The Descent Set and Connectivity Set of a Permutation ${ }^{1}$

Richard P. Stanley ${ }^{2}$
Department of Mathematics, Massachusetts Institute of Technology
Cambridge, MA 02139, USA
rstan@math.mit.edu

version of 16 August 2005

Abstract

The descent set $D(w)$ of a permutation w of $1,2, \ldots, n$ is a standard and well-studied statistic. We introduce a new statistic, the connectivity set $C(w)$, and show that it is a kind of dual object to $D(w)$. The duality is stated in terms of the inverse of a matrix that records the joint distribution of $D(w)$ and $C(w)$. We also give a variation involving permutations of a multiset and a q-analogue that keeps track of the number of inversions of w.

1 A duality between descents and connectivity.

Let \mathfrak{S}_{n} denote the symmetric group of permutations of $[n]=\{1,2, \ldots, n\}$, and let $w=a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{n}$. The descent set $D(w)$ is defined by

$$
D(w)=\left\{i: a_{i}>a_{i+1}\right\} \subseteq[n-1] .
$$

The descent set is a well-known and much studied statistic on permutations with many applications, e.g., [6, Exam. 2.24, Thm. 3.12.1][7, $\S 7.23]$. Now define the connectivity set $C(w)$ by

$$
\begin{equation*}
C(w)=\left\{i: a_{j}<a_{k} \text { for all } j \leq i<k\right\} \subseteq[n-1] . \tag{1}
\end{equation*}
$$

[^0]The connectivity set seems not to have been considered before except for equivalent definitions by Comtet [3, Exer. VI.14] and Callan [1] with no further development. H. Wilf has pointed out to me that the set of splitters of a permutation arising in the algorithm Quicksort [8, $\S 2.2]$ coincides with the connectivity set. Some notions related to the connectivity set have been investigated. In particular, a permutation w with $C(w)=\emptyset$ is called connected or indecomposable. If $f(n)$ denotes the number of connected permutations in \mathfrak{S}_{n}, then Comtet [3, Exer. VI.14] showed that

$$
\sum_{n \geq 1} f(n) x^{n}=1-\frac{1}{\sum_{n \geq 0} n!x^{n}}
$$

and he also considered the number $\# C(w)$ of components. He also obtained [2][3, Exer. VII.16] the complete asymptotic expansion of $f(n)$. For further references on connected permutations, see Sloane [4]. In this paper we will establish a kind of "duality" between descent sets and connectivity sets.

We write $S=\left\{i_{1}, \ldots, i_{k}\right\}<$ to denote that $S=\left\{i_{1}, \ldots, i_{k}\right\}$ and $i_{1}<\cdots<i_{k}$. Given $S=\left\{i_{1}, \ldots, i_{k}\right\}_{<} \subseteq[n-1]$, define

$$
\eta(S)=i_{1}!\left(i_{2}-i_{1}\right)!\cdots\left(i_{k}-i_{k-1}\right)!\left(n-i_{k}\right)!.
$$

Note that $\eta(S)$ depends not only on S but also on n. The integer n will always be clear from the context. The first indication of a duality between C and D is the following result.

Proposition 1.1. Let $S \subseteq[n-1]$. Then

$$
\begin{aligned}
& \#\left\{w \in \mathfrak{S}_{n}: S \subseteq C(w)\right\}=\eta(S) \\
& \#\left\{w \in \mathfrak{S}_{n}: S \supseteq D(w)\right\}=\frac{n!}{\eta(S)}
\end{aligned}
$$

Proof. The result for $D(w)$ is well-known, e.g., [6, Prop. 1.3.11]. To obtain a permutation w satisfying $S \supseteq D(w)$, choose an ordered partition $\left(A_{1}, \ldots, A_{k+1}\right)$ of $[n]$ with $\# A_{j}=i_{j}-i_{j-1}$ (with $i_{0}=0$, $\left.i_{k+1}=n\right)$ in $n!/ \eta(S)$ ways, then arrange the elements of A_{1} in increasing order, followed by the elements of A_{2} in increasing order, etc.

Similarly, to obtain a permutation w satisfying $S \subseteq C(w)$, choose a permutation of $\left[i_{1}\right]$ in i_{1} ! ways, followed by a permutation of $\left[i_{1}+\right.$ $\left.1, i_{2}\right]:=\left\{i_{1}+1, i_{1}+2, \ldots, i_{2}\right\}$ in $\left(i_{2}-i_{1}\right)$! ways, etc.

Let $S, T \subseteq[n-1]$. Our main interest is in the joint distribution of the statistics C and D, i.e., in the numbers

$$
X_{S T}=\#\left\{w \in \mathfrak{S}_{n}: C(w)=\bar{S}, D(w)=T\right\}
$$

where $\bar{S}=[n-1]-S$. (It will be more notationally convenient to use this definition of $X_{S T}$ rather than having $C(w)=S$.) To this end, define

$$
\begin{align*}
Z_{S T} & =\#\left\{w \in \mathfrak{S}_{n}: \bar{S} \subseteq C(w), T \subseteq D(w)\right\} \\
& =\sum_{\substack{S^{\prime} \supset S \\
T^{\prime} \supseteq T}} X_{S^{\prime} T^{\prime}} \tag{2}
\end{align*}
$$

For instance, if $n=4, S=\{2,3\}$, and $T=\{3\}$, then $Z_{S T}=3$, corresponding to the permutations $1243,1342,1432$, while $X_{S T}=1$, corresponding to 1342 . Tables of $X_{S T}$ for $n=3$ and $n=4$ are given in Figure 1, and for $n=5$ in Figure 2.

Theorem 1.2. We have

$$
Z_{S T}=\left\{\begin{aligned}
\eta(\bar{S}) / \eta(\bar{T}), & \text { if } S \supseteq T \\
0, & \text { otherwise }
\end{aligned}\right.
$$

Proof. Let $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$. If $i \in C(w)$ then $a_{i}<a_{i+1}$, so $i \notin D(w)$. Hence $Z_{S T}=0$ if $S \nsupseteq T$.

Assume therefore that $S \supseteq T$. Let $C(w)=\left\{c_{1}, \ldots, c_{j}\right\}_{<}$with $c_{0}=0$ and $c_{j+1}=n$. Fix $0 \leq h \leq j$, and let

$$
\left[c_{h}, c_{h+1}\right] \cap \bar{T}=\left\{c_{h}=i_{1}, i_{2}, \ldots, i_{k}=c_{h+1}\right\}_{<}
$$

If $w=a_{1} \cdots a_{n}$ with $\bar{S} \subseteq C(w)$ and $T \subseteq D(w)$, then the number of choices for $a_{c_{h}}+1, a_{c_{h}}+2, \ldots, a_{c_{h+1}}$ is just the multinomial coefficient

$$
\binom{c_{h+1}-c_{h}}{i_{2}-i_{1}, i_{3}-i_{2}, \ldots, i_{k}-i_{k-1}}:=\frac{\left(c_{h+1}-c_{h}\right)!}{\left(i_{2}-i_{1}\right)!\left(i_{3}-i_{2}\right)!\cdots\left(i_{k}-i_{k-1}\right)!}
$$

		$S \backslash T$		\emptyset	1	2			
		\emptyset		1					
		1		0	1				
		2			0				
		12		0	1	1	1		
$S \backslash T$	\emptyset	1	2	3		12	13	23	123
\emptyset	1								
1	0	1							
2	0	0	1						
3	0	0	0	1					
12	0	1	1	0		1			
13	0	0	0	0		0	1		
23	0	0	1	1		0	0	1	
123	0	1	2	1		2	4	2	1

Figure 1: Table of $X_{S T}$ for $n=3$ and $n=4$

Taking the product over all $0 \leq h \leq j$ yields $\eta(\bar{S}) / \eta(\bar{T})$.
Theorem 1.2 can be restated matrix-theoretically. Let $M=\left(M_{S T}\right)$ be the matrix whose rows and columns are indexed by subsets $S, T \subseteq$ [$n-1$] (taken in some order), with

$$
M_{S T}= \begin{cases}1, & \text { if } S \supseteq T \\ 0, & \text { otherwise }\end{cases}
$$

Let $D=\left(D_{S T}\right)$ be the diagonal matrix with $D_{S S}=\eta(\bar{S})$. Let $Z=$ $\left(Z_{S T}\right)$, i.e., the matrix whose (S, T)-entry is $Z_{S T}$ as defined in (2). Then it is straightforward to check that Theorem 1.2 can be restated as follows:

$$
\begin{equation*}
Z=D M D^{-1} \tag{3}
\end{equation*}
$$

Similarly, let $X=\left(X_{S T}\right)$. Then it is immediate from equations (2) and (3) that

$$
\begin{equation*}
M X M=Z \tag{4}
\end{equation*}
$$

The main result of this section (Theorem 1.4 below) computes the inverse of the matrices X, Z, and a matrix $Y=\left(Y_{S T}\right)$ intermediate

$S \backslash T$	\emptyset	1	2	3	4	12	13	14	23	24	34	123	124	134	234	1234
\emptyset	1															
1	0	1														
2	0	0	1													
3	0	0	0	1												
4	0	0	0	0	1											
12	0	1	1	0	0	1										
13	0	0	0	0	0	0	1									
14	0	0	0	0	0	0	0	1								
23	0	0	1	1	0	0	0	0	1							
24	0	0	0	0	0	0	0	0	0	1						
34	0	0	0	1	1	0	0	0	0	0	1					
123	0	1	2	1	0	2	4	0	2	0	0	1				
124	0	0	0	0	0	0	0	1	0	1	0	0	1			
134	0	0	0	0	0	0	1	1	0	0	0	0	0	1		
234	0	0	1	2	1	0	0	0	2	4	2	0	0	0	1	
1234	0	1	3	3	1	3	10	8	6	10	3	3	8	8	3	1

Figure 2: Table of $X_{S T}$ for $n=5$
between X and Z. Namely, define

$$
\begin{equation*}
Y_{S T}=\#\left\{w \in \mathfrak{S}_{n}: \bar{S} \subseteq C(w), T=D(w)\right\} \tag{5}
\end{equation*}
$$

It is immediate from the definition of matrix multiplication and (4) that the matrix Y satisfies

$$
\begin{equation*}
Y=M X=Z M^{-1} \tag{6}
\end{equation*}
$$

In view of equations (3), (4) and (6) the computation of Z^{-1}, Y^{-1}, and X^{-1} will reduce to computing M^{-1}, which is a simple and wellknown result. For any invertible matrix $N=\left(N_{S T}\right)$, write $N_{S T}^{-1}$ for the (S, T)-entry of N^{-1}.

Lemma 1.3. We have

$$
\begin{equation*}
M_{S T}^{-1}=(-1)^{\# S+\# T} M_{S T} \tag{7}
\end{equation*}
$$

Proof. Let f, g be functions from subsets of $[n]$ to \mathbb{R} (say) related by

$$
\begin{equation*}
f(S)=\sum_{T \subseteq S} g(T) \tag{8}
\end{equation*}
$$

Equation (7) is then equivalent to the inversion formula

$$
\begin{equation*}
g(S)=\sum_{T \subseteq S}(-1)^{\#(S-T)} f(T) . \tag{9}
\end{equation*}
$$

This is a standard combinatorial result with many proofs, e.g., [6, Thm. 2.1.1, Exam. 3.8.3].

Theorem 1.4. The matrices Z, Y, X have the following inverses:

$$
\begin{align*}
Z_{S T}^{-1} & =(-1)^{\# S+\# T} Z_{S T} \tag{10}\\
Y_{S T}^{-1} & =(-1)^{\# S+\# T} \#\left\{w \in \mathfrak{S}_{n}: \bar{S}=C(w), T \subseteq D(w)\right\} \tag{11}\\
X_{S T}^{-1} & =(-1)^{\# S+\# T} X_{S T} \tag{12}
\end{align*}
$$

Proof. By equations (3), (4), and (6) we have

$$
Z^{-1}=D M^{-1} D^{-1}, Y^{-1}=M D M^{-1} D^{-1}, X^{-1}=M D M^{-1} D^{-1} M
$$

Equation (10) is then an immediate consequence of Lemma 1.3 and the definition of matrix multiplication.

Since $Y^{-1}=M Z^{-1}$ we have for fixed $S \supseteq U$ that

$$
\begin{aligned}
Y_{S U}^{-1} & =\sum_{T: S \supseteq T \supseteq U}(-1)^{\# T+\# U} Z_{T U} \\
& =\sum_{T: S \supseteq T \supseteq U}(-1)^{\# T+\# U} \#\left\{w \in \mathfrak{S}_{n}: \bar{T} \subseteq C(w), U \subseteq D(w)\right\} \\
& =\sum_{\bar{T}: \bar{U} \subseteq \bar{T} \subseteq \bar{S}}(-1)^{\# T+\# U} \#\left\{w \in \mathfrak{S}_{n}: \bar{T} \subseteq C(w), U \subseteq D(w)\right\} .
\end{aligned}
$$

Equation (11) is now an immediate consequence of the Principle of Inclusion-Exclusion (or of the equivalence of equations (8) and (9)). Equation (12) is proved analogously to (11) using $X^{-1}=Y^{-1} M$.

Note. The matrix M represents the zeta function of the boolean algebra $\mathcal{B}_{n}[6, \S 3.6]$. Hence Lemma 1.3 can be regarded as the determination of the Möbius function of \mathcal{B}_{n} [6, Exam. 3.8.3]. All our results can easily be formulated in terms of the incidence algebra of \mathcal{B}_{n}.

Note. The matrix Y arose from the theory of quasisymmetric functions in response to a question from Louis Billera and Vic Reiner and was the original motivation for this paper, as we now explain. See for example $[7, \S 7.19]$ for an introduction to quasisymmetric functions. We will not use quasisymmetric functions elsewhere in this paper.

Let $\operatorname{Comp}(n)$ denote the set of all compositions $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ of n, i.e, $\alpha_{i} \geq 1$ and $\sum \alpha_{i}=n$. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \operatorname{Comp}(n)$, and let \mathfrak{S}_{α} denote the subgroup of \mathfrak{S}_{n} consisting of all permutations $w=a_{1} \cdots a_{n}$ such that $\left\{1, \ldots, \alpha_{1}\right\}=\left\{a_{1}, \ldots, a_{\alpha_{1}}\right\},\left\{\alpha_{1}+1, \ldots, \alpha_{1}+\right.$ $\left.\alpha_{2}\right\}=\left\{a_{\alpha_{1}+1}, \ldots, a_{\alpha_{1}+\alpha_{2}}\right\}$, etc. Thus $\mathfrak{S}_{\alpha} \cong \mathfrak{S}_{\alpha_{1}} \times \cdots \times \mathfrak{S}_{\alpha_{k}}$ and $\# \mathfrak{S}_{\alpha}=\eta(S)$, where $S=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \ldots, \alpha_{1}+\cdots+\alpha_{k-1}\right\}$. If $w \in \mathfrak{S}_{n}$ and $D(w)=\left\{i_{1}, \ldots, i_{k}\right\}_{<}$, then define the descent composition $\operatorname{co}(w)$ by

$$
\operatorname{co}(w)=\left(i_{1}, i_{2}-i_{1}, \ldots, i_{k}-i_{k-1}, n-i_{k}\right) \in \operatorname{Comp}(n)
$$

Let L_{α} denote the fundamental quasisymmetric function indexed by $\alpha[7,(7.89)]$, and define

$$
\begin{equation*}
R_{\alpha}=\sum_{w \in \mathfrak{S}_{\alpha}} L_{\mathrm{co}(w)} . \tag{13}
\end{equation*}
$$

Given $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \operatorname{Comp}(n)$, let $S_{\alpha}=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \ldots, \alpha_{1}+\right.$ $\left.\cdots+\alpha_{k-1}\right\}$. Note that $w \in \mathfrak{S}_{\alpha}$ if and only if $S_{\alpha} \subseteq C(w)$. Hence equation (13) can be rewritten as

$$
R_{\alpha}=\sum_{\beta} Y_{\overline{S_{\alpha}} S_{\beta}} L_{\beta},
$$

with $Y_{\overline{S_{\alpha} S_{\beta}}}$ as in (5). It follows from (5) that the transition matrix between the bases L_{α} and R_{α} is lower unitriangular (with respect to a suitable ordering of the rows and columns). Thus the set $\left\{R_{\alpha}\right.$: $\alpha \in \operatorname{Comp}(n)\}$ is a \mathbb{Z}-basis for the additive group of all homogeneous quasisymmetric functions over \mathbb{Z} of degree n. Moreover, the problem of expressing the L_{β} 's as linear combinations of the R_{α} 's is equivalent to inverting the matrix $Y=\left(Y_{S T}\right)$.

The question of Billera and Reiner mentioned above is the following. Let P be a finite poset, and define the quasisymmetric function

$$
K_{P}=\sum_{f} x^{f}
$$

where f ranges over all order-preserving maps $f: P \rightarrow\{1,2, \ldots\}$ and $x^{f}=\prod_{t \in P} x_{f(t)}$ (see [7, (7.92)]). Billera and Reiner asked whether the quasisymmetric functions K_{P} generate (as a \mathbb{Z}-algebra) or even span (as an additive abelian group) the space of all quasisymmetric functions. Let \boldsymbol{m} denote an m-element antichain. The ordinal sum $P \oplus Q$ of two posets P, Q with disjoint elements is the poset on the union of their elements satisfying $s \leq t$ if either (1) $s, t \in P$ and $s \leq t$ in P, (2) $s, t \in Q$ and $s \leq t$ in Q, or (3) $s \in P$ and $t \in Q$. If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \operatorname{Comp}(n)$ then let $P_{\alpha}=\boldsymbol{\alpha}_{\mathbf{1}} \oplus \cdots \oplus \boldsymbol{\alpha}_{\boldsymbol{k}}$. It is easy to see that $K_{P_{\alpha}}=R_{\alpha}$, so the $K_{P_{\alpha}}$'s form a \mathbb{Z}-basis for the homogeneous quasisymmetric functions of degree n, thereby answering the question of Billera and Reiner.

2 Multisets and inversions.

In this section we consider two further aspects of the connectivity set: (1) an extension to permutations of a multiset and (2) a q-analogue of Theorem 1.4 when the number of inversions of w is taken into account.

Let $T=\left\{i_{1}, \ldots, i_{k}\right\}_{<} \subseteq[n-1]$. Define the multiset

$$
N_{T}=\left\{1^{i_{1}}, 2^{i_{2}-i_{1}}, \ldots,(k+1)^{n-i_{k}}\right\} .
$$

Let $\mathfrak{S}_{N_{T}}$ denote the set of all permutations of N_{T}, so $\# \mathfrak{S}_{N_{T}}=$ $n!/ \eta(T)$; and let $w=a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{N_{T}}$. In analogy with equation (1) define

$$
C(w)=\left\{i: a_{j}<a_{k} \text { for all } j \leq i<k\right\} .
$$

(Note that we could have instead required only $a_{j} \leq a_{k}$ rather than $a_{j}<a_{k}$. We will not consider this alternative definition here.)

Proposition 2.1. Let $S, T \subseteq[n-1]$. Then

$$
\begin{aligned}
\#\left\{w \in \mathfrak{S}_{N_{T}}: C(w)=S\right\} & =(X M)_{\bar{S} \bar{T}} \\
& =\sum_{U: U \supseteq \bar{T}} X_{\bar{S} U} \\
& =\#\left\{w \in \mathfrak{S}_{n}: C(w)=S, D(w) \supseteq \bar{T}\right\}
\end{aligned}
$$

Proof. The equality of the three expressions on the right-hand side is clear, so we need only show that

$$
\begin{equation*}
\#\left\{w \in \mathfrak{S}_{N_{T}}: C(w)=S\right\}=\#\left\{w \in \mathfrak{S}_{n}: C(w)=S, D(w) \supseteq \bar{T}\right\} \tag{14}
\end{equation*}
$$

Let $T=\left\{i_{1}, \ldots, i_{k}\right\}_{<} \subseteq[n-1]$. Given $w \in \mathfrak{S}_{n}$ with $C(w)=S$ and $D(w) \supseteq \bar{T}$, in w^{-1} replace $1,2, \ldots, i_{1}$ with 1's, replace $i_{1}+1, \ldots, i_{2}$ with 2 's, etc. It is easy to check that this yields a bijection between the sets appearing on the two sides of (14).

Let us now consider q-analogues $Z(q), Y(q), X(q)$ of the matrices Z, Y, X. The q-analogue will keep track of the number $\operatorname{inv}(w)$ of inversions of $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$, where we define

$$
\operatorname{inv}(w)=\#\left\{(i, j): i<j, a_{i}>a_{j}\right\} .
$$

Thus define

$$
X(q)_{S T}=\sum_{\substack{w \in \in_{n} \\ C(w)=\bar{S}, D(w)=T}} q^{\operatorname{inv}(w)},
$$

and similarly for $Z(q)_{S T}$ and $Y(q)_{S T}$. We will obtain q-analogues of Theorems 1.2 and 1.4 with completely analogous proofs.

Write $(j)=1+q+\cdots+q^{j-1}$ and $(j)!=(1)(2) \cdots(j)$, the standard q-analogues of j and j !. Let $S=\left\{i_{1}, \ldots, i_{k}\right\}<\subseteq[n-1]$, and define

$$
\eta(S, q)=i_{1}!\left(i_{2}-i_{1}\right)!\cdots\left(i_{k}-i_{k-1}\right)!\left(n-i_{k}\right)!.
$$

Let $T \subseteq[n-1]$, and let $\bar{T}=\left\{i_{1}, \ldots, i_{k}\right\}_{<}$. Define

$$
z(T)=\binom{i_{1}}{2}+\binom{i_{2}-i_{1}}{2}+\cdots+\binom{n-i_{k}}{2}
$$

Note that $z(T)$ is the least number of inversions of a permutation $w \in \mathfrak{S}_{n}$ with $T \subseteq D(w)$.

Theorem 2.2. We have

$$
Z(q)_{S T}=\left\{\begin{aligned}
q^{z(T)} \eta(\bar{S}, q) / \eta(\bar{T}, q), & \text { if } \bar{S} \cap T=\emptyset \\
0, & \text { otherwise }
\end{aligned}\right.
$$

Proof. Preserve the notation from the proof of Theorem 1.2. If (s, t) is an inversion of w (i.e., $s<t$ and $a_{s}>a_{t}$) then for some $0 \leq h \leq j$ we have $c_{h}+1 \leq s<t \leq c_{h+1}$. It is a standard fact of enumerative combinatorics (e.g., [5, (21)][6, Prop. 1.3.17]) that if $U=\left\{u_{1}, \ldots, u_{r}\right\}_{<} \subseteq[m-1]$ then

$$
\begin{aligned}
\sum_{\substack{v \in \mathcal{G}_{m} \\
D(v) \subseteq U}} q^{\operatorname{inv}(v)} & =\left(\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}}-\boldsymbol{u}_{\mathbf{1}}, \ldots, \boldsymbol{m}-\boldsymbol{u}_{\boldsymbol{r}}\right) \\
& :=\frac{(\boldsymbol{m})!}{\left(\boldsymbol{u}_{1}\right)!\left(\boldsymbol{u}_{2}-\boldsymbol{u}_{1}\right)!\cdots\left(\boldsymbol{m}-\boldsymbol{u}_{\boldsymbol{r}}\right)!}
\end{aligned}
$$

a q-multinomial coefficient. From this it follows easily that if $\bar{U}=$ $\left\{y_{1}, \ldots, y_{s}\right\}_{<}$then

$$
\sum_{\substack{v \in \mathcal{F}_{m} \\
D(v) \supseteq U}} q^{\operatorname{inv}(v)}=q^{z(T)}\left(\begin{array}{c}
\boldsymbol{m} \\
\left.\boldsymbol{y}_{1}, \boldsymbol{y}_{\boldsymbol{2}}-\boldsymbol{y}_{1}, \ldots, \boldsymbol{m}-\boldsymbol{y}_{\boldsymbol{s}}\right) .
\end{array}\right.
$$

Hence we can parallel the proof of Theorem 1.2, except instead of merely counting the number of choices for the sequence $u=\left(a_{c_{h}}, a_{c_{h}}+\right.$ $1, \ldots, a_{c_{h+1}}$) we can weight this choice by $q^{\operatorname{inv}(u)}$. Then

$$
\left.\sum_{u} q^{\operatorname{inv}(u)}=q^{\left(i_{2}-i_{1}\right)+\cdots+\left(i_{k}-i_{k-1}\right.}{ }_{2}\right)\left(\boldsymbol{i}_{\boldsymbol{2}}-\boldsymbol{i}_{\boldsymbol{1}}, \boldsymbol{i}_{\boldsymbol{3}+\boldsymbol{h}}-\boldsymbol{i}_{\mathbf{2}}, \ldots, \boldsymbol{c}_{\boldsymbol{h}}, \boldsymbol{i}_{\boldsymbol{k}}-\boldsymbol{i}_{\boldsymbol{k}-\mathbf{1}}\right)
$$

summed over all choices $u=\left(a_{c_{h}}, a_{c_{h}}+1, \ldots, a_{c_{h+1}}\right)$. Taking the product over all $0 \leq h \leq j$ yields $q^{z(T)} \eta(\bar{S}, q) / \eta(\bar{T}, q)$.

Theorem 2.3. The matrices $Z(q), Y(q), X(q)$ have the following inverses:

$$
\begin{aligned}
Z(q)_{S T}^{-1} & =(-1)^{\# S+\# T} Z(1 / q)_{S T} \\
Y(q)_{S T}^{-1} & =(-1)^{\# S+\# T} \sum_{\substack{w \in \mathfrak{S}_{n} \\
\bar{S}=C(w), T \subseteq D(w)}} q^{-\operatorname{inv}(w)} \\
X(q)_{S T}^{-1} & =(-1)^{\# S+\# T} X(1 / q)_{S T} .
\end{aligned}
$$

Proof. Let $D(q)=\left(D(q)_{S T}\right)$ be the diagonal matrix with $D(q)_{S S}=$ $\eta(\bar{S}, q)$. Let $Q(q)$ be the diagonal matrix with $Q(q)_{S S}=q^{z(S)}$. Exactly as for (3), (4) and (6) we obtain

$$
\begin{aligned}
Z(q) & =D(q) M D(q)^{-1} Q(q) \\
M X(q) M & =Z(q) \\
Y(q) & =M X(q)=Z(q) M^{-1}
\end{aligned}
$$

The proof now is identical to that of Theorem 1.4.
Let us note that Proposition 2.1 also has a straightforward q analogue; we omit the details.

Acknowledgment. I am grateful to the referee for several suggestions that have enhanced the readability of this paper.

References

[1] D. Callan, Counting stabilized-interval-free permutations, J. Integer Sequences (electronic) 7 (2004), Article 04.1.8; http://www.cs.uwaterloo.ca/journals/JIS.
[2] L. Comtet, Sur les coefficients de l'inverse de la série formelle $\sum n!t^{n}$, Comptes Rend. Acad. Sci. Paris, A 275 (1972), 569-572.
[3] L. Comtet, Advanced Combinatorics, Reidel, 1974.
[4] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A003319; http://www.research.att.com/~njas/sequences.
[5] R. Stanley, Binomial posets, Möbius inversion, and permutation enumeration, J. Combinatorial Theory (A) 20 (1976), 336-356.
[6] R. Stanley, Enumerative Combinatorics, vol. 1, Wadsworth and Brooks/Cole, 1986; second printing, Cambridge University Press, 1996.
[7] R. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, 1999.
[8] H. Wilf, Algorithms and Complexity, second ed., A K Peters, 2002.

[^0]: ${ }^{1} 2000$ Mathematics Subject Classification: 05A05
 Key words and phrases: descent set, connected permutation, connectivity set
 ${ }^{2}$ Partially supported by NSF grant \#DMS-9988459 and by the Institut Mittag-Leffler.

