The Descent Set and Connectivity Set of a Permutation¹

Richard P. Stanley²

Department of Mathematics, Massachusetts Institute of Technology Cambridge, MA 02139, USA rstan@math.mit.edu

version of 16 August 2005

Abstract

The descent set D(w) of a permutation w of 1, 2, ..., nis a standard and well-studied statistic. We introduce a new statistic, the *connectivity set* C(w), and show that it is a kind of dual object to D(w). The duality is stated in terms of the inverse of a matrix that records the joint distribution of D(w)and C(w). We also give a variation involving permutations of a multiset and a q-analogue that keeps track of the number of inversions of w.

1 A duality between descents and connectivity.

Let \mathfrak{S}_n denote the symmetric group of permutations of $[n] = \{1, 2, \ldots, n\}$, and let $w = a_1 a_2 \cdots a_n \in \mathfrak{S}_n$. The *descent set* D(w) is defined by

$$D(w) = \{i : a_i > a_{i+1}\} \subseteq [n-1].$$

The descent set is a well-known and much studied statistic on permutations with many applications, e.g., [6, Exam. 2.24, Thm. 3.12.1][7, §7.23]. Now define the *connectivity set* C(w) by

$$C(w) = \{i : a_j < a_k \text{ for all } j \le i < k\} \subseteq [n-1].$$
(1)

¹2000 Mathematics Subject Classification: 05A05

Key words and phrases: descent set, connected permutation, connectivity set

²Partially supported by NSF grant #DMS-9988459 and by the Institut Mittag-Leffler.

The connectivity set seems not to have been considered before except for equivalent definitions by Comtet [3, Exer. VI.14] and Callan [1] with no further development. H. Wilf has pointed out to me that the set of splitters of a permutation arising in the algorithm Quicksort [8, §2.2] coincides with the connectivity set. Some notions related to the connectivity set have been investigated. In particular, a permutation w with $C(w) = \emptyset$ is called *connected* or *indecomposable*. If f(n)denotes the number of connected permutations in \mathfrak{S}_n , then Comtet [3, Exer. VI.14] showed that

$$\sum_{n \ge 1} f(n)x^n = 1 - \frac{1}{\sum_{n \ge 0} n! x^n},$$

and he also considered the number #C(w) of components. He also obtained [2][3, Exer. VII.16] the complete asymptotic expansion of f(n). For further references on connected permutations, see Sloane [4]. In this paper we will establish a kind of "duality" between descent sets and connectivity sets.

We write $S = \{i_1, \ldots, i_k\}_{\leq}$ to denote that $S = \{i_1, \ldots, i_k\}$ and $i_1 < \cdots < i_k$. Given $S = \{i_1, \ldots, i_k\}_{\leq} \subseteq [n-1]$, define

$$\eta(S) = i_1! (i_2 - i_1)! \cdots (i_k - i_{k-1})! (n - i_k)!.$$

Note that $\eta(S)$ depends not only on S but also on n. The integer n will always be clear from the context. The first indication of a duality between C and D is the following result.

Proposition 1.1. Let $S \subseteq [n-1]$. Then

$$\#\{w \in \mathfrak{S}_n : S \subseteq C(w)\} = \eta(S)$$
$$\#\{w \in \mathfrak{S}_n : S \supseteq D(w)\} = \frac{n!}{\eta(S)}$$

Proof. The result for D(w) is well-known, e.g., [6, Prop. 1.3.11]. To obtain a permutation w satisfying $S \supseteq D(w)$, choose an ordered partition (A_1, \ldots, A_{k+1}) of [n] with $\#A_j = i_j - i_{j-1}$ (with $i_0 = 0$, $i_{k+1} = n$) in $n!/\eta(S)$ ways, then arrange the elements of A_1 in increasing order, followed by the elements of A_2 in increasing order, etc. Similarly, to obtain a permutation w satisfying $S \subseteq C(w)$, choose a permutation of $[i_1]$ in $i_1!$ ways, followed by a permutation of $[i_1 + 1, i_2] := \{i_1 + 1, i_1 + 2, \dots, i_2\}$ in $(i_2 - i_1)!$ ways, etc. \Box

Let $S, T \subseteq [n-1]$. Our main interest is in the joint distribution of the statistics C and D, i.e., in the numbers

$$X_{ST} = \#\{w \in \mathfrak{S}_n : C(w) = \overline{S}, \ D(w) = T\},\$$

where $\overline{S} = [n-1] - S$. (It will be more notationally convenient to use this definition of X_{ST} rather than having C(w) = S.) To this end, define

$$Z_{ST} = \#\{w \in \mathfrak{S}_n : \overline{S} \subseteq C(w), \ T \subseteq D(w)\}$$

$$= \sum_{\substack{S' \supseteq S \\ T' \supseteq T}} X_{S'T'}.$$
(2)

For instance, if n = 4, $S = \{2,3\}$, and $T = \{3\}$, then $Z_{ST} = 3$, corresponding to the permutations 1243, 1342, 1432, while $X_{ST} = 1$, corresponding to 1342. Tables of X_{ST} for n = 3 and n = 4 are given in Figure 1, and for n = 5 in Figure 2.

Theorem 1.2. We have

$$Z_{ST} = \begin{cases} \eta(\overline{S})/\eta(\overline{T}), & \text{if } S \supseteq T; \\ 0, & \text{otherwise,} \end{cases}$$

Proof. Let $w = a_1 \cdots a_n \in \mathfrak{S}_n$. If $i \in C(w)$ then $a_i < a_{i+1}$, so $i \notin D(w)$. Hence $Z_{ST} = 0$ if $S \not\supseteq T$.

Assume therefore that $S \supseteq T$. Let $C(w) = \{c_1, \ldots, c_j\}_{<}$ with $c_0 = 0$ and $c_{j+1} = n$. Fix $0 \le h \le j$, and let

$$[c_h, c_{h+1}] \cap \overline{T} = \{c_h = i_1, i_2, \dots, i_k = c_{h+1}\}_{<}.$$

If $w = a_1 \cdots a_n$ with $\overline{S} \subseteq C(w)$ and $T \subseteq D(w)$, then the number of choices for $a_{c_h} + 1, a_{c_h} + 2, \ldots, a_{c_{h+1}}$ is just the multinomial coefficient

$$\binom{c_{h+1}-c_h}{i_2-i_1,i_3-i_2,\ldots,i_k-i_{k-1}} := \frac{(c_{h+1}-c_h)!}{(i_2-i_1)!(i_3-i_2)!\cdots(i_k-i_{k-1})!}$$

		$S \backslash T$		Ø	1	2	12		
		Ø		1				_	
		1		0	1				
		2		0	0	1			
		12		0	1	1	1		
$S \backslash T$	Ø	1	2	3	1:	2	13	23	123
Ø	1								
1	0	1							
2	0	0	1						
3	0	0	0	1					
12	0	1	1	0	1				
13	0	0	0	0	0)	1		
23	0	0	1	1	0)	0	1	
123	0	1	2	1	2	2	4	2	1

Figure 1: Table of X_{ST} for n = 3 and n = 4

Taking the product over all $0 \le h \le j$ yields $\eta(\overline{S})/\eta(\overline{T})$. \Box

Theorem 1.2 can be restated matrix-theoretically. Let $M = (M_{ST})$ be the matrix whose rows and columns are indexed by subsets $S, T \subseteq [n-1]$ (taken in some order), with

$$M_{ST} = \begin{cases} 1, & \text{if } S \supseteq T; \\ 0, & \text{otherwise.} \end{cases}$$

Let $D = (D_{ST})$ be the diagonal matrix with $D_{SS} = \eta(\overline{S})$. Let $Z = (Z_{ST})$, i.e., the matrix whose (S, T)-entry is Z_{ST} as defined in (2). Then it is straightforward to check that Theorem 1.2 can be restated as follows:

$$Z = DMD^{-1}. (3)$$

Similarly, let $X = (X_{ST})$. Then it is immediate from equations (2) and (3) that

$$MXM = Z.$$
 (4)

The main result of this section (Theorem 1.4 below) computes the inverse of the matrices X, Z, and a matrix $Y = (Y_{ST})$ intermediate

$S \backslash T$	Ø	1	2	3	4	12	13	14	23	24	34	123	124	134	234	1234
Ø	1															
1	0	1														
2	0	0	1													
3	0	0	0	1												
4	0	0	0	0	1											
12	0	1	1	0	0	1										
13	0	0	0	0	0	0	1									
14	0	0	0	0	0	0	0	1								
23	0	0	1	1	0	0	0	0	1							
24	0	0	0	0	0	0	0	0	0	1						
34	0	0	0	1	1	0	0	0	0	0	1					
123	0	1	2	1	0	2	4	0	2	0	0	1				
124	0	0	0	0	0	0	0	1	0	1	0	0	1			
134	0	0	0	0	0	0	1	1	0	0	0	0	0	1		
234	0	0	1	2	1	0	0	0	2	4	2	0	0	0	1	
1234	0	1	3	3	1	3	10	8	6	10	3	3	8	8	3	1

Figure 2: Table of X_{ST} for n = 5

between X and Z. Namely, define

$$Y_{ST} = \#\{w \in \mathfrak{S}_n : \overline{S} \subseteq C(w), \ T = D(w)\}.$$
(5)

It is immediate from the definition of matrix multiplication and (4) that the matrix Y satisfies

$$Y = MX = ZM^{-1}. (6)$$

In view of equations (3), (4) and (6) the computation of Z^{-1} , Y^{-1} , and X^{-1} will reduce to computing M^{-1} , which is a simple and wellknown result. For any invertible matrix $N = (N_{ST})$, write N_{ST}^{-1} for the (S, T)-entry of N^{-1} .

Lemma 1.3. We have

$$M_{ST}^{-1} = (-1)^{\#S + \#T} M_{ST}.$$
 (7)

Proof. Let f, g be functions from subsets of [n] to \mathbb{R} (say) related by

$$f(S) = \sum_{T \subseteq S} g(T).$$
(8)

Equation (7) is then equivalent to the inversion formula

$$g(S) = \sum_{T \subseteq S} (-1)^{\#(S-T)} f(T).$$
(9)

This is a standard combinatorial result with many proofs, e.g., [6, Thm. 2.1.1, Exam. 3.8.3]. \Box

Theorem 1.4. The matrices Z, Y, X have the following inverses:

$$Z_{ST}^{-1} = (-1)^{\#S + \#T} Z_{ST}$$
(10)

$$Y_{ST}^{-1} = (-1)^{\#S + \#T} \#\{w \in \mathfrak{S}_n : \overline{S} = C(w), \ T \subseteq D(w)\} \ (11)$$

$$X_{ST}^{-1} = (-1)^{\#S + \#T} X_{ST}.$$
(12)

Proof. By equations (3), (4), and (6) we have

$$Z^{-1} = DM^{-1}D^{-1}, \ Y^{-1} = MDM^{-1}D^{-1}, \ X^{-1} = MDM^{-1}D^{-1}M.$$

Equation (10) is then an immediate consequence of Lemma 1.3 and the definition of matrix multiplication.

Since $Y^{-1} = MZ^{-1}$ we have for fixed $S \supseteq U$ that

$$Y_{SU}^{-1} = \sum_{T: S \supseteq T \supseteq U} (-1)^{\#T + \#U} Z_{TU}$$

=
$$\sum_{T: S \supseteq T \supseteq U} (-1)^{\#T + \#U} \#\{w \in \mathfrak{S}_n : \overline{T} \subseteq C(w), \ U \subseteq D(w)\}$$

=
$$\sum_{\overline{T: U \subseteq \overline{T} \subseteq \overline{S}}} (-1)^{\#T + \#U} \#\{w \in \mathfrak{S}_n : \overline{T} \subseteq C(w), \ U \subseteq D(w)\}.$$

Equation (11) is now an immediate consequence of the Principle of Inclusion-Exclusion (or of the equivalence of equations (8) and (9)). Equation (12) is proved analogously to (11) using $X^{-1} = Y^{-1}M$. \Box

NOTE. The matrix M represents the zeta function of the boolean algebra \mathcal{B}_n [6, §3.6]. Hence Lemma 1.3 can be regarded as the determination of the Möbius function of \mathcal{B}_n [6, Exam. 3.8.3]. All our results can easily be formulated in terms of the incidence algebra of \mathcal{B}_n .

NOTE. The matrix Y arose from the theory of quasisymmetric functions in response to a question from Louis Billera and Vic Reiner and was the original motivation for this paper, as we now explain. See for example [7, §7.19] for an introduction to quasisymmetric functions. We will not use quasisymmetric functions elsewhere in this paper.

Let $\operatorname{Comp}(n)$ denote the set of all compositions $\alpha = (\alpha_1, \ldots, \alpha_k)$ of n, i.e, $\alpha_i \geq 1$ and $\sum \alpha_i = n$. Let $\alpha = (\alpha_1, \ldots, \alpha_k) \in \operatorname{Comp}(n)$, and let \mathfrak{S}_{α} denote the subgroup of \mathfrak{S}_n consisting of all permutations $w = a_1 \cdots a_n$ such that $\{1, \ldots, \alpha_1\} = \{a_1, \ldots, a_{\alpha_1}\}, \{\alpha_1 + 1, \ldots, \alpha_1 + \alpha_2\} = \{a_{\alpha_1+1}, \ldots, a_{\alpha_1+\alpha_2}\}$, etc. Thus $\mathfrak{S}_{\alpha} \cong \mathfrak{S}_{\alpha_1} \times \cdots \times \mathfrak{S}_{\alpha_k}$ and $\#\mathfrak{S}_{\alpha} = \eta(S)$, where $S = \{\alpha_1, \alpha_1 + \alpha_2, \ldots, \alpha_1 + \cdots + \alpha_{k-1}\}$. If $w \in \mathfrak{S}_n$ and $D(w) = \{i_1, \ldots, i_k\}_<$, then define the *descent composition* $\operatorname{co}(w)$ by

$$co(w) = (i_1, i_2 - i_1, \dots, i_k - i_{k-1}, n - i_k) \in Comp(n).$$

Let L_{α} denote the fundamental quasisymmetric function indexed by α [7, (7.89)], and define

$$R_{\alpha} = \sum_{w \in \mathfrak{S}_{\alpha}} L_{\mathrm{co}(w)}.$$
 (13)

Given $\alpha = (\alpha_1, \ldots, \alpha_k) \in \text{Comp}(n)$, let $S_{\alpha} = \{\alpha_1, \alpha_1 + \alpha_2, \ldots, \alpha_1 + \cdots + \alpha_{k-1}\}$. Note that $w \in \mathfrak{S}_{\alpha}$ if and only if $S_{\alpha} \subseteq C(w)$. Hence equation (13) can be rewritten as

$$R_{\alpha} = \sum_{\beta} Y_{\overline{S_{\alpha}}S_{\beta}} L_{\beta},$$

with $Y_{\overline{S_{\alpha}S_{\beta}}}$ as in (5). It follows from (5) that the transition matrix between the bases L_{α} and R_{α} is lower unitriangular (with respect to a suitable ordering of the rows and columns). Thus the set $\{R_{\alpha} : \alpha \in \text{Comp}(n)\}$ is a \mathbb{Z} -basis for the additive group of all homogeneous quasisymmetric functions over \mathbb{Z} of degree n. Moreover, the problem of expressing the L_{β} 's as linear combinations of the R_{α} 's is equivalent to inverting the matrix $Y = (Y_{ST})$.

The question of Billera and Reiner mentioned above is the following. Let P be a finite poset, and define the quasisymmetric function

$$K_P = \sum_f x^f,$$

where f ranges over all order-preserving maps $f: P \to \{1, 2, ...\}$ and $x^f = \prod_{t \in P} x_{f(t)}$ (see [7, (7.92)]). Billera and Reiner asked whether the quasisymmetric functions K_P generate (as a Z-algebra) or even span (as an additive abelian group) the space of all quasisymmetric functions. Let \boldsymbol{m} denote an \boldsymbol{m} -element antichain. The ordinal sum $P \oplus Q$ of two posets P, Q with disjoint elements is the poset on the union of their elements satisfying $s \leq t$ if either (1) $s, t \in P$ and $s \leq t$ in P, (2) $s, t \in Q$ and $s \leq t$ in Q, or (3) $s \in P$ and $t \in Q$. If $\alpha = (\alpha_1, \ldots, \alpha_k) \in \text{Comp}(n)$ then let $P_\alpha = \boldsymbol{\alpha}_1 \oplus \cdots \oplus \boldsymbol{\alpha}_k$. It is easy to see that $K_{P_\alpha} = R_\alpha$, so the K_{P_α} 's form a Z-basis for the homogeneous quasisymmetric functions of degree n, thereby answering the question of Billera and Reiner.

2 Multisets and inversions.

In this section we consider two further aspects of the connectivity set: (1) an extension to permutations of a multiset and (2) a q-analogue of Theorem 1.4 when the number of inversions of w is taken into account.

Let $T = \{i_1, \ldots, i_k\}_{\leq} \subseteq [n-1]$. Define the multiset

$$N_T = \{1^{i_1}, 2^{i_2 - i_1}, \dots, (k+1)^{n - i_k}\}.$$

Let \mathfrak{S}_{N_T} denote the set of all permutations of N_T , so $\#\mathfrak{S}_{N_T} = n!/\eta(T)$; and let $w = a_1 a_2 \cdots a_n \in \mathfrak{S}_{N_T}$. In analogy with equation (1) define

$$C(w) = \{i : a_j < a_k \text{ for all } j \le i < k\}.$$

(Note that we could have instead required only $a_j \leq a_k$ rather than $a_j < a_k$. We will not consider this alternative definition here.)

Proposition 2.1. Let $S, T \subseteq [n-1]$. Then

$$\begin{aligned} \#\{w \in \mathfrak{S}_{N_T} \, : \, C(w) &= S\} &= (XM)_{\overline{S}\overline{T}} \\ &= \sum_{U : U \supseteq \overline{T}} X_{\overline{S}U} \\ &= \#\{w \in \mathfrak{S}_n \, : \, C(w) = S, \ D(w) \supseteq \overline{T}\}. \end{aligned}$$

Proof. The equality of the three expressions on the right-hand side is clear, so we need only show that

$$\#\{w \in \mathfrak{S}_{N_T} : C(w) = S\} = \#\{w \in \mathfrak{S}_n : C(w) = S, D(w) \supseteq \overline{T}\}.$$
(14)

Let $T = \{i_1, \ldots, i_k\}_{\leq} \subseteq [n-1]$. Given $w \in \mathfrak{S}_n$ with C(w) = S and $D(w) \supseteq \overline{T}$, in w^{-1} replace $1, 2, \ldots, i_1$ with 1's, replace $i_1 + 1, \ldots, i_2$ with 2's, etc. It is easy to check that this yields a bijection between the sets appearing on the two sides of (14). \Box

Let us now consider q-analogues Z(q), Y(q), X(q) of the matrices Z, Y, X. The q-analogue will keep track of the number inv(w) of inversions of $w = a_1 \cdots a_n \in \mathfrak{S}_n$, where we define

$$\operatorname{inv}(w) = \#\{(i, j) : i < j, a_i > a_j\}.$$

Thus define

$$X(q)_{ST} = \sum_{\substack{w \in \mathfrak{S}_n \\ C(w) = \overline{S}, \ D(w) = T}} q^{\mathrm{inv}(w)},$$

and similarly for $Z(q)_{ST}$ and $Y(q)_{ST}$. We will obtain q-analogues of Theorems 1.2 and 1.4 with completely analogous proofs.

Write $(j) = 1 + q + \cdots + q^{j-1}$ and $(j)! = (1)(2)\cdots(j)$, the standard q-analogues of j and j!. Let $S = \{i_1, \ldots, i_k\}_{<} \subseteq [n-1]$, and define

$$\eta(S,q) = i_1! (i_2 - i_1)! \cdots (i_k - i_{k-1})! (n - i_k)!.$$

Let $T \subseteq [n-1]$, and let $\overline{T} = \{i_1, \ldots, i_k\}_{<}$. Define

$$z(T) = {\binom{i_1}{2}} + {\binom{i_2 - i_1}{2}} + \dots + {\binom{n - i_k}{2}}.$$

Note that z(T) is the least number of inversions of a permutation $w \in \mathfrak{S}_n$ with $T \subseteq D(w)$.

Theorem 2.2. We have

$$Z(q)_{ST} = \begin{cases} q^{z(T)}\eta(\overline{S},q)/\eta(\overline{T},q), & \text{if } \overline{S} \cap T = \emptyset; \\ 0, & \text{otherwise.} \end{cases}$$

Proof. Preserve the notation from the proof of Theorem 1.2. If (s,t) is an inversion of w (i.e., s < t and $a_s > a_t$) then for some $0 \le h \le j$ we have $c_h + 1 \le s < t \le c_{h+1}$. It is a standard fact of enumerative combinatorics (e.g., [5, (21)][6, Prop. 1.3.17]) that if $U = \{u_1, \ldots, u_r\}_{<} \subseteq [m-1]$ then

$$\sum_{\substack{v \in \mathfrak{S}_m \\ D(v) \subseteq U}} q^{\mathrm{inv}(v)} = \binom{m}{u_1, u_2 - u_1, \dots, m - u_r}$$
$$:= \frac{(m)!}{(u_1)! (u_2 - u_1)! \cdots (m - u_r)!},$$

a q-multinomial coefficient. From this it follows easily that if $\overline{U} = \{y_1, \ldots, y_s\}_{\leq}$ then

$$\sum_{v \in \mathfrak{S}_m \atop D(v) \supseteq U} q^{\operatorname{inv}(v)} = q^{z(T)} \left(\begin{array}{c} \boldsymbol{m} \\ \boldsymbol{y_1}, \boldsymbol{y_2} - \boldsymbol{y_1}, \dots, \boldsymbol{m} - \boldsymbol{y_s} \end{array} \right).$$

Hence we can parallel the proof of Theorem 1.2, except instead of merely counting the number of choices for the sequence $u = (a_{c_h}, a_{c_h} + 1, \ldots, a_{c_{h+1}})$ we can weight this choice by $q^{inv(u)}$. Then

$$\sum_{u} q^{\mathrm{inv}(u)} = q^{\binom{i_2-i_1}{2} + \dots + \binom{i_k-i_{k-1}}{2}} \binom{c_{h+1} - c_h}{i_2 - i_1, i_3 - i_2, \dots, i_k - i_{k-1}},$$

summed over all choices $u = (a_{c_h}, a_{c_h} + 1, \dots, a_{c_{h+1}})$. Taking the product over all $0 \le h \le j$ yields $q^{z(T)}\eta(\overline{S}, q)/\eta(\overline{T}, q)$. \Box

Theorem 2.3. The matrices Z(q), Y(q), X(q) have the following inverses:

$$Z(q)_{ST}^{-1} = (-1)^{\#S+\#T} Z(1/q)_{ST}$$

$$Y(q)_{ST}^{-1} = (-1)^{\#S+\#T} \sum_{\substack{w \in \mathfrak{S}_n \\ \overline{S} = C(w), \ T \subseteq D(w)}} q^{-\operatorname{inv}(w)}$$

$$X(q)_{ST}^{-1} = (-1)^{\#S+\#T} X(1/q)_{ST}.$$

Proof. Let $D(q) = (D(q)_{ST})$ be the diagonal matrix with $D(q)_{SS} = \eta(\overline{S}, q)$. Let Q(q) be the diagonal matrix with $Q(q)_{SS} = q^{z(S)}$. Exactly as for (3), (4) and (6) we obtain

$$Z(q) = D(q)MD(q)^{-1}Q(q)$$

$$MX(q)M = Z(q)$$

$$Y(q) = MX(q) = Z(q)M^{-1}.$$

The proof now is identical to that of Theorem 1.4. \Box

Let us note that Proposition 2.1 also has a straightforward q-analogue; we omit the details.

ACKNOWLEDGMENT. I am grateful to the referee for several suggestions that have enhanced the readability of this paper.

References

- D. Callan, Counting stabilized-interval-free permutations, J. Integer Sequences (electronic) 7 (2004), Article 04.1.8; http://www.cs.uwaterloo.ca/journals/JIS.
- [2] L. Comtet, Sur les coefficients de l'inverse de la série formelle $\sum n!t^n$, Comptes Rend. Acad. Sci. Paris, A 275 (1972), 569–572.
- [3] L. Comtet, Advanced Combinatorics, Reidel, 1974.
- [4] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A003319; http://www.research.att.com/~njas/sequences.
- [5] R. Stanley, Binomial posets, Möbius inversion, and permutation enumeration, J. Combinatorial Theory (A) 20 (1976), 336–356.
- [6] R. Stanley, *Enumerative Combinatorics*, vol. 1, Wadsworth and Brooks/Cole, 1986; second printing, Cambridge University Press, 1996.
- [7] R. Stanley, *Enumerative Combinatorics*, vol. 2, Cambridge University Press, 1999.
- [8] H. Wilf, Algorithms and Complexity, second ed., A K Peters, 2002.