Polygon Dissections and Standard Young Tableaux

Richard P. Stanley ${ }^{1}$
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139
rstan@math.mit.edu

Abstract

A simple bijection is given between dissections of a convex $(n+2)$-gon with d diagonals not intersecting in their interiors and standard Young tableaux of shape $\left(d+1, d+1,1^{n-1-d}\right)$.

[^0]For $0 \leq d \leq n-1$, let $f(n, d)$ be the number of ways to draw d diagonals in a convex $(n+2)$-gon, such that no two diagonals intersect in their interior. For instance, $f(n, n-1)$ is just the Catalan number $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$. A result going back to Kirkman [3], Prouhet [4], and Cayley [1] (with Cayley giving the first complete proof) asserts that

$$
\begin{equation*}
f(n, d)=\frac{1}{n+d+2}\binom{n+d+2}{d+1}\binom{n-1}{d} . \tag{1}
\end{equation*}
$$

K. O'Hara and A. Zelevinsky observed (unpublished) that the right-hand side of (1) is just the number of standard Young tableaux (as defined, e.g., in [5, p. 66]) of shape $\left(d+1, d+1,1^{n-1-d}\right)$, where 1^{n-1-d} denotes a sequence of $n-1-d$'s. It is natural to ask for a bijection between the polygon dissections and the standard Young tableaux. If one is willing to accept the formula for the number of standard Young tableaux of a fixed shape (either in the original form due to MacMahon or the hook-length formula of Frame-Robinson-Thrall), then one obtains a simple proof of equation (1). In this note we give a simple bijection of the desired type.

First we recall that there is a well-known bijection [2] between dissections D of an $(n+2)$-gon with d diagonals and integer sequences $\psi(D)=$ $\left(a_{1}, a_{2}, \ldots, a_{n+d+1}\right)$ such that (a) either $a_{i}=-1$ or $a_{i} \geq 1$, (b) exactly n terms are equal to -1 , (c) $a_{1}+a_{2}+\cdots+a_{i} \geq 0$ for all i, and (d) $a_{1}+a_{2}+\cdots+a_{n+d+1}=0$. This bijection may be defined recursively as follows. Fix an edge e of the dissected polygon D. When we remove e from D, we obtain a sequence of dissected polygons $D_{1}, D_{2}, \ldots, D_{k}$ (where $k+1$ is the number of sides of the region of D to which e belongs), arranged in clockwise order, with D_{i} and D_{i+1} intersecting at a single vertex. If D_{i} consists of a single edge, then define $\psi\left(D_{i}\right)=-1$, and set recursively $\psi(D)=\left(k-1, \psi\left(D_{1}\right)^{*}, \psi\left(D_{2}\right)^{*}, \ldots, \psi\left(D_{k-1}\right)^{*}, \psi\left(D_{k}\right)\right)$, where $\psi\left(D_{k}\right)^{*}$ denotes $\psi\left(D_{k}\right)$ with a -1 appended at the end.

Given a sequence $\left(a_{1}, a_{2}, \ldots, a_{n+d+1}\right)$ as above, define a standard Young tableau T of shape $\left(d+1, d+1,1^{n-1-d}\right)$ as follows. We insert the elements $1,2, \ldots, n+d+1$ successively into T. Once an element is inserted, it remains in place. (There is no "bumping" as in the Robinson-Schensted correspondence.) Suppose that the positive a_{i} 's are given by $b_{1}, b_{2}, \ldots, b_{d+1}$, in that order. The insertion is then defined by the following three rules:

- If $a_{i}>0$, then insert i at the end of the first row. (We write our tableaux in "English" style, so the longest row is at the top.)
- If $a_{i}=-1$ and the number of -1 's preceding a_{i} is given by $b_{1}+b_{2}+$ $\cdots+b_{j}$ for some $j \geq 0$, then insert i at the end of the second row.
- If $a_{i}=-1$ and the number of -1 's preceding a_{i} in not of the form $b_{1}+b_{2}+\cdots+b_{j}$, then insert i at the bottom of the first column.

It is an easy exercise to check that the above procedure yields the desired bijection.

Example. Let the sequence corresponding to a dissection D (with $n=$ $14, d=6$) be given by
$(4,2,-\mathbf{1}, 1,-1,-1,3,-1,-\mathbf{1}, 1,1,-1,-\mathbf{1},-\mathbf{1},-1,-1,-\mathbf{1}, 2,-\mathbf{1},-\mathbf{1},-1)$.
We have $\left(b_{1}, \ldots, b_{7}\right)=(4,2,1,3,1,1,2)$. We have printed in boldface those -1 's that are preceded by $b_{1}+\cdots+b_{j}-1$'s for some j. The corresponding standard tableau $\psi(D)$ is given by

1	2	4	7	10	11	18
3	9	13	14	17	19	20
5						
6						
8						
12						
15						
16						
21						

References

[1] A. Cayley, On the partitions of a polygon, Proc. London Math. Soc. (1) 22 (1890-1891), 237-262.
[2] I. M. H. Etherington, Some problems of non-associative combinations (1), Edinburgh Math. Notes 32 (1940), 1-6.
[3] T. P. Kirkman, On the k-partitions of the r-gon and r-ace, Phil. Trans. Royal Soc. London 147 (1857), 217-272.
[4] E. Prouhet, Question 774, Nouvelles Annales Math. 5 (1866), 384.
[5] B. E. Sagan, "The Symmetric Group," Wadsworth \& Brooks/Cole, Pacific Grove, CA, 1991.

[^0]: ${ }^{1}$ Partially supported by National Science Foundation grant \#DMS-9206374.

