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1 Introdution.

Algebrai ombinatoris is alive and well at the dawn at the new millenium.

Algebrai ombinatoris is diÆult to de�ne preisely; roughly speaking it in-

volves objets that an be interpreted both ombinatorially and algebraially,

e.g., as the ardinality of a ombinatorially de�ned set and the dimension of

an algebraially de�ned vetor spae. Sometimes the ombinatorial inter-

pretation is used to obtain an algebrai result, and sometimes vie versa.

Mathematiians have been engaged in algebrai ombinatoris at least sine

Euler (in partiular, his work on partitions), but it wasn't until the 1960's,

primarily under the inuene of Gian-Carlo Rota, that there was a systemati

attempt to establish the foundations of algebrai ombinatoris and bring it

into the mathematial mainstream. This e�ort has been highly suessful,

and algebrai ombinatoris has by now beome a mature and thriving dis-

ipline.

We have hosen three major breakthroughs to highlight reent work in

algebrai ombinatoris. All three areas have initiated a urry of further

work and suggest many further diretions of researh to keep pratitioners

of algebrai ombinatoris oupied well into the new entury. Our hoie

of topis was partially inuened by the relative ease in desribing the main

results to nonexperts in algebrai ombinatoris. Muh other outstanding

work has been done that is not disussed here.
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2 The saturation onjeture.

The saturation onjeture onerns ertain integers known as Littlewood-

Rihardson oeÆients. Given the theme of this paper, it is not surprising

that they have both an algebrai and a ombinatorial de�nition. First we

disuss the algebrai de�nition, whih is more natural than the ombinatorial

one.

Let GL(n; C ) denote the group of all invertible transformations from an n-

dimensional omplex vetor spae V to itself. After hoosing an ordered basis

for V we may identify GL(n; C ) with the group of n�n nonsingular matries

over the omplex numbers (with the operation of matrix multipliation).

Consider the map ' : GL(2; C ) ! GL(3; C ) de�ned by

'

�

a b

 d

�

=

2

4

a

2

2ab b

2

a ad+ b bd



2

2d d

2

3

5

:

This an be heked to be a group homomorphism (and hene a representa-

tion of GL(2; C ) of degree 3). Moreover, the entries of '(A) are polynomial

funtions of the entries of A. Hene ' is a polynomial representation of

GL(2; C ). If A 2 GL(2; C ) has eigenvalues x; y, then it an also be heked

that '(A) has eigenvalues x

2

; xy; y

2

. De�ne the harater har' of ' to be

the trae of '(A), regarded as a funtion of the eigenvalues x; y of A. Hene

har' = x

2

+ xy + y

2

:

It was �rst shown by Shur that the polynomial representations of GL(n; C )

are ompletely reduible, i.e., a diret sum of irreduible representations. The

nequivalent irreduible polynomial representations '

�

of GL(n; C ) are in-

dexed by partitions � = (�

1

; : : : ; �

n

) of length at most n, i.e., �

i

2 Z and

�

1

� � � � � �

n

� 0. Moreover, har'

�

is a symmetri funtion s

�

(x

1

; : : : ; x

n

)

that had been originally de�ned by Cauhy and Jaobi and is now known as

a Shur funtion. A well-known property of Shur funtions is their stability :

s

�

(x

1

; : : : ; x

n

; 0) = s

�

(x

1

; : : : ; x

n

):

For this reason we an let n ! 1 and onsider the Shur funtion s

�

in

in�nitely many variables x

1

; x

2

; : : : and speialize to x

1

; : : : ; x

n

when deal-

ing with GL(n; C ). For more information on symmetri funtions and the

representation theory of GL(n; C ), see [8℄[30℄[37℄.
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If A : V ! V and B : W ! W are linear transformations on �nite-

dimensional vetor spaes, then

tr(A
 B) = tr(A) � tr(B);

where A
 B denotes the tensor (or Kroneker) produt of A and B, ating

on V 
W . Hene if �, �, and � are partitions and we set



�

��

= mult('

�

; '

�


 '

�

);

the multipliity of '

�

in the tensor produt '

�


'

�

(when written as a diret

sum of irreduible representations), then

s

�

s

�

=

X

�



�

��

s

�

:

The nonnegative integers 

�

��

are known as Littlewood-Rihardson o-

eÆients, and the Littlewood-Rihardson rule [8, Ch. 5℄[30, xI.9℄[37, Ap-

pendix A1.3℄ gives a ombinatorial interpretation of them (whih we will not

state here). If m is a positive integer and � = (�

1

; �

2

; : : :) a partition, then

write m� = (m�

1

; m�

2

; : : :).

Saturation onjeture. If 

m�

m�;m�

6= 0, then 

�

��

6= 0.

The saturation onjeture was proved reently by Allen Knutson and

Terene Tao [26℄[27℄ using a new honeyomb model for desribing Littlewood-

Rihardson oeÆients. An elegant exposition of the proof was given by

Anders Buh [5℄, and a detailed survey of all the material in this setion (and

more) was given by William Fulton [9℄. A proof of the saturation onjeture

based on representations of quivers was later given by Harm Derksen and

Jerzy Weyman [7℄.

Why is the proof of the saturation onjeture an important breakthrough?

The answer is that it is related in a surprising way to a number of other topis.

The �rst onerns the eigenvalues of hermitian matries. Let A;B;C be n�n

hermitian matries. Hene their eigenvalues are real. Denote the eigenvalues

of A as

� : �

1

� � � � � �

n

;
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and similarly � and  for B and C. Considerable attention has been given

to the following problem.

Problem. Charaterize those triples (�; �; ) for whih there exist her-

mitian matries A +B = C with eigenvalues �, �, and .

By taking traes we see that

X



i

=

X

�

i

+

X

�

i

: (1)

After muh work by a number of researhers, A. Horn onjetured a omplete

haraterization of triples (�; �; ), onsisting of (1) together with linear

inequalities of the form

X

k2K



k

�

X

i2I

�

i

+

X

j2J

�

j

; (2)

for ertain sets

I; J;K � f1; : : : ; ng; jIj = jJ j = jKj:

For instane, when n = 2 Horn's inequalities (whih are easy to show that

together with (1) haraterize (�; �; ) in this ase) beome



1

� �

1

+ �

1



2

� �

2

+ �

1



2

� �

1

+ �

2

:

For n = 3 there are twelve inequalities, as follows:



1

� �

1

+ �

1



2

� min(�

1

+ �

2

; �

2

+ �

1

)



3

� min(�

1

+ �

3

; �

2

+ �

2

; �

3

+ �

1

)



1

+ 

2

� �

1

+ �

2

+ �

1

+ �

2



1

+ 

3

� min(�

1

+ �

2

+ �

1

+ �

3

; �

1

+ �

3

+ �

1

+ �

2

)



2

+ 

3

� min(�

1

+ �

2

+ �

2

+ �

3

; �

1

+ �

3

+ �

1

+ �

3

; �

2

+ �

3

+ �

1

+ �

2

):

The onnetion between the Saturation Conjeture and Horn's onjeture

was given by Alexander Klyahko [24℄.
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Theorem. The Saturation Conjeture implies Horn's onjeture.

A more preise onnetion between Littlewood-Rihardson oeÆients

and eigenvalues of hermitian matries is provided by the following result,

impliit in the work of Hekman [22℄ and more expliit in Klyahko [24℄.

Theorem. Let �; �, and  be partitions of length at most n. The Sat-

uration Conjeture implies that the following two onditions are equivalent:

� 



��

6= 0.

� There exist n�n hermitian matries A+B = C with eigenvalues �; �,

and .

Sine equation (2) onsists of linear inequalities, the two theorems above

show that the nonvanishing of 



��

depends on (expliit) linear inequalities

among the oordinates of �; �; . Thus for �xed n the points (�; �; ) 2 R

3n

for whih 



��

6= 0 are the integer points in a ertain onvex one. Hene the

subjet of polyhedral ombinatoris is losely assoiated with the theory of

Littlewood-Rihardson oeÆients. For further information on this point of

view, see [41℄.

The theorems stated above involve hermitian matries. It is known [9,

Thm. 3℄ that exatly the same results hold for the lass of real symmetri

matries.

There are a number of other situations in whih Littlewood-Rihardson

oeÆients play a surprising role. These situations are thoroughly disussed

in [9℄. We mention one of them here. Given a partition � = (�

1

; �

2

; : : :) and

a prime p, let G be a (�nite) abelian p-group of type �, i.e.,

G

�

=

�

Z=p

�

1

Z

�

�

�

Z=p

�

2

Z

�

� � � � :

Given further partitions � and �, let g

�

��

(p) denote the number of subgroups

H of G of type � suh that the quotient group G=H has type �.

Theorem. (a) g

�

��

(p) is a polynomial funtion of p with integer oeÆ-

ients.
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(b) For any prime p we have that g

�

��

(p) 6= 0 if and only if 

�

��

6= 0.

The polynomial g

�

��

(t) is alled a Hall polynomial after the pioneering

work of Philip Hall [20℄. Hall established the above theorem, exept that in

part (b) he only showed that g

�

��

(t) vanishes identially (as a polynomial in

t) if and only if 

�

��

= 0. Subsequently Miller Maley [31℄ showed that the

polynomial g

�

��

(t + 1) has nonnegative oeÆients, from whih (b) follows.

For an exposition of the basi properties of Hall polynomials, see [30, Chs. II

and III.2℄. The theory of Hall polynomials holds in the more general ontext

of the ring of integers (i.e., the unique maximal order) of a division algebra

of �nite rank over a p-adi �eld [30, Remark 3, p. 179℄ or even more generally

for q-primary latties [38, Thm. 4.81℄.

3 The n! and (n + 1)

n�1

onjetures.

The n! and (n+1)

n�1

onjetures onern the ation of the symmetri group

S

n

on two sets (x

1

; : : : ; x

n

) and (y

1

; : : : ; y

n

) of n variables. In order to appre-

iate these onjetures, knowledge of the situation for one set of n variables

is of value. We therefore �rst review this theory (for whih the proofs are

muh easier). S

n

ats on the polynomial ring A = C [x

1

; : : : ; x

n

℄ by permut-

ing variables, i.e., for w 2 S

n

let w � x

i

= x

w(i)

and extend to all of A in the

obvious way. Let

A

S

n

= ff 2 A : w � f = f 8w 2 S

n

g;

the ring of invariants of the ation of S

n

on A. The invariant polynomials

f 2 A

S

n

are the symmetri polynomials in the variables x

1

; : : : ; x

n

(over C ).

The \fundamental theorem of symmetri funtions" asserts that

A

S

n

= C [e

1

; : : : ; e

n

℄;

a polynomial ring in the algebraially independent elementary symmetri

funtions

e

k

=

X

1�i

1

<���<i

k

�n

x

i

1

� � �x

i

k

:

Regard n as �xed and de�ne the ring

R = A=(e

1

; : : : ; e

n

):
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The ring R inherits the usual grading from A, i.e.,

R = R

0

� R

1

� � � � ;

where R

i

is spanned by (the images of) all homogeneous polynomials of

degree i in the variables x

1

; : : : ; x

n

. Beause the generators e

1

; : : : ; e

n

of R

S

n

are algebraially independent of degrees 1; 2; : : : ; n, it is easy to see that

dim

C

R = n!;

and more generally,

X

i

dim

C

(R

i

) q

i

= (1 + q)(1 + q + q

2

) � � � (1 + q + � � �+ q

n�1

); (3)

the standard \q-analogue" of n!.

Sine the ideal (e

1

; : : : ; e

n

) of R is S

n

-invariant, S

n

ats on R. Moreover,

this ation respets the grading of R, i.e., w � R

i

= R

i

for all w 2 S

n

. Thus

R is in fat a graded S

n

-module, and we an ask, as a re�nement of (3),

for the multipliity of eah irreduible representation of S

n

in R

i

. For the

ation on R as a whole the situation is simple to desribe (and not diÆult

to prove): R a�ords the regular representation of S

n

, i.e., the multipliity of

eah irreduible representation is its degree (or dimension).

To desribe the S

n

-module struture of R

i

, we need some understanding

of the (inequivalent) irreduible representations of S

n

. They are indexed

by partitions � of n (denoted � ` n), i.e, � = (�

1

; : : : ; �

`

) 2 Z

`

where

�

1

� � � � � �

`

> 0 and

P

�

i

= n. The dimension of the irreduible S

n

-

module M

�

indexed by � ` n is denoted by f

�

and is equal to the number

of standard Young tableaux (SYT) of shape �, i.e., the number of ways to

insert the numbers 1; 2; : : : ; n (without repetition) into an array of shape �

(i.e., left-justi�ed with �

i

entries in row i) so that every row and olumn is

inreasing. For instane f

(3;2)

= 5, as shown by the �ve SYT

1 2 3 1 2 4 1 2 5 1 3 4 1 3 5

4 5 3 5 3 4 2 5 2 4

:

There is also a simple expliit formula (e.g., [30, Exam. I.5.2℄[37, Cor. 7.21.6℄),

known as the hook-length formula, for f

�

.
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Sine R a�ords the regular representation of S

n

, the multipliity of M

�

in R is equal to f

�

. Thus we would like to desribe the multipliity of M

�

in R

i

as the number of SYT T of shape � with some additional property

depending on i. This property is the value of the major index of T , denoted

MAJ(T ). It is de�ned by

MAJ(T ) =

X

i+1below i inT

i;

where the sum ranges over all entries i of T suh that i + 1 appears in a

lower row than i. For instane, the SYT of shape (3; 2; 2) shown below has

MAJ(T ) = 2 + 3 + 6 = 11.

T =

1 26

3 5

4 7

:

The following result is due independently to Lusztig (unpublished) and Stan-

ley [36, Prop. 4.11℄.

Theorem. Let � ` n. Then

mult(M

�

; R

i

) = #fSYT T : shape(T ) = �; MAJ(T ) = ig:

For example, let n = 5. There are three SYT with �ve entries and major

index 3, namely,

1 2 3 5 1 2 3 1 4 5

4 4 5 2

3

:

It follows that

R

3

�

=

M

41

�M

32

�M

311

:

There is another desription of R whih leads to a di�erent generalization to

two sets of n variables. Given any polynomial P (x

1

; : : : ; x

n

) over C , de�ne �P

to be the omplex vetor spae spanned by P and all its partial derivatives

of all orders. For instane �(x + y)

2

has dimension three, one basis being

f(x+ y)

2

; x+ y; 1g. Let

V

n

=

Y

1�i<j�n

(x

i

� x

j

): (4)
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It is easy to see that

R

�

=

�V

n

as graded S

n

-modules. In partiular, dim(�V

n

) = n! and �V

n

a�ords the

regular representation of S

n

.

Adriano Garsia and Mark Haiman had the idea of generalizing the above

onstrutions of R and �V

n

to two sets x = (x

1

; : : : ; x

n

) and y = (y

1

; : : : ; y

n

)

of n variables. For the �rst generalization, let S

n

at diagonally on B =

C [x; y℄, i.e.,

w � x

i

= x

w(i)

; w � y

i

= y

w(i)

:

Let

B

S

n

= ff 2 B : w � f = f 8w 2 S

n

g;

the ring of invariants of the ation of S

n

on B. It is no longer the ase

that B

S

n

is generated by algebrai independent elements. (For general in-

formation about rings of invariants of �nite groups, see for instane [35℄[36℄.)

However, we an still de�ne

R

(2)

= S=I;

where I is the ideal of B generated by elements of B

S

n

with zero onstant

term. The (n+ 1)

n�1

onjeture of Garsia and Haiman [12℄[13℄ was reently

proved by Haiman [19℄, based on tehniques he developed to prove the n!

onjeture disussed below, together with a theorem of Bridgeland, King,

and Reid on the MKay orrespondene.

Theorem ((n + 1)

n�1

onjeture). dim

C

R

(2)

= (n+ 1)

n�1

Just as R had the additional struture of a graded S

n

-module, similarly

R

(2)

is a bigraded S

n

-module. In other words,

R

(2)

=

M

i;j

R

(2)

ij

(vetor spae diret sum);

where R

(2)

ij

is the subspae of R

(2)

spanned by (the images of) polynomials

that are homogeneous of degree i in the x variables and degree j in the y

variables, and moreover R

(2)

ij

is invariant under the ation of S

n

on R

(2)

. For

instane, when n = 4 it an be omputed that

R

(2)

2;1

�

=

2M

211

�M

22

�M

31

:
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In partiular,

dim

C

R

(2)

2;1

= 2f

211

+ f

22

+ f

31

= 2 � 3 + 2 + 3 = 12:

Garsia and Haiman stated in [11℄ (see also [17, Conj. 7.5℄) a ompliated

onjetured formula for mult(M

�

; R

(2)

ij

). Haiman's proof of the (n + 1)

n�1

onjeture mentioned above atually establishes this stronger onjeture of

Garsia and Haiman. A onsequene of Haiman's result asserts the following

[11℄[17, p. 246℄. Let � be the anti-invariant subspae of R

(2)

, i.e.,

� = ff 2 R

(2)

: w � f = sgn(w)f 8f 2 S

n

g;

where sgn(w) denotes the sign of the permutation w. Then

dim

C

� =

1

n + 1

�

2n

n

�

;

a Catalan number. James Haglund [16℄ onjetured and Garsia and Haglund

[10℄ proved a ombinatorial interpretation of the � bigrading, i.e., a om-

binatorial interpretation of the numbers dim

C

�

ij

. For some information

on the ubiquitious appearane of Catalan (and related) numbers through-

out mathematis, see [37, Exer. 6.19{6.38℄ and the addendum at www-

math.mit.edu/�rstan/e.html.

The number dim

C

R

(2)

= (n+1)

n�1

has a number of ombinatorial inter-

pretations, e.g., it is the number of forests of rooted trees on n verties [37,

Prop. 5.3.2℄ or the number of parking funtions of length n [37, Exer. 5.49℄.

It is natural to ask whether one an give a ombinatorial interpretation of

dim

C

R

(2)

ij

that re�nes some known interpretation of (n + 1)

n�1

. At present

this question is open.

We turn to the seond generalization of R due to to Garsia and Haiman.

First we need to de�ne a generalization of the Vandermonde produt (4) to

two sets of variables. Let � ` n. Coordinatize the squares of the diagram of

� by letting (i� 1; j � 1) be the oordinate of the square in the ith row and

jth olumn. For instane, the oordinates of the squares of the diagram of

� = (3; 2) are given by
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0,0 0,1 0,2

1,0 1,1

Let (i

1

; j

1

); : : : ; (i

n

; j

n

) be the oordinates of the squares of the diagram

of � (in some order), and de�ne the n� n determinant

D

�

=

�

�

x

i

s

r

y

j

s

r

�

�

r;s=1;:::;n

:

For instane,

D

32

=

�

�

�

�

�

�

�

�

�

�

1 y

1

y

2

1

x

1

x

1

y

1

1 y

2

y

2

2

x

2

x

2

y

2

1 y

3

y

2

3

x

3

x

3

y

3

1 y

4

y

2

4

x

4

x

4

y

4

1 y

5

y

2

5

x

5

x

5

y

5

�

�

�

�

�

�

�

�

�

�

:

Note that if � onsists of a single row (i.e., � onsists of the single part n)

then D

�

= V

n

(y), while if � onsists of a single olumn then D

�

= V

n

(x).

The n! onjeture of Garsia and Haiman [12℄[13℄, later proved by Haiman

[18℄, is the following assertion.

Theorem (n! onjeture). For any � ` n, we have

dim

C

�D

�

= n!:

The spae �D

�

, just as R

(2)

, is a bigraded S

n

-module. For eah i; j � 0

and � ` n, we an ask for a \desription" of the integer mult

�

M

�

; (D

�

)

ij

�

.

Garsia and Haiman [12℄[13℄ gave suh a desription, and Haiman [17, Thm.

5.4℄ showed that it atually followed from the n! onjeture. The Garsia-

Haiman desription involves the theory of Madonald symmetri funtions,

a generalization of Shur funtions due to I. G. Madonald [29℄[30, Ch. VI℄

and urrently of great interest in several di�erent areas, suh as the represen-

tation theory of quantum groups, aÆne Heke algebras, and the Calegero-

Sutherland model in partile physis (see [18℄ for referenes). We won't

11



de�ne Madonald symmetri funtions here but will give a brief indiation

of Haiman's result.

Let �; � ` n. The oeÆient of x

�

= x

�

1

1

x

�

2

2

� � � in the Shur funtion s

�

is known as a Kostka number, denoted K

��

, and has a simple ombinato-

rial interpretation in terms of semistandard Young tableaux [30, (5.13)℄[37,

x7.10℄. In the theory of Madonald polynomials there arises naturally a two-

parameter generalizationK

��

(q; t) of the Kostka number K

��

= K

��

(0; 1). A

priori K

��

(q; t) is only a rational funtion of q and t, but Madonald onje-

tured that it was a polynomial with nonnegative integer oeÆients. In 1996{

98 several independent proofs were given that K

��

(q; t) was indeed a poly-

nomial with integer oeÆients, but nonnegativity remained open. Haiman

showed the remarkable fat that K

��

(q; t) is essentially the bigraded Hilbert

series for the �-isotypi omponent of D

�

. More preisely,

t

b(�)

K

��

(q; 1=t) =

X

r;s�0

mult

�

M

�

; (D

�

)

r;s

�

t

r

q

s

;

where b(�) =

P

(i � 1)�

i

. This formula establishes the nonnegativity of

the oeÆients of K

��

(q; t), though a ombinatorial interpretation of these

oeÆients remains open.

Hamian's proof is based on the geometry of the Hilbert sheme Hilb

n

(C

2

)

of n points in the plane. (Claudio Proesi suggested to Haiman the possible

relevane of the Hilbert sheme.) Let X and Y be indeterminates. We an

de�ne Hilb

n

(C

2

) as a set by

Hilb

n

(C

2

) = fI � C [X; Y ℄ : dim

C

C [X; Y ℄=I = ng;

i.e., all ideals I of C [X; Y ℄ suh that the quotient ring C [X; Y ℄=I is an n-

dimensional vetor spae. Suppose that Z = fz

1

; : : : ; z

n

g is a set of n distint

points in C

2

. Let

I

Z

= ff 2 C [X; Y ℄ : f(z

1

) = � � � = f(z

n

) = 0g:

Then I

Z

is an ideal of C [X; Y ℄ suh that C [X; Y ℄=I

Z

an be identi�ed with

the spae of all funtions f : Z ! C , so I

Z

2 Hilb

n

(C

2

). This explains

why Hilb

n

(C

2

) is alled the Hilbert sheme of n points in the plane | it is

a losure of the spae of all n-element subsets of C

2

. In fat, Hilb

n

(C

2

) has

the struture of a smooth irreduible algebrai variety, of dimension 2n.

12



The remarkable onnetions between Hilb

n

(C

2

) and the n! and (n+1)

n�1

onjetures are too tehnial to disuss here, but let us give a vague hint or

two. Write H

n

= Hilb

n

(C

2

). Given a partition � ` n, let U

�

be the set of all

ideals I 2 H

n

suh that a basis for C [x; y℄=I onsists of the (images of the)

monomials x

h

y

k

, where the (h; k)'s are the oordinates for the squares of the

diagram of �. Then the sets U

�

are open, aÆne, and over H

n

, suggesting

the possible relevane of H

n

to the n! onjeture. Moreover, for eah I 2 H

n

there is a natural way to assoiate an n-element multiset �(I) � C

2

. The

n-element multisets ontained in C

2

form an aÆne variety Sym

n

(C

2

), viz.,

Sym

n

(C

2

) = (C

2

)

n

=S

n

= Spe C [x

1

; : : : ; x

n

; y

1

; : : : ; y

n

℄

S

n

;

suggesting the possible relevane of H

n

to the (n+1)

n�1

onjeture. See the

papers [17℄ and [18℄ for details.

It is natural to ask about generalizing the work of Garsia and Haiman to

more than two sets of variables. However, all obvious onjetures turn out

to be false. One diÆult is that the Hilbert sheme Hilb

n

(C

k

) is no longer

smooth for k > 2.

The (n + 1)

n�1

and n! onjetures are just the beginning of an amazing

edi�e of onjetures due to Garsia, Haiman, and their ollaborators. For

instane, we de�ned a determinant D

�

when � is a partition of n, regarded as

a ertain subset of N �N (where N = f0; 1; 2; : : :g). In exatly the same way

we an de�ne D

X

for any n-element subset X of N � N . Bergeron, Garsia,

and Tesler [3℄ then onjeture (and prove in some speial ases) for several

lasses of subsets X that dim

C

(�D

X

) = k

X

n! for some positive integer k

X

;

and in fat �D

X

, regarded as an S

n

-module, a�ords k

X

opies of the regular

representation.

4 Longest inreasing subsequenes.

Let w = a

1

a

2

� � �a

n

2 S

n

. An inreasing subsequene of w is a subsequene

a

i

1

a

i

2

� � �a

i

k

of w for whih a

i

1

< a

i

2

< � � � < a

i

k

. Let is

n

(w) denote the

length of the longest inreasing subsequene of w 2 S

n

. For instane, if w =

274163958 2 S

9

then is

9

(w) = 4, exempli�ed by the inreasing subsequenes

13



2469 and 1358. There has been muh reent interest in the behavior of the

funtion is

n

(w). A survey of muh of this work has been given by Pery Deift

[6℄.

The �rst question of interest is the expeted value E(n) of is

n

(w), where

w ranges uniformly over S

n

. Thus

E(n) =

1

n!

X

w2S

n

is

n

(w):

Elementary arguments show that

1

2

p

n � E(n) � e

p

n;

and Hammersley [21, Thm. 4℄ showed in 1972, using subadditive ergodi

theory, that the limit

 = lim

n!1

E(n)

p

n

exists. Vershik and Kerov [40℄ (with the diÆult diretion  � 2 shown

independently by Logan and Shepp [28℄) showed in 1977 that  = 2.

The proof of Vershik-Kerov and Logan-Shepp is based on the identity

E(n) =

1

n!

X

�`n

�

1

�

f

�

�

2

; (5)

where � = (�

1

; �

2

; : : :) and f

�

denotes the number of SYT of shape � as in

Setion 3. Equation (5) is due to Craige Shensted [34℄ and is an immediate

onsequene of the Robinson-Shensted-Knuth algorithm; see also [37, Exer.

7.109(a)℄.

The work of Vershik-Kerov and Logan-Shepp only determines the asymp-

toti behavior of the expetation of is

n

(w). What about stronger results? A

major breakthrough was made by Jinho Baik, Pery Deift, and Kurt Johans-

son [1℄, and has inspired muh further work. To desribe their results, let

Ai(x) denote the Airy funtion, viz., the unique solution to the seond-order

di�erential equation

Ai

00

(x) = xAi(x);

14



subjet to the ondition

Ai(x) �

e

�

2

3

x

3=2

2

p

�x

1=4

as x!1:

Let u(x) denote the unique solution to the nonlinear third order equation

u

00

(x) = 2u(x)

3

+ xu(x); (6)

subjet to the ondition

u(x) � �Ai(x); as x!1:

Equation (6) is known as the Painlev�e II equation, after Paul Painlev�e (1863{

1933)

2

. Painlev�e ompletely lassi�ed di�erential equations (from a ertain

lass of seond order equations) whose \bad" singularities (branh points and

essential singularities) were independent of the initial onditions. Most of the

equations in this lass were already known, but a few were new, inluding

equation (6).

Now de�ne the Tray-Widom distribution to be the probability distribu-

tion on R given by

F (t) = exp

�

�

Z

1

t

(x� t)u(x)

2

dx

�

: (7)

It is easily seen that F (t) is indeed a probability distribution, i.e., F (t) � 0

and

R

1

�1

F (t)dt = 1. Let � be a random variable with distribution F , and

let �

n

be the random variable on S

n

de�ned by

�

n

(w) =

is

n

(w)� 2

p

n

n

1=6

:

We an now state the remarkable results of Baik, Deift, and Johansson.

Theorem. As n!1, we have

�

n

! � in distribution;

2

In addition to being a distinguished mathematiian, in 1908 Painlev�e was the �rst

passenger of Wilbur Wright, during whih they set a ight duration reord of 70 minutes,

and in 1917 and 1925 he held a position equivalent to Prime Minister of Frane.

15



i.e., for all t 2 R,

lim

n!1

Prob(�

n

� t) = F (t):

Theorem. For any m = 0; 1; 2; : : :,

lim

n!1

E(�

m

n

) = E(�

m

):

Corollary. We have

lim

n!1

Var(is

n

)

n

1=3

=

Z

t

2

dF (t)�

�

Z

t dF (t)

�

2

= 0:8132 � � � ;

where Var denotes variane, and

lim

n!1

E(is

n

)� 2

p

n

n

1=6

=

Z

t dF (t) (8)

= �1:7711 � � � :

The above theorems are a vast re�nement of the Vershik-Kerov and Logan-

Shepp results onerning E(n), the expetation of is

n

(w). The �rst theorem

gives the entire limiting distribution (as n ! 1) of is

n

(w), while the se-

ond theorem gives an asymptoti formula for the mth moment. Note that

equation (8) may be rewritten

E(n) = 2

p

n + �n

1=6

+ o

�

n

1=6

�

;

where � =

R

t dF (t), thereby giving the seond term in the asymptoti be-

havior of E(n).

We will say only a brief word on the proof of the above results, explaining

how ombinatoris enters into the piture. Some kind of analyti expression

is needed for the distribution of is

n

(w). Suh an expression is provided by

the following result of Ira Gessel [14℄, later proved in other ways by various

persons.

Theorem. Let

u

k

(n) = #fw 2 S

n

: is

n

(w) � kg
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U

k

(x) =

X

n�0

u

k

(n)

x

2n

n!

2

B

i

(x) =

X

n�0

x

2n+i

n! (n+ i)!

:

Then

U

k

(x) = det

�

B

ji�jj

(x)

�

k

i;j=1

:

Example. We have

U

2

(x) =

�

�

�

�

B

0

(x) B

1

(x)

B

1

(x) B

0

(x)

�

�

�

�

= B

0

(x)

2

� B

1

(x)

2

:

From this it is easy to dedue that

u

2

(n) =

1

n+ 1

�

2n

n

�

;

a Catalan number. This result was �rst stated by John Mihael Hammersley

in 1972, with the �rst published proofs by Knuth [25, x5.1.4℄ and Rotem [33℄.

There is a more ompliated expression for u

3

(n) due to Gessel [14, x7℄[37,

Exer. 7.16(e)℄, namely,

u

3

(n) =

1

(n + 1)

2

(n+ 2)

n

X

j=0

�

2j

j

��

n+ 1

j + 1

��

n+ 2

j + 2

�

;

while no \nie" formula for u

k

(n) is known for �xed k > 3.

Gessel's theorem redues the theorems of Baik, Deift, and Johansson to

\just" analysis, viz., the Riemann-Hilbert problem in the theory of integrable

systems, followed by the method of steepest desent to analyze the asymp-

toti behavior of integrable systems. For further information see the survey

[6℄ of Deift mentioned above.

The asymptoti behavior of is

n

(w) (suitably saled) turned out to be

idential to the Tray-Widom distribution F (t) of equation (7). It is natural

to ask how the Tray-Widom distribution arose in the �rst plae. It seems

17



surprising that suh an \unnatural" looking funtion as F (t) ould have

arisen independently in two di�erent ontexts. Originally the Tray-Widom

distribution arose in onnetion with the Gaussian Unitary Ensemble (GUE).

GUE is a ertain natural probability distribution on the spae of all n � n

hermitian matries M = (M

ij

), namely,

Z

�1

n

e

�tr(M

2

)

dM;

where Z

n

is a normalization onstant and

dM =

Y

i

dM

ii

�

Y

i<j

d(ReM

ij

)d(ImM

ij

):

Let the eigenvalues of M be �

1

� �

2

� � � � � �

n

. The following result

marked the eponymous appearane [39℄ of the Tray-Widom distribution:

lim

n!1

Prob

��

�

1

�

p

2n

�

p

2n

1=6

� t

�

= F (t): (9)

Thus as n!1, is

n

(w) and �

1

have the same distribution (after saling).

It is natural to ask, �rstly, whether there is a result analogous to equa-

tion (9) for the other eigenvalues �

k

of the GUE matrix M , and, seondly,

whether there is some onnetion between suh a result and the behavior

of inreasing subsequenes of random permutations. A generalization of (9)

was given by Tray and Widom [39℄ (expressed in terms of the Painlev�e II

funtion u(x)). The onnetion with inreasing subsequenes was onje-

tured in [1℄ and proved independently by Borodin-Okounkov-Olshanski [4℄,

Johannson [23℄, and Okounkov [32℄. Given w 2 S

n

, de�ne integers �

1

; �

2

; : : :

by letting �

1

+ � � �+ �

k

be the largest number of elements in the union of k

inreasing subsequenes of w. For instane, let w = 247951368. The longest

inreasing subsequene is 24568, so �

1

= 5. The largest union of two inreas-

ing subsequenes is 24791368 (the union of 2479 and 1368), so �

1

+ �

2

= 8.

(Note that it is impossible to �nd a union of length 8 of two inreasing subse-

quenes that ontains an inreasing subsequene of length �

1

= 5.) Finally w

itself is the union of the three inreasing subsequenes 2479, 1368, and 5, so

�

1

+ �

2

+ �

3

= 9. Hene (�

1

; �

2

; �

3

) = (5; 3; 1) (and �

i

= 0 for i > 3). Read-

ers familiar with the theory of the Robinson-Shensted-Knuth algorithm will

reognize the sequene (�

1

; �

2

; : : :) as the shape of the two standard Young

tableaux obtained by applying this algorithm to w, a well-known result of

18



Curtis Greene [15℄[37, Thm. A1.1.1℄. (In partiular, �

1

� �

2

� � � �, a fat

whih is by no means obvious.) The result of [4℄[23℄[32℄ asserts that as as

n!1, �

k

and �

k

are equidistributed, up to saling.

The Tray-Widom distribution arose ompletely independently in the be-

haviour of is

n

(w) and GUE matries. Is this onnetion just a oinidene?

The work of Okounkov [32℄ provides a onnetion, via the theory of random

topologies on surfaes.

19



Referenes

[1℄ J. Baik, P. Deift, and K. Johansson, On the distribution of the length of

the longest inreasing subsequene of random permutations, J. Amer.

Math. So. 12 (1999), 1119{1178, math.CO/9810105

3

.

[2℄ A. Berenstein and A. Zelevinsky, Triple multipliities for sl(r + 1) and

the spetrum of the exterior algebra of the adjoint representation, J.

Algebrai Combinatoris 1 (1992), 7{22.

[3℄ F. Bergeron, A. Garsia, and G. Tesler, Multiple left regular representa-

tions generated by alternants, J. Combinatorial Theory (A) 91 (2000),

49{83.

[4℄ A. Borodin, A. Okounkov, and G. Olshanski, Asymptotis of Planherel

measures for symmetri groups, J. Amer. Math. So. 13 (2000), 481{

515, math.CO/9905032.

[5℄ A. Buh, The saturation onjeture (after A. Knutson and T. Tao),

Enseign. Math. 46 (2000), 43{60, math.CO/9810180.

[6℄ P. Deift, Integrable systems and ombinatorial theory, Noties Amer.

Math. So. 47 (2000), 631{640.

[7℄ H. Derksen and J. Weyman, Semi-invariants of quivers and saturation

for Littlewood-Rihardson oeÆients, J. Amer. Math. So. 13 (2000),

467{479.

[8℄ W. Fulton, Young Tableaux, London Mathematial Soiety Student

Texts 35, Cambridge University Press, Cambridge, 1997.

[9℄ W. Fulton, Eigenvalues, invariant fators, highest weights, and Shubert

alulus, Bull. Amer. Math. So. 37 (2000), 209{249, math.AG/9908012.

[10℄ A. M. Garsia and J. Haglund, A proof of the q; t-Catalan positivity on-

jeture, Disrete Math., to appear, www.math.upenn.edu/�jhaglund.

[11℄ A. M. Garsia and M. Haiman, A remarkable q; t-Catalan sequene and

q-Lagrange inversion, J. Algebrai Combin. 5 (1996), 191{244.

3

math.AG, math.CO, math.RT and hep-th refer to setions of the LANL preprint

arhive xxx.lanl.gov.

20



[12℄ A. M. Garsia and M. Haiman, A graded representation model for Ma-

donald's polynomials, Pro. Nat. Aad. Si. U.S.A. 90 (1993), 36-7{

3610.

[13℄ A. M. Garsia and M. Haiman, Some natural bigraded S

n

-modules and

q; t-Kostka oeÆients, Eletron. J. Combin. 3 (1996), RP24.

[14℄ I. Gessel, Symmetri funtions and P-reursiveness, J. Combinatorial

Theory (A) 53 (1990), 257{285.

[15℄ C. Greene, An extension of Shensted's theorem, Advanes in Math. 14

(1974), 254-265.

[16℄ J. Haglund, Conjetured statistis for the q; t-Catalan numbers, Ad-

vanes in Math., to appear, www.math.upenn.edu/�jhaglund.

[17℄ M. Haiman, Madonald polynomials and geometry, in New perspetives

in algebrai ombinatoris (Berkeley, CA, 1996{97) (L. J. Billera, et

al., eds.), MSRI Publ. 38, Cambridge Univ. Press, Cambridge, 1999,

pp. 207-254.

[18℄ M. Haiman, Hilbert shemes, polygraphs, and the Madonald

positivity onjeture, J. Amer. Math. So. 14 (2001), 941{1006,

www/math.berkeley.edu/�mhaiman.

[19℄ M. Haiman, Vanishing theorems and harater formulas for

the Hilbert sheme of points in the plane, preliminary draft,

www/math.berkeley.edu/�mhaiman; abbreviated version in Physis

and Combinatoris (A. N. Kirillov and N. Liskova, eds.), World Si-

enti�, London, 2001, pp. 1{21.

[20℄ P. Hall, The algebra of partitions, in Pro. 4th Canadian Math. Congress

(Ban�), 1959, pp. 147{159.

[21℄ J. M. Hammersley, A few seedlings of researh, in Pro. Sixth Berkeley

Symposium on Mathematial Statistis and Probability, vol. 1, University

of California Press, Berkeley/Los Angeles, 1972, pp. 345{394.

[22℄ G. J. Hekman, Projetions of orbits and asymptoti behavior of mul-

tipliities for ompat onneted Lie groups, Invent. Math. 67 (1982),

333{356.

21



[23℄ K. Johansson, Disrete orthogonal polynomial ensembles and the

Planerel measure, Ann. Math. 153 (2001), 259{296, math.CO/9906120.

[24℄ A. A. Klyahko, Stable bundles, representation theory and Hermitian

operators, Seleta Math. 4 (1998), 419{445.

[25℄ D. E. Knuth, The Art of Computer Programming, vol. 3, Sorting and

Searhing, Addison-Wesley, Reading, Massahusetts, 1973; seond edi-

tion, 1998.

[26℄ A. Knutson and T. Tao, The honeyomb model of GL

n

(C ) tensor prod-

uts I: proof of the saturation onjeture, J. Amer. Math. So. 12 (1999),

1055{1090, math.RT/9807160.

[27℄ A. Knutson and T. Tao, Honeyombs and sums of Hermitian matries,

Noties Amer. Math. So. 48 (2001), 175{186, math.RT/0009048.

[28℄ B. F. Logan and L. A. Shepp, A variational problem for random Young

tableaux, Advanes in Math. 26 (1977), 206{222.

[29℄ I. G. Madonald, A new lass of symmetri funtions, Ates 20

e

S�eminaire Lotharingien, Publ. I.R.M.A., Strasbourg, 1992, pp. 5{39.

[30℄ I. G. Madonald, Symmetri Funtions and Hall Polynomials, seond

ed., Oxford University Press, Oxford, 1995.

[31℄ F. M. Maley, The Hall polynomial revisited, J. Algebra 184 (1996),

363{371.

[32℄ A. Okounkov, Random matries and random permutations, Internat.

Math. Res. Noties 2000, 1043{1095, math.CO/9903176.

[33℄ D. Rotem, On a orrespondene between binary trees and a ertain type

of permutation, Inf. Pro. Letters 4 (1975/76), 58{61.

[34℄ C. E. Shensted, Longest inreasing and dereasing subsequenes,

Canad. J. Math. 13 (1961), 179{191.

[35℄ L. Smith, Polynomial Invariants of Finite Groups, A K Peters, Wellesley,

Massahusetts, 1995.

22



[36℄ R. Stanley, Invariants of �nite groups and their appliations to ombi-

natoris, Bull. Amer. Math. So. (new series) 1 (1979), 475{511.

[37℄ R. Stanley, Enumerative Combinatoris, vol. 2, Cambridge University

Press, Cambridge, 1999.

[38℄ G. Tesler, Semi-primary latties and tableaux algorithms, Ph.D. thesis,

M.I.T., 1995.

[39℄ C. A. Tray and H. Widom, Level-spaing distributions and the Airy

kernel, Comm. Math. Phys. 159 (1994), 151{174, hep-th/9211141.

[40℄ A. M. Vershik and S. V. Kerov, Asymptoti behavior of the Planherel

measure of the symmetri group and the limit form of Young tableaux,

Dokl. Akad. Nauk SSSR 233 (1977), 1024{1027. English translation in

Soviet Math. Dokl. 18 (1977), 527{531.

[41℄ A. Zelevinsky, Littlewood-Rihardson semigroups, in New perspetives

in algebrai ombinatoris (Berkeley, CA, 1996{97) (L. J. Billera, et

al., eds.), MSRI Publ. 38, Cambridge Univ. Press, Cambridge, 1999,

pp. 337{345, math.CO/9704228.

23


