ

�=�

=

X

`(�)=r

z

�1

�

�

�=�

(�)p

�

=

X

`(�)=r

1

m

1

(�)!m

2

(�)! � � �

�

�=�

(�)~p

�

:

Now by the Murnaghan-Nakayama rule we have

�

�=�

(�) =

X

T

(�1)

ht(T )

;

where T ranges over all border strip tableaux of shape �=� and some �xed

type � = (�

1

; : : : ; �

r

) whose dereasing rearrangement is �. Sine there are
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r!=m

1

(�)!m

2

(�)! � � � di�erent permutations � of the entries of �, we have

�

�=�

(�) =

m

1

(�)!m

2

(�)! � � �

r!

X

T

(�1)

ht(T )

;

where T now ranges over all border strip tableaux of shape �=� whose type

is some permutation � of �. By Theorem 4.8, Proposition 2.1, and equation

(28) we then have

�

�=�

(�) =

m

1

(�)!m

2

(�)! � � �

r!

0

�

r!

X

I : type(I)=�

(�1)

z(�=�)+(I)

1

A

; (29)

where I ranges over all interval sets of �=� of type �, and the proof follows.

2

Let us remark that just as in the Murnaghan-Nakayama rule, anellation

an our in the sum on the right-hand side of (27). For instane, if �=� =

4442=11 then there is one interval set of type (6; 3; 2; 1) with one rossing

and one with two rossings.

The following orollary follows immediately from equation (29).

5.3 Corollary. Let �=� be a skew shape of rank r and let `(�) = r.

Then �

�=�

(�) is divisible by m

1

(�)!m

2

(�)! � � �.

Let A = (a

ij

) be an array of real numbers with 1 � i < j � 2r. Reall

that the PfaÆan Pf(A) may be de�ned by (e.g. [6, p. 616℄)

Pf(A) =

X

�

(�1)

(�)

a

i

1

j

1

� � �a

i

r

j

r

;

where the sum is over all partitions � of f1; 2; : : : ; 2rg into two element bloks

i

k

< j

k

, and where (�) is the number of rossings of �, i.e., the number of

pairs h < k for whih i

h

< i

k

< j

h

< j

k

. Comparing with Theorem 5.2 gives

the following alternative way of writing (27). Let SS(�=�) = q

1

q

2

� � � q

k

; let

u

1

< u

2

< � � � < u

r

be those indies for whih q

u

i

= L

s

for some s; and

let v

1

< v

2

< � � � < v

r

be those indies for whih q

v

i

= R

s

for some s. Let

w

1

< w

2

< � � � < w

2r

onsist of the u

i

's and v

i

's arranged in inreasing order.

Then

ŝ

�=�

= (�1)

z(�=�)

Pf(a

ij

);

29



where

a

ij

=

�

~p

w

j

�w

i

; if w

i

= u

s

and w

j

= v

t

for some s < t

0; otherwise.

For instane, SS(443=2) = L

0

L

1

OR

1

L

1

R

1

R

0

and z(443=2) = 2, whene

ŝ

443=2

= Pf

0

B

B

B

B

B

B

�

0 ~p

3

0 ~p

5

~p

6

~p

2

0 ~p

4

~p

5

0 0 0

~p

1

~p

2

0

1

C

C

C

C

C

C

A

:

Note that from (11) or (24) we get the following PfaÆani formula for the

oeÆient y(�=�) of t

rank(�=�)

in s

�=�

(1

t

):

y(�=�) = (�1)

z(�=�)

Pf(b

ij

);

where

b

ij

=

�

1=(w

j

� w

i

); if w

i

= u

s

and w

j

= v

t

for some s < t

0; otherwise.

Similarly from Theorem 5.2 there follows

y(�=�) = (�1)

z(�=�)

X

I=f(u

1

;v

1

);:::;(u

r

;v

r

)g

(�1)

(I)

Q

r

i=1

(v

i

� u

i

)

; (30)

summed over all interval sets I of �=�.
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