Here I will maintain supplementary material for *Enumerative Combinatorics*, volume 2 (original edition of 1999). This will include errata, updated references, and new material. I will be continually updating this supplement.

NOTE. References to math.CO refer to the combinatorics section of the Mathematics Archive at arxiv.org/list/math.CO/recent. A front end site for math.CO is front.math.ucdavis.edu/math.CO.

- p. 2, Example 5.1.2. Interchange ∩ and ∪ on line 2.
- p. 6, line 10. Change situtations to situations.
- p. 8, line 6. The first Π should be \(\Pi \).
- p. 11, line 3. Change \(E_c(n) \) to \(E_c(x) \).
- p. 18, line 3. Change \((n)_2 \) to \(n(n-2) \).
- p. 20, line 9. Change \(Z(\mathcal{S}_n) \) to \(\tilde{Z}(\mathcal{S}_n) \).
- p. 24, line 4 (after figure). Change \(\lim_{n\to\infty} \) to \(\lim_{k\to\infty} \).
- p. 25, line 5. Change \(\subseteq \) to \(\in \).
- p. 33, line 5-. Change \(\text{ord}(\tau_k) \) to \(\text{ord}(\tau_j) \).
- p. 34, Lemma 5.3.9. Delete the first sentence, viz., “Let \(w \in \mathcal{A}^* \).”
- p. 35, line 10. Change \(w \in \mathcal{B}^* \) to \(w \in \mathcal{B}_r^* \).
- p. 35, line 8-. Change \(A \) to \(\mathcal{A} \).
- p. 36, lines 15–16. Change “beginning with a 1” to “ending with a \(-1\)”.

1
• p. 36, line 1. Insert + · · · before =. (The left-hand side is an infinite sum.)

• p. 51, line 9. Change $Q_i = \prod_i^{(2)}$ to “when Q_i is given by Example 5.5.2(d) for $r = 2$”.

• p. 59, line 8. Change “effect” to “affect”.

• p. 59, line 9. Change “Since the rows” to “Since the columns”.

• p. 59, line 13. Change “Because the columns” to “Because the rows”.

• p. 62. Example 5.6.12, line 5. Change “modulo n” to “modulo 2^n”.

• p. 63, line 12. Change “sequence” to “sequences”.

• p. 65, line 8. Change “Theorem” to “Lemma”.

• p. 72, Exercise 5.2(a). Relabel the first part (iii) as part (ii).

• p. 74, Exercise 5.8(a). The stated formula for $T(n, k)$ fails for $n = 0$. Also, it makes more sense to define $T(0,0) = 1$.

• p. 81, Exercise 5.24(d). A solution was found by the Cambridge Combinatorics and Coffee Club (February 2000).

• p. 83, line 1. Change diagraph to digraph.

• p. 87, equation (5.111). We need to add the further condition that $p_n(0) = \delta_{0n}$. Otherwise, for instance, the polynomials $p_n(x) = (1 + x)^n$ satisfy (iv) with $Q = \frac{d}{dx}$ but fail to satisfy (i)–(iii).

• p. 97, Exercise 5.51. It is not true that (ii) implies (i), e.g., when $C(x) = c$. One needs to add the hypothesis that $[x]C(x) \neq 0$, so that $(C(x) - c)^{(-1)}$ exists. Substituting $xC(B(x))$ for x in (ii) yields

$$xC(B(x))/C(A(xC(B(x)))) = x,$$

so $C(B(x)) = C(A(xC(B(x))))$. Substituting $B(x)^{(-1)}$ for x yields $C(x) = C(A(B(x)^{(-1)}C(x)))$. Subtract c from both sides and apply $(C - c)^{(-1)}$ to get $x = A(B(x)^{(-1)}C(x))$. Applying $A^{(-1)}$ to both sides gives (i). This argument is due to Daniel Giaimo and Amit Khetan and (independently) to Yumi Odama.
• p. 101, line 3. Change \(J_0[(2 - t)/\sqrt{t - 1}] \) to \(J_0(\sqrt{-t}(2 - t)/(1 - t)) \).

• p. 102, Exercise 5.71. It would be better not to specify the degree \(d \) of \(G \), since (as stated in the solution) \(d = \lambda_1 \).

• p. 103, Exercise 5.74(d). Replace the first two sentences with: Show that all vertices have the same outdegree \(d \). (By (c), all vertices then also have indegree \(d \).)

• p. 124, Exercise 5.28. A bijective proof based on Prüfer codes is due to the Cambridge Combinatorics and Coffee Club (December 1999).

• p. 134, Exercise 5.41(c), lines 3– to 2–. The paper of Postnikov and Stanley has appeared in \textit{J. Combinatorial Theory (A)} \textbf{91} (2000), 544–597.

• p. 136, last line of Exercise 5.41(j). A solution different from the one above was given by S. C. Locke, \textit{Amer. Math. Monthly} \textbf{106} (1999), 168.

• p. 137, Exercise 5.45, line 1. Change \(kxy^k \) to \((k + 1)xy^k \).

• p. 137, Exercise 5.45, line 4. Change this equation to

\[
y = x + 2xy + 3xy^2 + \cdots = \frac{x}{(1 - y)^2}.
\]

• p. 139, Exercise 5.47(c), line 7. A direct combinatorial proof was given by M. Bousquet-Mélou and G. Schaeffer, \textit{Advances in Applied Math.} \textbf{24} (2000), 337–368.
• p. 142, line 1. Change L^{n-1} to L^n.

• p. 143, Exercise 5.50(c), lines 3– to 2–. The paper of Postnikov and Stanley has appeared in *J. Combinatorial Theory (A)* 91 (2000), 544–597.

• p. 144, Exercise 5.53. The identity

$$4^n = \sum_{j=0}^{n} 2^{n-j} \binom{n+j}{j}$$

(1)

• p. 147, Third Solution. The first two lines should be: Equation (5.530) can be rewritten (after substituting $n+k$ for n)

$$(n+k)[x^n] \frac{1}{k} \left(\frac{F^{(-1)}(x)}{x} \right)^k = [x^n] \left(\frac{x}{F(x)} \right)^{n+k}. \quad (5.140)$$

• p. 151, Exercise 5.62(b). David Callan observed (private communication) that there is a very simple combinatorial proof. Any matrix of the type being enumerated can be written *uniquely* in the form $P + 2Q$, where P and Q are permutation matrices. Conversely $P + 2Q$ is always of the type being enumerated, whence $f_3(n) = n!^2$.

• p. 162, lines 13– to 12–. Change “Thus any algebraic power series, as defined in Definition 6.1.1” to “Thus any algebraic function, i.e, any solution η to (6.2)”.

• p. 169, item (vi). When there is a region with only two edges, then the neighboring regions will not be convex (as shown in Figure 6.1). Hence when there is a region with two edges the phrase “each a convex k-gon” should be replaced by “each a k-gon”.

• p. 175, line 1. Change $\{9, 11\}$ to $\{9, 14\}$.

• p. 175, line 2. Change x^{11} to x^{14}.
• p. 175, line 4. Change v^{11} to v^{14}.
• p. 175, line 11. Change Theorem 5.4.1 to Theorem 5.4.2.
• p. 175, line 2. Change $k \in K$ to $k \in \mathbb{Z}$.
• p. 176, line 16. Change intersect to intersect.
• p. 176, line 4. Change $(n + 2)$-gon to $(n + 1)$-gon.
• p. 192, line 9. Change $u(0) = 0$ to $v(0) = 0$.
• p. 192, lines 8 to 7. The example $v = \log(1 + x^2) - 1$ is confusing since $v(0) \neq 0$. Nevertheless the series $u(v(x)) = \sqrt{\log(1 + x^2)}$ is well-defined formally since we can write
 \[
 \sqrt{\log(1 + x^2)} = x \sqrt{\frac{\log(1 + x^2)}{x^2}}.
 \]
It would have been more accurate to define
 \[
 v(x) = \frac{\log(1 + x^2)}{x^2} - 1.
 \]
The same remarks apply to Exercise 6.59.
• p. 212, lines 16–17. I have forgotten the source for the statement that Netto was the first to use the term “Catalan number.” Can anyone provide a reference?

• p. 213, line 5–. Change “to Comtet [19]” “to Abel [continue??] see Ouvres, vol II, p. 287, point D

• p. 217, Exercise 6.2(a). It needs to be assumed that $F(0) = 0$; otherwise e.g. $F(x) = 1/2$ is a trivial counterexample.

• p. 219, Exercise 6.16. A combinatorial proof was first given by R. Sulanke, *Electronic J. Combinatorics* 7(1), R40, 2000. A sharper result was subsequently proved combinatorially by D. Callan, A uniformly distributed parameter on a class of lattice paths, math.CO/0310461.

• p. 221, Exercise 6.19(j).This problem appeared as Problem A5 on the 2003 William Lowell Putnam Mathematical Competition. Many participants found the following bijection with 6.19(i) (Dyck paths from $(0,0)$ to $(2n,0)$): Let D be a Dyck path from $(0,0)$ to $(2n,0)$. If D has no maximal sequence of $(1, -1)$ steps of even length ending on the x-axis, then just prepend the steps $(1, 1)$ and $(1, -1)$ to the beginning of D. Otherwise let R be the rightmost maximal sequence of $(1, -1)$ steps of even length ending on the x-axis. Insert an extra $(1, 1)$ step at the beginning of D and a $(1, -1)$ step after R. This gives the desired bijection.

• p. 224, item ii, line 5. Change $S(w) = w$ to $S(w) = 12 \cdots n$.

• p. 228, item iii, line 3. To be precise, the displayed sequences should have the initial and final 1’s deleted.

• p. 230, Exercise 6.21(b), line 3. Change 5.3.11 to 5.3.12.

• p. 230, Exercise 6.23. Brian Rothbach has pointed out that this problem can be given another stipulation: serieshelpmate in 20. By parity considerations (Black cannot lose an odd number of moves with a knight) the solution is the same as before except Black plays Pa7-a6 instead of Pa7-a5. Thus the number of solutions is $C_{10} = 16796$.

• p. 232, Exercise 6.27(c). Robin Chapman has found an elegant argument that there always exists an integral orthonormal basis.

• p. 233, Exercise 6.30, line 3. It would be less ambiguous to change “this exercise” to “that exercise”.

• p. 235, Exercise 6.34, line 4. At the end of the line it should be mentioned that the polynomial $g(L_n, q)$ of Exercise 3.71(f) is a further q-analogue of C_n. An additional reference for this polynomial is R. Stanley, *J. Amer. Math. Soc.* 5 (1992), 805–851 (Prop. 8.6).

• p. 236, Exercise 6.34(b), line 8. Change “nonnegative” to “nonpositive”.

• p. 238, Exercise 6.38(d), line 1. Change (n, n) to $(n, 0)$.

• p. 239, Exercise 6.39(h). A period is missing at the end of the sentence.

• p. 241, Exercise 6.41, line 1. Change $S^2(w) = w$ to $S^2(w) = 12 \cdots n$.

• p. 246, Exercise 6.55(a), line 4. Change “while $w(t) \geq i + 1$ if t is between $k_i + 1$ and s” to “while $w(t) \geq i + 1$ if $k_i + 1 \leq t \leq s$ or $s \leq t \leq k_i - 1$”.

• p. 246, equation (6.62). Change $\sum_{n=1}^{n-1} k=1$ to $\sum_{k=1}^{n}$.

• p. 247, Exercise 6.59. See the item above for p. 192, lines 8– to 7–.

• p. 250, Exercise 6.3, line 3. Replace “$r = s + \frac{1}{2}$ for some $s \in \mathbb{Z}$” with “r cannot be a negative integer”.

• p. 250, Exercise 6.3, paragraph 3. The earliest proof that $\sum_{n \geq 0} \binom{2n}{n} t^n x^n$ isn’t algebraic for any $t \in \mathbb{N}$, $t > 1$, appears in the paper P. Flajolet, *Theoretical Computer Science* 49 (1987), 283–309 (page 294). Flajolet shows that if $\sum a_n x^n$ is algebraic and each $a_n \in \mathbb{Q}$, then a_n satisfies an asymptotic formula

$$a_n = \frac{\beta^n n^s}{\Gamma(s+1)} \sum_{i=0}^{m} C_i \omega_i^n + O(\beta^n n^t),$$

where $s \in \mathbb{Q} - \{-1, -2, -3, \ldots \}$, $t < s$, β is a positive algebraic number, and the C_i and ω_i are algebraic with $|\omega_i| = 1$. A simple application of
Stirling’s formula shows that if $a_n = \left(\frac{2n}{n}\right)^t$, then a_n does not have this asymptotic form when $t \in \mathbb{N}$, $t > 1$.

- p. 253, last two lines. Change “somewhat general more result” to “somewhat more general result”.

- p. 257, Exercise 6.19(k). Update the reference to *J. Integer Seq.* 4 (2001), Article 01.1.3; available electronically at

 http://www.research.att.com/~njas/sequences/JIS.

- p. 258, Exercise 6.19(s), line 1. Change a_i to $a_i - 1$.

- p. 260, line 6–. Change $(c_{j_\ell} + j_\ell - 1, n)$ to (n, j_ℓ).

- p. 264, Exercise 6.19(iii). It should be mentioned that the diagonals of the frieze patterns of Exercise 6.19(mmm) are precisely the sequences $1a_1a_2\cdots a_n1$ of the present exercise.

p. 269, line 1–, to p. 270, line 1. The paper of Postnikov and Stanley has appeared in *J. Combinatorial Theory (A)* **91** (2000), 544–597.

p. 272, Exercise 6.34, line 7. Change a to e.

p. 274, line 2. Change “D. Vanquelin” to “B. Vauquelin”.

p. 278, Exercise 6.53, line 3. Change $Q(x) = x - 2$ to $Q(x) = -x - 2$.

p. 279, Exercise 6.56(c). In the paper N. Alon and E. Friedgut, *J. Combinatorial Theory (A)* **89** (2000), 133–140, it is shown that $A_v(n) < e^{n \gamma^*(n)}$, where $\gamma^*(n)$ is an extremely slow growing function related to the Ackermann hierarchy. The paper is available at http://www.ma.huji.ac.il/~ehudf.

p. 291, line 9–. In general it is not true that $\hat{\Lambda}_R = \hat{\Lambda} \otimes R$; one only has a natural surjection from the former onto the latter. Equality will hold for instance if R is a finite-dimensional \mathbb{Q}-vector space.

p. 292, line 7. Insert “in” after “role”.

p. 293, lines 11-13. Replace “, and such that the ... exist.)” with a period. (The deleted condition automatically holds.)

p. 295, Figure 7-3. In the expansion of h_{41}, the coefficient of m_{41} should be 2.

p. 298, line 10–. Change “if follows” to “it follows”.

p. 300, line 8–. Change \sum to Π.
• p. 301, line 7. Change 1.1.9(b) to 1.9(b).

• pp. 314–315, proof of Proposition 7.10.4. Change \(\lambda \) to \(\lambda/\mu \) throughout proof.

• p. 315, Figure 7-4. In the expression for \(s_3 \) change the second \(m_{111} \) to \(m_3 \). Similarly, in the expression for \(s_4 \) change the second \(m_{1111} \) to \(m_4 \).

• p. 317, line 12–. Change “clearly impossible” to “clear”.

• p. 322, line 2. Interchange \(\tilde{P} \) and \(\tilde{Q} \).

• p. 326, line 2. Insert a space after “antichains”.

• p. 329, line 15–. Change \(x’s \) to \(X’s \).

• p. 336, line 7 (counting the displayed tableau as a single line). Change 7.8.2(b) to 7.8.2(a).

• p. 346, line 3–. Change “forms a border strip” to “forms a border strip or is empty”.

• p. 346, line 1–. Change \(\lambda^i/\lambda^{i+1} \) to \(\lambda^{i+1}/\lambda^i \).

• p. 348, line 9. Change \(\chi_{\lambda}(\mu) \) to \(\chi^\lambda(\mu) \).

• p. 352, line 2 of proof of Proposition 7.18.1. Change \(\sum_{\mu} z^{-1}_\lambda f(\lambda)p_\mu \) to \(\sum_{\lambda} z^{-1}_\lambda f(\lambda)p_\lambda \).

• p. 354, line 4. Change “in” to “is”.

• p. 354, line 5. Change “a integral” to “an integral”.

• p. 355, line 4. Add a period after “nonnegative”.

• p. 356, line 1. Insert “character of the” before “action”.

• p. 359, line 6. Change the subscript \(\alpha_S \) to \(\text{co}(S) \).

• p. 364, line 1. Change \(e(D(T)) \) to \(e(\text{co}(D(T))) \).

• p. 370, line 3 of second proof. Change 1.22(d) to 1.23(d).
• p. 370, line 5–. Change the first row of the middle tableau from 43333311 to 4333311.

• p. 374, first diagram. The 1 at the end of the first row should be in boldface.

• p. 377, line 7; p. 378, line 8; page 378, line 10–. Change \(\pi \in B(r, c, t) \) to \(\pi \subseteq B(r, c, t) \).

• p. 379, line 5–. Insert \(\pi \) after the first “partition”.

• p. 379, line 4–. Change “similary” to “similarly” and change \(\lambda^* \) to \(\pi^* \).

• p. 381, middle of page. Replace \[
\begin{array}{c}
0 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 0
\end{array}
\]

with \[
\begin{array}{c}
0 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 0
\end{array}
\].

• p. 383, line 9. Change “\(D(w) = T \) and \(D(w^{-1}) = T \)” to “\(D(w) = D(T') \) and \(D(w^{-1}) = D(T) \)”.

• p. 394, line 8–. Insert # before \text{Fix}(w).

• p. 395, line 10–. Change “Burnside’s theorem” to “Burnside’s lemma”.

• p. 399, line 15. Change “function” to “functions”.

• p. 399, line 7–. For additional information concerning Craige Schensted, see the webpage \url{http://ea.ea.home.mindspring.com}.

• p. 404, line 7–. Change A2.2 to A2.4.

• p. 405, line 1. Change A2.6 to A2.8.

• p. 405, line 6. Change A2.6 to A2.8.

• p. 416, line 7–. Change \(u_{jt+2} \) to \(u_{jt+2} \).

• p. 418, line 7. Change “subsequences” to “subsequence”.

• p. 419, line 16. Change “was” to “is”.

• p. 421, line 9–. Insert “a” after “such”.
• p. 421, lines 8– to 7–. Change “second statement of Theorem A1.1.4” to “first assertion of Theorem A1.1.6”.

• p. 424, line 11. Delete “by”.

• p. 426, line “tableaux in (A1.137)” to “tableau defined by (A1.137)”.

• p. 439, line 7. Delete comma after 156.

• p. 442, Theorem A2.4, line 6. change $\alpha : V \to W$ to $\alpha : W \to W'$.

• p. 442, Theorem A2.4, line 7. Change $v \in V$ to $v \in W$.

• p. 442, Theorem A2.4, line 9. Change “Hence” to “Moreover,”.

• p. 443, line 11. Change

$$\text{char } \varphi = (x_1 \cdots x_n)^{-1} = (x_1 \cdots x_n)^{-1} s_{\emptyset}$$

to

$$\text{char } \varphi = x_1^{-1} + \cdots + x_n^{-1} = (x_1 \cdots x_n)^{-1} s_1^{n-1}$$

• p. 444, line 12. Delete “char”.

• p. 444, line 11–. Change “given by (A2.156)” to “generated (as a \mathbb{C}-algebra) by (A2.156)”.

• p. 447, line 3–. Change $s_1(x_1^{\lambda_1})$ to $s_1(x_1^{\lambda_1}, x_2^{\lambda_2}, \ldots)$.

• p. 450, Exercise 7.4, line 2. Change the exponent $n - 1 - r$ to $n - 1 + r$.

• p. 451, Exercise 7.13(a). This exercise is stated incorrectly. For instance, $K_{777,6654} = 1$, contrary to the statement of the exercise. One way to state the correct result is as follows. Let the parts of λ' be given by

$$\lambda'_1 = \cdots = \lambda'_{n_1} > \lambda'_{n_1+1} = \cdots = \lambda'_{n_2} > \lambda'_{n_2+1} = \cdots$$
\[> \lambda'_{nk-1} + \cdots = \lambda'_{nk} > 0. \]

Define \(\lambda^{(j)} = (\lambda'_{n_{j-1}+1}, \ldots, \lambda'_{n_j}) \) (with \(n_0 = 0 \)), so \(\lambda^{(j)} \) is a partition of rectangular shape. Let \(\mu \) be a partition with \(|\mu| = |\lambda| \), and let

\[\mu^{(j)} = (\mu_{n_{j-1}+1}, \ldots, \mu_{n_j}). \]

Then \(K_{\lambda\mu} = 1 \) if and only if \(\lambda \geq \mu \) (dominance order) and

(i) \(|\lambda^{(j)}| = |\mu^{(j)}| \) and \(\lambda^{(j)} \geq \mu^{(j)} \) for all \(j \).

(ii) For all \(1 \leq j \leq k \) either \(0 \leq \mu'_{n_{j-1}+1} - \lambda'_{n_{j-1}+1} \leq 1 \) or \(0 \leq \lambda'_{n_j} - \mu'_{n_j} \leq 1 \).

- p. 452, line 6. Change “k times” to “n times”.

- p. 452, Exercise 7/16(a), line 5. Change \(c_{i-j} + c_{i+j} \) to \(c_{i-j}c_{i+j} \).

- pp. 452–453, Exercise 7.16(b,e). The formulas for \(y_i(n) \) and \(u_i(n) \) have been extended to \(i \leq 6 \) by F. Gascon, Fonctions de Bessel et combinatoire, Publ. LACIM 28, Univ. du Québec à Montréal, 2002 (page 75). In particular,

\[
y_0(2n) = 6(2n)! \sum_{k=0}^{n} \frac{(10n - 13k + 8)C_{k+1}}{(n - k + 2)! (n - k)! (k + 4)! k!},
\]

where \(C_{k+1} \) denotes a Catalan number.

- p. 459, Exercise 7.30(b), line 2. Change \(x_i^{d-1} + x_i^{d-2}x_j + x_i^{d-3}x_j^2 + \cdots + x_j^{d-2}x_j^{d-1} \) to \(x_i^d + x_i^{d-1}x_j + x_i^{d-2}x_j^2 + \cdots + x_j^d \).

- p. 459, Exercise 7.30(c), line 4. Change \(d - 1 \) to \(d \).

- p. 460, Exercise 7.37. For further information on expanding \(a_3^2 \) in terms of Schur functions, see

- p. 461, Exercise 7.42, line 2. Change \(s_\lambda(y) \) to \(s_\lambda'(y) \).

- p. 466, line 3. Change \((\lambda_i - 1)!k_i(\lambda'_i - 1)! \) to \((\lambda_i - i)!(\lambda'_i - i)! \).

- p. 467, line 5. Change \(\mathfrak{e}_n \) to \(\mathfrak{S}_n \).
• p. 467, Exercise 7.55(b). Let \(f(n) \) be the number of \(\lambda \vdash n \) satisfying (7.177). Then

\[
(f(1), f(2), \ldots, f(30)) = (1, 1, 1, 2, 2, 7, 7, 10, 10, 34, 40, 53, 61, 103, 112, 143, 145, 369, 458, 579, 712, 938, 1127, 1383, 1638, 2754, 3334, 3925, 5092).
\]

• p. 467, Exercise 7.59. In order for the bijection \(\lambda \mapsto (\lambda^0, \lambda^1, \ldots, \lambda^{p-1}) \) given in the solution to part (e) (page 517) to be correct, it is necessary to define a specific indexing of the terms of \(C_\lambda \). Namely, index a term \(a \) by \(c_i \) if \(i = i_1 - i_0 \), where \(i_1 \) is the number of 1’s weakly to the left of \(a \), and \(i_0 \) is the number of 0’s strictly to the right of \(a \) (so if \(a = 1 \), then this contributes to \(i_1 \)). The sequence becomes \(\cdots c_{-2} c_{-1} c_0 c_1 c_2 \cdots \) as before, so it suffices to define the indexing by letting the first 1 be \(c_{i_0 - 1} \), where \(i_0 \) is the number of 0’s following this 1.

Example. If \(\lambda = (4, 3, 3, 1) \), then \(C_\lambda = \cdots 001010001011 \cdots \). The first 1 in this sequence is \(c_{1-4} = c_{-3} \). On the other hand, if \(\lambda = (3, 3, 3, 2, 2, 1) \), then \(C_\lambda = \cdots 0010100100011 \cdots \). Now the first 1 is \(c_{1-6} = c_{-5} \).

• p. 468, Exercise 7.59(e), line 3. Change \(Y_k \) to \(Y^p \).

• p. 469, Exercise 7.61, line 2. Change “0 or 1” to “0 or \(\pm 1 \)”.

• p. 474, Exercise 7.70, line 3. Under the second summation sign insert a space between “in” and \(\mathfrak{S}_n \).

• p. 477, Exercise 7.79(c), line 1. Change “strengthening” to “strengthening”.

• p. 484, equation (7.193). Change \(1 \leq i \leq j \leq n \) to \(1 \leq i < j \leq n \).

• p. 484, Exercise 7.101(b). As in (a), the plane partitions being counted have largest part at most \(m \).

• p. 485, line 4. Change SSYT to “reverse SSYT” (i.e., the rows are weakly decreasing and columns strictly decreasing).

• p. 485, line 5. Change \(T_{ij} < n - \lambda_i + i \) to \(T_{ij} \leq n + \mu_i - i \), and change \(n = 3 \) to \(n = 2 \).
• p. 485, lines 6 and 8. Change $t_{32/1,3}(q)$ to $t_{32/1,2}(q)$.

• p. 485, line 7. The five displayed tableaux should be rotated 180°.

• p. 485, line 3-. The asymptotic formula for $a(n)$ should be multiplied by a factor of $1/\sqrt{3\pi}$. The factor $1/\sqrt{\pi}$ was included by Wright and omitted here by mistake. The additional factor $1/\sqrt{3}$ was omitted by Wright, though his proof makes it clear that it should appear. See L. Mutafchiev and E. Kamenov, math.CO/0601253.

• p. 491, Exercise 7.9, line 1. Insert ε_λ before $a_{\lambda\mu}e_\lambda$.

• p. 492, Exercise 7.11. Change $\binom{\ell_{(\mu)}-j}{j}$ to $\binom{\ell_{(\mu)}-1}{j}$ (three times).

• p. 494, Figure 7-20. Change the labels R_1h6, R_1h5, and R_2h6 to R_1a6, R_1a5, and R_2a5, respectively.

• p. 496, equation (7.199). Change $(m_i(\lambda)!)^{-1}$ to $\prod_i(m_i(\lambda)!)^{-1}$.

• p. 497. Exercise 7.22(b), line 2. Change the first \mathfrak{S}_n to \mathfrak{S}_n.

• p. 500, displayed tableaux near end of Exercise 7.24. The tableaux T_8 and T_9 are missing the element 8 to the right of 3. Also, the $\{3,10\}$ under T_9 should be under T_{10}.

• p. 500, line 5-. Change (??) to (c).

• p. 502, Exercise 7.27, first displayed equation. Change $(n)_m$ to $(n)_{n-m}$.

• p. 514, lines 4– and 3–. Change “ibid., Cor. 7.1.2” to “R. Stanley, Electron. J. Combinatorics 3, R6 (1996), 22 pp., Cor. 1.2”.

• p. 514, line 1–, and p. 515, line 1. “Ibid.” refers to the reference in the item above, not to the previous reference in the book.

• p. 515, Exercise 7.48(g). Further generalizations of shuffle posets are considered by P. Hersh, J. Combinatorial Theory (A) 97 (2002), 1–26.

• p. 516, line 8. Change \((\lambda_i - 1)! (\lambda'_i - 1)!\) to \((\lambda_i - i)! (\lambda'_i - i)!\).

• p. 517, Exercise 7.59(e), line 3. Change \(Y^k\) to \(Y^p\).

• p. 517, Exercise 7.59(e), line 9. Change \(Y^0\) to \(Y_{p,0}\), and change \(Y^k\) to \(Y^p\).

• p. 518, Exercise 7.59(h), line 1. Change \(Y^0\) to \(Y_{p,0}\), and change \(Y^k\) to \(Y^p\).

• p. 518, Exercise 7.59(h), line 2. Change \(Y^k\) to \(Y^p\) (three times).

• p. 518, Exercise 7.59(h), line 3. Change \(Y^k\) to \(Y^p\).

• p. 520, line 3–. Change \(\sum_{n \geq 0} h_{2n+1} t^{2n+1}\) to \(\sum_{n \geq 0} (-1)^n h_{2n+1} t^{2n+1}\).

• p. 535, lines 7–10. Replace the sentence “No proof ... are known.” with “A bijective proof of the unimodality of \(s_\lambda(1, q, \ldots, q^n) \) was given by A. N. Kirillov, \(C. R. \ Acad. Sci. Paris, Sér. I \) 315 (1992), 497–501.”

• p. 537, Exercise 7.78(f), line 6. Change \(s_\mu(x) \) to \(s_\mu(y) \) and \(s_\nu(x) \) to \(s_\nu(z) \).

• p. 539, Exercise 7.85. A further reference to the evaluation of \(g_{\lambda\mu\nu} \) is M. H. Rosas, The Kronecker product of Schur functions indexed by two-row shapes or hook shapes, math.CO/0001084.

• p. 551, Exercise 7.102(b), lines 2– to 1–. The “nice” bijective proof asked for was given by M. Rubey, A nice bijection for a content formula for skew semistandard Young tableaux, math.CO/0011099. The proof is based on jeu de taquin.

• p. 556, line 3. Change \(n \to \infty \) to \(x \to \infty \).

• p. 556, line 6. Change \((x - t)^2 \) to \((x - t) \).

• p. 556, line 7. Change \(n^{1/6} \) to \(n^{1/3} \).

• p. 576, line 3. Change word to work.

• p. 580. Replace index entry “traingle-free graph” with “triangle-free graph”.

• p. 580. Change “Valquelin, D.” to “Vauquelin, B.”.