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19. [1]{[3+] Show that the Catalan numbers Cn = 1
n+1

�
2n

n

�
count the number of elements

of the 66 sets Si, (a) � i � (nnn) given below. We illustrate the elements of each Si for

n = 3, hoping that these illustrations will make any unde�ned terminology clear. (The

terms used in (vv){(yy) are de�ned in Chapter 7.) Ideally Si and Sj should be proved

to have the same cardinality by exhibiting a simple, elegant bijection �ij : Si ! Sj
(so 4290 bijections in all). In some cases the sets Si and Sj will actually coincide, but

their descriptions will di�er.

(a) triangulations of a convex (n+2)-gon into n triangles by n� 1 diagonals that do

not intersect in their interiors

(b) binary parenthesizations of a string of n+ 1 letters

(xx � x)x x(xx � x) (x � xx)x x(x � xx) xx � xx

(c) binary trees with n vertices
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(d) plane binary trees with 2n+ 1 vertices (or n+ 1 endpoints)
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(e) plane trees with n + 1 vertices
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(f) planted (i.e., root has degree one) trivalent plane trees with 2n+ 2 vertices
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(g) plane trees with n+2 vertices such that the rightmost path of each subtree of the

root has even length
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(h) lattice paths from (0; 0) to (n; n) with steps (0; 1) or (1; 0), never rising above the

line y = x
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(i) Dyck paths from (0; 0) to (2n; 0), i.e., lattice paths with steps (1; 1) and (1;�1),
never falling below the x-axis
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(j) Dyck paths (as de�ned in (i)) from (0; 0) to (2n + 2; 0) such that any maximal

sequence of consecutive steps (1;�1) ending on the x-axis has odd length
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(k) Dyck paths (as de�ned in (i)) from (0; 0) to (2n + 2; 0) with no peaks at height

two.
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(l) (unordered) pairs of lattice paths with n + 1 steps each, starting at (0; 0), us-

ing steps (1; 0) or (0; 1), ending at the same point, and only intersecting at the

beginning and end
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(m) (unordered) pairs of lattice paths with n � 1 steps each, starting at (0; 0), using

steps (1; 0) or (0; 1), ending at the same point, such that one path never arises

above the other path

(n) n nonintersecting chords joining 2n points on the circumference of a circle
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(o) ways of connecting 2n points in the plane lying on a horizontal line by n nonin-

tersecting arcs, each arc connecting two of the points and lying above the points

r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r

(p) ways of drawing in the plane n + 1 points lying on a horizontal line L and n

arcs connecting them such that (�) the arcs do not pass below L, (�) the graph

thus formed is a tree, () no two arcs intersect in their interiors (i.e., the arcs are

noncrossing), and (�) at every vertex, all the arcs exit in the same direction (left

or right)
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(q) ways of drawing in the plane n+ 1 points lying on a horizontal line L and n arcs

connecting them such that (�) the arcs do not pass below L, (�) the graph thus
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formed is a tree, () no arc (including its endpoints) lies strictly below another

arc, and (�) at every vertex, all the arcs exit in the same direction (left or right)
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(r) sequences of n 1's and n �1's such that every partial sum is nonnegative (with

�1 denoted simply as � below)

111��� 11�1�� 11��1� 1�11�� 1�1�1�

(s) sequences 1 � a1 � � � � � an of integers with ai � i

111 112 113 122 123

(t) sequences a1 < a2 < � � � < an�1 of integers satisfying 1 � ai � 2i

12 13 14 23 24

(u) sequences a1; a2; : : : ; an of integers such that a1 = 0 and 0 � ai+1 � ai + 1

000 001 010 011 012

(v) sequences a1; a2; : : : ; an�1 of integers such that ai � 1 and all partial sums are

nonnegative

0; 0 0; 1 1;�1 1; 0 1; 1

(w) sequences a1; a2; : : : ; an of integers such that ai � �1, all partial sums are non-

negative, and a1 + a2 + � � �+ an = 0

0; 0; 0 0; 1;�1 1; 0;�1 1;�1; 0 2;�1;�1

(x) sequences a1; a2; : : : ; an of integers such that 0 � ai � n�i, and such that if i < j,

ai > 0, aj > 0, and ai+1 = ai+2 = � � � = aj�1 = 0, then j � i > ai � aj

000 010 100 200 110

(y) sequences a1; a2; : : : ; an of integers such that i � ai � n and such that if i � j � ai,

then aj � ai
123 133 223 323 333

(z) sequences a1; a2; : : : ; an of integers such that 1 � ai � i and such that if ai = j,

then ai�r � j � r for 1 � r � j � 1

111 112 113 121 123
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(aa) equivalence classes B of words in the alphabet [n � 1] such that any three con-

secutive letters of any word in B are distinct, under the equivalence relation

uijv � ujiv for any words u; v and any i; j 2 [n� 1] satisfying ji� jj � 2

f;g f1g f2g f12g f21g

(For n = 4 a representative of each class is given by ;, 1, 2, 3, 12, 21, 13, 23, 32,
123, 132, 213, 321, 2132.)

(bb) partitions � = (�1; : : : ; �n�1) with �1 � n� 1 (so the diagram of � is contained in

an (n� 1)� (n� 1) square), such that if �0 = (�01; �
0
2; : : :) denotes the conjugate

partition to � then �0i � �i whenever �i � i

(0; 0) (1; 0) (1; 1) (2; 1) (2; 2)

(cc) permutations a1a2 � � �a2n of the multiset f12; 22; : : : ; n2g such that: (i) the �rst oc-

currences of 1; 2; : : : ; n appear in increasing order, and (ii) there is no subsequence

of the form ����

112233 112332 122331 123321 122133

(dd) permutations a1a2 � � �a2n of the set [2n] such that: (i) 1; 3; : : : ; 2n � 1 appear in

increasing order, (ii) 2; 4; : : : ; 2n appear in increasing order, and (iii) 2i�1 appears
before 2i, 1 � i � n

123456 123546 132456 132546 135246

(ee) permutations a1a2 � � �an of [n] with longest decreasing subsequence of length at

most two (i.e., there does not exist i < j < k, ai > aj > ak), called 321-avoiding

permutations

123 213 132 312 231

(�) permutations a1a2 � � �an of [n] for which there does not exist i < j < k and

aj < ak < ai (called 312-avoiding permutations)

123 132 213 231 321

(gg) permutationsw of [2n] with n cycles of length two, such that the product (1; 2; : : : ; 2n)�
w has n + 1 cycles

(1; 2; 3; 4; 5; 6)(1; 2)(3; 4)(5; 6) = (1)(2; 4; 6)(3)(5)

(1; 2; 3; 4; 5; 6)(1; 2)(3; 6)(4; 5) = (1)(2; 6)(3; 5)(4)

(1; 2; 3; 4; 5; 6)(1; 4)(2; 3)(5; 6) = (1; 3)(2)(4; 6)(5)

(1; 2; 3; 4; 5; 6)(1; 6)(2; 3)(4; 5) = (1; 3; 5)(2)(4)(6)

(1; 2; 3; 4; 5; 6)(1; 6)(2; 5)(3; 4) = (1; 5)(2; 4)(3)(6)
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(hh) pairs (u; v) of permutations of [n] such that u and v have a total of n+ 1 cycles,

and uv = (1; 2; : : : ; n)

(1)(2)(3) � (1; 2; 3) (1; 2; 3) � (1)(2)(3) (1; 2)(3) � (1; 3)(2)
(1; 3)(2) � (1)(2; 3) (1)(2; 3) � (1; 2)(3)

(ii) permutations a1a2 � � �an of [n] that can be put in increasing order on a single stack,
de�ned recursively as follows: If ; is the empty sequence, then let S(;) = ;. If

w = unv is a sequence of distinct integers with largest term n, then S(w) =

S(u)S(v)n. A stack-sortable permutation w is one for which S(w) = w.

�

?

a1a2 � � �an

For example, 4123 3

4
2

1

4

312

4

123 1234

- - - -

123 132 213 312 321

(jj) permutations a1a2 � � �an of [n] that can be put in increasing order on two parallel

queues. Now the picture is

...a an1

123 132 213 231 312

(kk) �xed-point free involutions w of [2n] such that if i < j < k < l and w(i) = k,

then w(j) 6= l (in other words, 3412-avoiding �xed-point free involutions)

(12)(34)(56) (14)(23)(56) (12)(36)(45) (16)(23)(45) (16)(25)(34)

(ll) cycles of length 2n+ 1 in S2n+1 with descent set fng
2371456 2571346 3471256 3671245 5671234

(mm) Baxter permutations (as de�ned in Exercise 55) of [2n] or of [2n + 1] that are

reverse alternating (as de�ned at the end of Section 3.16) and whose inverses are

reverse alternating

132546 153426 354612 561324 563412

1325476 1327564 1534276 1735462 1756342
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(nn) permutations w of [n] such that if w has ` inversions then for all pairs of sequences

(a1; a2; : : : ; a`); (b1; b2; : : : ; b`) 2 [n� 1]` satisfying

w = sa1sa2 � � � sa` = sb1sb2 � � � sb` ;
where sj is the adjacent transposition (j; j + 1), we have that the `-element mul-

tisets fa1; a2; : : : ; a`g and fb1; b2; : : : ; b`g are equal (thus, for example, w = 321 is

not counted, since w = s1s2s1 = s2s1s2, and the multisets f1; 2; 1g and f2; 1; 2g
are not equal)

123 132 213 231 312

(oo) permutations w of [n] with the following property: Suppose that w has ` inver-

sions, and let

R(w) = f(a1; : : : ; a`) 2 [n� 1]` : w = sa1sa2 � � � sa`g;
where sj is as in (nn). Then X

(a1;:::;a`)2R(w)

a1a2 � � �a` = `!:

R(123) = f;g; R(213) = f(1)g; R(231) = f(1; 2)g
R(312) = f(2; 1)g; R(321) = f(1; 2; 1); (2; 1; 2)g

(pp) noncrossing partitions of [n], i.e., partitions � = fB1; : : : ; Bkg 2 �n such that if

a < b < c < d and a; c 2 Bi and b; d 2 Bj, then i = j

123 12�3 13�2 23�1 1�2�3

(qq) partitions fB1; : : : ; Bkg of [n] such that if the numbers 1; 2; : : : ; n are arranged in

order around a circle, then the convex hulls of the blocks B1; : : : ; Bk are pairwise

disjoint
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(rr) noncrossing Murasaki diagrams with n vertical lines

(ss) noncrossing partitions of some set [k] with n+1 blocks, such that any two elements

of the same block di�er by at least three

1�2�3�4 14�2�3�5 15�2�3�4 25�1�3�4 16�25�3�4

(tt) noncrossing partitions of [2n + 1] into n + 1 blocks, such that no block contains

two consecutive integers

137�46�2�5 1357�2�4�6 157�24�3�6 17�246�3�5 17�26�35�4
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(uu) nonnesting partitions of [n], i.e., partitions of [n] such that if a; e appear in a

block B and b; d appear in a di�erent block B0 where a < b < d < e, then there

is a c 2 B satisfying b < c < d

123 12�3 13�2 23�1 1�2�3

(The unique partition of [4] that isn't nonnesting is 14�23.)
(vv) Young diagrams that �t in the shape (n� 1; n� 2; : : : ; 1)

;

(ww) standard Young tableaux of shape (n; n) (or equivalently, of shape (n; n� 1))

123 124 125 134 135
456 356 346 256 246

or
123 124 125 134 135
45 35 34 25 24

(xx) pairs (P;Q) of standard Young tableaux of the same shape, each with n squares

and at most two rows

(123; 123)

�
12 12
3 ; 3

� �
12 13
3 ; 2

� �
13 12
2 ; 3

� �
13 13
2 ; 2

�

(yy) column-strict plane partitions of shape (n� 1; n� 2; : : : ; 1), such that each entry

in the ith row is equal to n� i or n� i+ 1

3 3 3 3 3 2 3 2 2 2
2 1 2 1 1

(zz) convex subsets S of the poset Z�Z, up to translation by a diagonal vector (m;m),

such that if (i; j) 2 S then 0 < i� j < n.

; f(1; 0)g f(2; 0)g f(1; 0); (2; 0)g f(2; 0); (2; 1)g

(aaa) linear extensions of the poset 2� n
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4 5
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123456

123546

132456

132546

135246
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21

12

22

32

23

33

31

13

Figure 5: A poset with C4 = 14 order ideals

(bbb) order ideals of Int(n� 1), the poset of intervals of the chain n� 1

;; a; b; ab; abc
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2 Int(2)
a b

c

(ccc) order ideals of the poset An obtained from the poset (n� 1)� (n� 1) by adding

the relations (i; j) < (j; i) if i > j (see Figure 5 for the Hasse diagram of A4)

; f11g f11; 21g f11; 21; 12g f11; 21; 12; 22g

(ddd) nonisomorphic n-element posets with no induced subposet isomorphic to 2+2 or

3 + 1
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(eee) nonisomorphic (n+1)-element posets that are a union of two chains and that are

not a (nontrivial) ordinal sum, rooted at a minimal element
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(�f) relations R on [n] that are reexive (iRi), symmetric (iRj ) jRi), and such that

if 1 � i < j < k � n and iRk, then iRj and jRk (in the example below we write
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ij for the pair (i; j), and we omit the pairs ii)

; f12; 21g f23; 32g f12; 21; 23; 32g f12; 21; 13; 31; 23; 32g

(ggg) joining some of the vertices of a convex (n� 1)-gon by disjoint line segments, and

circling a subset of the remaining vertices
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rf
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(hhh) ways to stack coins in the plane, the bottom row consisting of n consecutive coins

mmm mmm
m

mmm
m

mmm
mm

mmm
mm
m

(iii) n-tuples (a1; a2; : : : ; an) of integers ai � 2 such that in the sequence 1a1a2 � � �an1,
each ai divides the sum of its two neighbors

14321 13521 13231 12531 12341

(jjj) n-element multisets on Z=(n+ 1)Z whose elements sum to 0

000 013 022 112 233

(kkk) n-element subsets S of N � N such that if (i; j) 2 S then i � j and there is a

lattice path from (0; 0) to (i; j) with steps (0; 1), (1; 0), and (1; 1) that lies entirely

inside S

f(0; 0); (1; 0); (2; 0)g f(0; 0); (1; 0); (1; 1)g f(0; 0); (1; 0); (2; 1)g

f(0; 0); (1; 1); (2; 1)g f(0; 0); (1; 1); (2; 2)g
(lll) regions into which the cone x1 � x2 � � � � � xn in R

n is divided by the hyperplanes

xi � xj = 1, for 1 � i < j � n (the diagram below shows the situation for n = 3,

intersected with the hyperplane x1 + x2 + x3 = 0)
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1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 3 2 1 5 1 2 3 1 3 2 1 5

2 5 1 4 4 1 5 2 2 5 1 4

3 2 3 3 3 2 3 3 3 2 3

1 5 2 2 5 1 4 4 1 5

2 3 1 3 2 1 5 1 2

1 1 1 1 1 1 1 1

Figure 6: The frieze pattern corresponding to the sequence (1; 3; 2; 1; 5; 1; 2; 3)

(mmm) positive integer sequences a1; a2; : : : ; an+2 for which there exists an integer array

(necessarily with n+ 1 rows)

1 1 1 � � � 1 1 1 � � � 1 1

a1 a2 a3 � � � an+2 a1 a2 � � � an�1

b1 b2 b3 � � � bn+2 b1 � � � bn�2
�

�

�

r1 r2 r3 � � � rn+2 r1
1 1 1 � � � 1

(54)

such that any four neighboring entries in the con�guration
r
s t
u

satisfy st = ru+1

(an example of such an array for (a1; : : : ; a8) = (1; 3; 2; 1; 5; 1; 2; 3) (necessarily

unique) is given by Figure 6):

12213 22131 21312 13122 31221

(nnn) n-tuples (a1; : : : an) of positive integers such that the tridiagonal matrix2
66666666664

a1 1 0 0 � � � 0 0

1 a2 1 0 � � � 0 0

0 1 a3 1 � � � 0 0

�
�
�

0 0 0 0 � � � an�1 1

0 0 0 0 � � � 1 an

3
77777777775

is positive de�nite with determinant one

131 122 221 213 312

20. (a) [2+] Let m;n be integers satisfying 1 � n < m. Show by a simple bijection that

the number of lattice paths from (1; 0) to (m;n) with steps (0; 1) and (1; 0) that

intersect the line y = x in at least one point is equal to the number of lattice

paths from (0; 1) to (m;n) with steps (0; 1) and (1; 0).
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(b) [2{] Deduce that the number of lattice paths from (0; 0) to (m;n) with steps (1; 0)

and (0; 1) that intersect the line y = x only at (0; 0) is given by m�n
m+n

�
m+n

n

�
.

(c) [1+] Show from (b) that the number of lattice paths from (0; 0) to (n; n) with

steps (1; 0) and (0; 1) that never rise above the line y = x is given by the Catalan

number Cn = 1
n+1

�
2n

n

�
. (This gives a direct combinatorial proof of interpretation

(h) of Cn in Exercise 19.)

21. (a) [2+] Let Xn be the set of all
�
2n

n

�
lattice paths from (0; 0) to (n; n) with steps (0; 1)

and (1; 0). De�ne the excedance (also spelled \exceedance") of a path P 2 Xn

to be the number of i such that at least one point (i; i0) of P lies above the line

y = x (i.e., i0 > i). Show that the number of paths in Xn with excedance j is

independent of j.

(b) [1] Deduce that the number of P 2 Xn that never rise above the line y = x is

given by the Catalan number Cn = 1
n+1

�
2n

n

�
(a direct proof of interpretation (h)

of Cn in Exercise 19). Compare with Example 5.3.11, which also gives a direct

combinatorial interpretation of Cn when written in the form 1
n+1

�
2n

n

�
(as well as

in the form 1
2n+1

�
2n+1
n

�
).

22. [2+] Show (bijectively if possible) that the number of lattice paths from (0; 0) to

(2n; 2n) with steps (1; 0) and (0; 1) that avoid the points (2i� 1; 2i� 1), 1 � i � n, is

equal to the Catalan number C2n.

23. [3{] Consider the following chess position.

Z Z ZkZ
o Z Z Z
pZ ZPO Z
Z Z Z Z
Z Z Z Z

Z Z Z ZK
A Z Z Z

Z Z Z Z

Black is to make 19 consecutive moves, after which White checkmates Black in one

move. Black may not move into check, and may not check White (except possibly

on his last move). Black and White are cooperating to achieve the aim of checkmate.

(In chess problem parlance, this problem is called a serieshelpmate in 19.) How many

di�erent solutions are there?
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24. [?] Explain the signi�cance of the following sequence:

un, dos, tres, quatre, cinc, sis, set, vuit, nou, deu, : : :

25. [2]{[5] Show that the Catalan number Cn = 1
n+1

�
2n

n

�
has the algebraic interpretations

given below.

(a) number of two-sided ideals of the algebra of all (n� 1)� (n� 1) upper triangular

matrices over a �eld

(b) dimension of the space of invariants of SL(2; C ) acting on the 2nth tensor power

T 2n(V ) of its \de�ning" two-dimensional representation V

(c) dimension of the irreducible representation of the symplectic group Sp(2(n� 1); C )

(or Lie algebra sp(2(n�1); C )) with highest weight �n�1, the (n�1)st fundamental

weight

(d) dimension of the primitive intersection homology (say with real coe�cients) of

the toric variety associated with a (rationally embedded) n-dimensional cube

(e) the generic number of PGL(2; C ) equivalence classes of degree n rational maps

with a �xed branch set

(f) number of translation conjugacy classes of degree n+1 monic polynomials in one

complex variable, all of whose critical points are �xed

(g) dimension of the algebra (over a �eld K) with generators �1; : : : ; �n�1 and relations

�2i = �i

��i�j�i = �i; if ji� jj = 1

�i�j = �j�i; if ji� jj � 2;

where � is a nonzero element of K

(h) number of �-sign types indexed by A+
n�1 (the set of positive roots of the root

system An�1)

(i) Let the symmetric groupSn act on the polynomial ringA = C [x1 ; : : : ; xn; y1; : : : ; yn]

by w �f(x1; : : : ; xn; y1; : : : ; yn) = f(xw(1); : : : ; xw(n); yw(1); : : : ; yw(n)) for all w 2 Sn.

Let I be the ideal generated by all invariants of positive degree, i.e.,

I = hf 2 A : w � f = f for all w 2 Sn; and f(0) = 0i:

Then (conjecturally) Cn is the dimension of the subspace of A=I a�ording the

sign representation, i.e.,

Cn = dimff 2 A=I : w � f = (sgnw)f for all f 2 Sng:

26. (a) [3{] Let D be a Young diagram of a partition �, as de�ned in Section 1.3. Given

a square s of D let t be the lowest square in the same column as s, and let u be

the rightmost square in the same row as s. Let f(s) be the number of paths from
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t to u that stay within D, and such that each step is one square to the north or

one square to the east. Insert the number f(s) in square s, obtaining an array A.

For instance, if � = (5; 4; 3; 3) then A is given by

16 7 2 1 1

6 3 1 1

3 2 1

1 1 1

Let M be the largest square subarray (using consecutive rows and columns) of

A containing the upper left-hand corner. Regard M as a matrix. For the above

example we have

M =

2
4 16 7 2

6 3 1

3 2 1

3
5 :

Show that detM = 1.

(b) [2] Find the unique sequence a0; a1; : : : of real numbers such that for all n � 0 we

have

det

2
6666664

a0 a1 � � � an
a1 a2 � � � an+1

� � �
� � �
� � �
an an+1 � � � a2n

3
7777775
= det

2
6666664

a1 a2 � � � an
a2 a3 � � � an+1

� � �
� � �
� � �
an an+1 � � � a2n�1

3
7777775
= 1:

(When n = 0 the second matrix is empty and by convention has determinant

one.)

27. (a) [3{] Let Vn be a real vector space with basis x0; x1; : : : ; xn and scalar product

de�ned by hxi; xji = Ci+j, the (i + j)-th Catalan number. It follows from Ex-

ercise 26(b) that this scalar product is positive de�nite, and therefore V has an

orthonormal basis. Is there an orthonormal basis for Vn whose elements are inte-

gral linear combinations of the xi's ?

(b) [3{] Same as (a), except now hxi; xji = Ci+j+1.

(c) [5{] Investigate the same question for the matrices M of Exercise 26(a) (so

hxi; xji =Mij) when � is self-conjugate (so M is symmetric).

28. (a) [3{] Suppose that real numbers x1; x2; : : : ; xd are chosen uniformly and inde-

pendently from the interval [0; 1]. Show that the probability that the sequence

x1; x2; : : : ; xd is convex (i.e., xi � 1
2
(xi�1+xi+1) for 2 � i � d�1) is Cd�1=(d�1)!2,

where Cd�1 denotes a Catalan number.
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(b) [3{] Let Cd denote the set of all points (x1; x2; : : : ; xd) 2 R
d such that 0 � xi � 1

and the sequence x1; x2; : : : ; xd is convex. It is easy to see that Cd is a d-

dimensional convex polytope, called the convexotope. Show that the vertices of

Cd consist of the points�
1; j�1

j
; j�2

j
; : : : ; 1

j
; 0; 0; : : : ; 0; 1

k
; 2
k
; : : : ; 1

�
(55)

(with at least one 0 coordinate), together with (1; 1; : : : ; 1) (so
�
d+1

2

�
+ 1 vertices

in all). For instance, the vertices of C3 are (0; 0; 0), (0; 0; 1), (0; 1
2
; 1), (1; 0; 0),

(1; 1
2
; 0), (1; 0; 1), (1; 1; 1).

(c) [3] Show that the Ehrhart quasi-polynomial i(Cd; n) of Cd (as de�ned in Section

4.6) is given by

yd :=
X
n�0

i(Cd; n)xn

=
1

1� x

 
dX

r=1

1

[1][r � 1]!
� 1

[1][d� r]!
�

d�1X
r=1

1

[1][r � 1]!
� 1

[1][d� 1� r]!

!
; (56)

where [i] = 1 � xi, [i]! = [1][2] � � � [i], and � denotes Hadamard product. For

instance,

y1 =
1

(1� x)2

y2 =
1 + x

(1� x)3

y3 =
1 + 2x+ 3x2

(1� x)3(1� x2)

y4 =
1 + 3x + 9x2 + 12x3 + 11x4 + 3x5 + x6

(1� x)2(1� x2)2(1� x3)

y5 =
1 + 4x + 14x2 + 34x3 + 63x4 + 80x5 + 87x6 + 68x7 + 42x8 + 20x9 + 7x10

(1� x)(1� x2)2(1� x3)2(1� x4)
:

Is there a simpler formula than (56) for i(Cd; n) or yd?
29. [3] Suppose that n + 1 points are chosen uniformly and independently from inside a

square. Show that the probability that the points are in convex position (i.e., each

point is a vertex of the convex hull of all the points) is (Cn=n!)
2.

30. [3{] Let fn be the number of partial orderings of the set [n] that contain no induced

subposets isomorphic to 3 + 1 or 2 + 2. (This exercise is the labelled analogue of

Exercise 19(ddd). As mentioned in the solution to this exercise, such posets are called

semiorders.) Let C(x) = 1+x+2x2+5x3+ � � � be the generating function for Catalan

numbers. Show that X
n�0

fn
xn

n!
= C(1� e�x); (57)

the composition of C(x) with the series 1� e�x = x� 1
2
x2 + 1

6
x3 � � � �.
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(a2 � a)a

a2 � a2

a(a � a2)

(a � a2)a

a(a2 � a)

Figure 7: The Tamari lattice T3

31. (a) [3{] Let P denote the convex hull in R
d+1 of the origin together with all vectors

ei � ej, where ei is the ith unit coordinate vector and i < j. Thus P is a d-

dimensional convex polytope. Show that the relative volume of P (as de�ned in

Section 4.6) is equal to Cd=d!, where Cd denotes a Catalan number.

(b) [3] Let i(P; n) denote the Ehrhart polynomial of P. Find a combinatorial inter-

pretation of the coe�cients of the i-Eulerian polynomial (in the terminology of

Section 4.3)

(1� x)d+1
X
n�0

i(P; n)xn:

32. (a) [3{] De�ne a partial order Tn on the set of all binary bracketings (parenthesiza-

tions) of a string of length n+1 as follows. We say that v covers u if u contains a

subexpression (xy)z (where x, y, z are bracketed strings) and v is obtained from

u by replacing (xy)z with x(yz). For instance, ((a2 � a)a2)(a2 � a2) is covered by

((a �a2)a2)(a2 �a2), (a2(a �a2))(a2 �a2), ((a2 �a)a2)(a(a �a2)), and (a2 �a)(a2(a2 �a2)).
Figures 7 and 8 show the Hasse diagrams of T3 and T4. (In Figure 8, we have

encoded the binary bracketing by a string of four +'s and four �'s, where a +

stands for a left parenthesis and a � for the letter a, with the last a omitted.)

Let Un be the poset of all integer vectors (a1; a2; : : : ; an) such that i � ai � n and

such that if i � j � ai then aj � ai, ordered coordinatewise. Show that Tn and

Un are isomorphic posets.

(b) [2] Deduce from (a) that Tn is a lattice (called the Tamari lattice).

33. Let C be a convex n-gon. Let S be the set of all sets of diagonals of C that do not

intersect in the interior of C. Partially order the element of S by inclusion, and add a

1̂. Call the resulting poset An.

(a) [3{] Show that An is a simplicial Eulerian lattice of rank n � 2, as de�ned in

Section 3.14.

(b) [3] Show in fact that An is the lattice of faces of an (n � 3)-dimensional convex

polytope Qn.

(c) [3{] Find the number Wi =Wi(n) of elements of An of rank i. Equivalently, Wi is

the number of ways to draw i diagonals of C that do not intersect in their interiors.

Note that by Proposition 2.1, Wi(n) is also the number of plane trees with n+ i

vertices and n� 1 endpoints such that no vertex has exactly one successor.
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+-+-++-- +-++--+- ++--+-+-

+-+-+-+-

Figure 8: The Tamari lattice T4
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(d) [3{] De�ne
n�3X
i=0

Wi(x� 1)n�i�3 =

n�3X
i=0

hix
n�3�i; (58)

as in equation (3.44). The vector (h0; : : : ; hn�3) is called the h-vector of An (or

of the polytope Qn). Find an explicit formula for each hi.

34. There are many possible q-analogues of Catalan numbers. In (a) we give what is

perhaps the most natural \combinatorial" q-analogue, while in (b) we give the most

natural \explicit formula" q-analogue. In (c) we give an interesting extension of (b),

while (d) and (e) are concerned with another special case of (c).

(a) [2+] Let

Cn(q) =
X
P

qA(P );

where the sum is over all lattice paths P from (0; 0) to (n; n) with steps (1; 0)

and (0; 1), such that P never rises above the line y = x, and where A(P ) is the

area under the path (and above the x-axis). Note that by Exercise 19(h), we

have Cn(1) = Cn. (It is interesting to see what statistic corresponds to A(P )

for many of the other combinatorial interpretations of Cn given in Exercise 19.)

For instance, C0(q) = C1(q) = 1, C2(q) = 1 + q, C3(q) = 1 + q + 2q2 + q3,

C4(q) = 1 + q + 2q2 + 3q3 + 3q4 + 3q5 + q6. Show that

Cn+1(q) =

nX
i=0

Ci(q)Cn�i(q)q
(i+1)(n�i):

Deduce that if ~Cn(q) = q(
n
2)Cn(1=q), then the generating function

F (x) =
X
n�0

~Cn(q)x
n

satis�es

xF (x)F (qx)� F (x) + 1 = 0:

From this we get the continued fraction expansion

F (x) =
1

1� x

1� qx

1� q2x

1� � � �

: (59)

(b) [2+] De�ne

cn(q) =
1

(n+ 1)

�
2n

n

�
:
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For instance, c0(q) = c1(q) = 1, c2(q) = 1 + q2, c3(q) = 1 + q2 + q3 + q4 + q6,

c4(q) = 1 + q2 + q3 + 2q4 + q5 + 2q6 + q7 + 2q8 + q9 + q10 + q12. Show that

cn(q) =
X
w

qmaj(w);

where w ranges over all sequences a1a2 � � �a2n of n 1's and n �1's such that each

partial sum is nonnegative, and where

maj(w) =
X

fi :ai>ai+1g

i;

the major index of w.

(c) [3{] Let t be a parameter, and de�ne

cn(t; q) =
1

(n+ 1)

nX
i=0

�
n

i

��
n

i+ 1

�
qi
2+it:

Show that

cn(t; q) =
X
w

qmaj(w)+(t�1)des(w);

where w ranges over the same set as in (b), and where

des(w) = #fi : ai > ai+1g;

the number of descents of w. (Hence cn(1; q) = cn(q).)

(d) [3{] Show that

cn(0; q) =
1 + q

1 + qn
cn(q):

For instance, c0(0; q) = c1(0; q) = 1, c2(0; q) = 1+ q, c3(0; q) = 1+ q+ q2+ q3+ q4,

c4(0; q) = 1 + q + q2 + 2q3 + 2q4 + 2q5 + 2q6 + q7 + q8 + q9.

(e) [3+] Show that the coe�cients of cn(0; q) are unimodal, i.e., if cn(0; q) =
P

biq
i,

then for some j we have b0 � b1 � � � � � bj � bj+1 � bj+2 � � � �. (In fact, we can

take j = b1
2
deg cn(0; q)c = b1

2
(n� 1)2c.)

35. Let Qn be the poset of direct-sum decompositions of an n-dimensional vector space Vn
over the �eld Fq , as de�ned in Example 5.5.2(b). Let �Qn denote Qn with a 0̂ adjoined,

and let �n(q) = � �Qn
(0̂; 1̂). Hence by (5.74) we have

�
X
n�1

�n(q)
xn

q(
n
2)(n)!

= log
X
n�0

xn

q(
n
2)(n)!

:

(a) [3{] Show that

�n(q) =
1

n
(�1)n(q � 1)(q2 � 1) � � � (qn�1 � 1)Pn(q);
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where Pn(q) is a polynomial in q of degree
�
n

2

�
with nonnegative integral coe�-

cients, satisfying Pn(1) =
�
2n�1
n

�
. For instance,

P1(q) = 1

P2(q) = 2 + q

P3(q) = 3 + 3q + 3q2 + q3

P4(q) = (2 + 2q2 + q3)(2 + 2q + 2q2 + q3):

(b) Show that

exp
X
n�1

q(
n
2)Pn(1=q)

xn

n
=
X
n�1

q(
n
2)Cn(1=q)x

n;

where Cn(q) is the q-Catalan polynomial de�ned in Exercise 34(a).

36. (a) [2+] The Narayana numbers N(n; k) are de�ned by

N(n; k) =
1

n

�
n

k

��
n

k � 1

�
:

Let Xnk be the set of all sequences w = w1w2 � � �w2n of n 1's and n �1's with all

partial sums nonnegative, such that

k = #fj : wj = 1; wj+1 = �1g:
Give a combinatorial proof that N(n; k) = #Xnk. Hence by Exercise 19(r), there

follows
nX

k=1

N(n; k) = Cn:

(It is interesting to �nd for each of the combinatorial interpretations of Cn given

by Exercise 19 a corresponding decomposition into subsets counted by Narayana

numbers.)

(b) [2+] Let F (x; t) =
P

n�1

P
k�1N(n; k)xntk. Using the combinatorial interpreta-

tion of N(n; k) given in (a), show that

xF 2 + (xt + x� 1)F + xt = 0; (60)

so

F (x; t) =
1� x� xt�

p
(1� x� xt)2 � 4x2t

2x
:

37. [2+] The Motzkin numbers Mn are de�ned by

X
n�0

Mnx
n =

1� x�p
1� 2x� 3x2

2x2

= 1 + x + 2x2 + 4x3 + 9x4 + 21x5 + 51x6 + 127x7 + 323x8

+835x9 + 2188x10 + � � � :
Show that Mn = �nC1 and Cn = �2nM0, where Cn denotes a Catalan number.
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38. [3{] Show that the Motzkin numberMn has the following combinatorial interpretations.

(See Exercise 46(b) for an additional interpretation.)

(a) Number of ways of drawing any number of nonintersecting chords among n points

on a circle.

(b) Number of walks on N with n steps, with steps �1, 0, or 1, starting and ending

at 0.

(c) Number of lattice paths from (0; 0) to (n; n), with steps (0; 2), (2; 0), and (1; 1),

never rising above the line y = x.

(d) Number of paths from (0; 0) to (n; n) with steps (1; 0), (1; 1), and (1;�1), never
going below the x-axis. Such paths are called Motzkin paths.

(e) Number of pairs 1 � a1 < � � � < ak � n and 1 � b1 < � � � < bk � n of integer

sequences such that ai � bi and every integer in the set [n] appears at least once

among the ai's and bi's.

(f) Number of ballot sequences (as de�ned in Corollary 2.3(ii)) (a1; : : : ; a2n+2) such

that we never have (ai�1; ai; ai+1) = (1;�1; 1).
(g) Number of plane trees with n=2 edges, allowing \half edges" that have no succes-

sors and count as half an edge.

(h) Number of plane trees with n + 1 edges in which no vertex, the root excepted,

has exactly one successor.

(i) Number of plane trees with n edges in which every vertex has at most two suc-

cessors.

(j) Number of binary trees with n� 1 edges such that no two consecutive edges slant

to the right.

(k) Number of plane trees with n + 1 vertices such that every vertex of odd height

(with the root having height 0) has at most one successor.

(l) Number of noncrossing partitions � = fB1; : : : ; Bkg of [n] (as de�ned in Exer-

cise 3.68) such that if Bi = fbg and a < b < c, then a and c appear in di�erent

blocks of �.

(m) Number of noncrossing partitions � of [n + 1] such that no block of � contains

two consecutive integers.

39. [3{] The Schr�oder numbers rn and sn were de�ned in Section 2. Show that they have

the following combinatorial interpretations.

(a) sn�1 is the total number of bracketings (parenthesizations) of a string of n letters.

(b) sn�1 is the number of plane trees with no vertex of degree one and with n end-

points.

(c) rn�1 is the number of plane trees with n vertices and with a subset of the endpoints

circled.
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(d) sn is the number of binary trees with n vertices and with each right edge colored

either red or blue.

(e) sn is the number of lattice paths in the (x; y) plane from (0; 0) to the x-axis using

steps (1; k), where k 2 P or k = �1, never passing below the x-axis, and with n

steps of the form (1;�1).
(f) sn is the number of lattice paths in the (x; y) plane from (0; 0) to (n; n) using

steps (k; 0) or (0; 1) with k 2 P, and never passing above the line y = x.

(g) rn�1 is the number of parallelogram polynominoes (de�ned in the solution to

Exercise 19(l)) of perimeter 2n with each column colored either black or white.

(h) sn is the number of ways to draw any number of diagonals of a convex (n+2)-gon

that do not intersect in their interiors

(i) sn is the number of sequences i1i2 � � � ik, where ij 2 P or ij = �1 (and k can be

arbitrary), such that n = #fj : ij = �1g, i1 + i2 + � � � + ij � 0 for all j, and

i1 + i2 + � � �+ ik = 0.

(j) rn is the number of lattice paths from (0; 0) to (n; n), with steps (1; 0), (0; 1), and

(1; 1), that never rise above the line y = x.

(k) rn�1 is the number of n� n permutation matrices P with the following property:

We can eventually reach the all 1's matrix by starting with P and continually

replacing a 0 by a 1 if that 0 has at least two adjacent 1's, where an entry aij is

de�ned to be adjacent to ai�1;j and ai;j�1.

(l) Let u = u1 � � �uk 2 Sk. We say that a permutation w = w1 � � �wn 2 Sn is u-

avoiding if no subsequence wa1 ; : : : ; wak (with a1 < � � � < ak) is in the same relative

order as u, i.e., ui < uj if and only if wai < waj . Let Sn(u; v) denote the set of

permutations w 2 Sn avoiding both the permutations u; v 2 S4. There is a group

G of order 16 that acts on the set of pairs (u; v) of unequal elements of S4 such

that if (u; v) and (u0; v0) are in the sameG-orbit (in which case we say that they are

equivalent), then there is a simple bijection between Sn(u; v) and Sn(u
0; v0) (for

all n). Namely, identifying a permutation with the corresponding permutation

matrix, the orbit of (u; v) is obtained by possibly interchanging u and v, and then

doing a simultaneous dihedral symmetry of the square matrices u and v. There are

then ten inequivalent pairs (u; v) 2 S4�S4 for which #Sn(u; v) = rn�1, namely,

(1234; 1243), (1243; 1324), (1243; 1342), (1243; 2143), (1324; 1342), (1342; 1423),

(1342; 1432), (1342; 2341), (1342; 3142), and (2413; 3142).

(m) rn�1 is the number of permutations w = w1w2 � � �wn of [n] with the following

property: It is possible to insert the numbers w1; : : : ; wn in order into a string,

and to remove the numbers from the string in the order 1; 2; : : : ; n. Each insertion

must be at the beginning or end of the string. At any time we may remove the

�rst (leftmost) element of the string. (Example: w = 2413. Insert 2, insert 4 at

the right, insert 1 at the left, remove 1, remove 2, insert 3 at the left, remove 3,

remove 4.)

(n) rn is the number of sequences of length 2n from the alphabet A;B;C such that:

(i) for every 1 � i < 2n, the number of A's and B's among the �rst i terms is not
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Figure 9: A board with r3 = 22 domino tilings

less than the number of C's, (ii) the total number of A's and B's is n (and hence

the also the total number of C's), and (iii) no two consecutive terms are of the

form CB.

(o) rn�1 is the number of noncrossing partitions (as de�ned in Exercise 3.68) of some

set [k] into n blocks, such that no block contains two consecutive integers.

(p) sn is the number of graphs G (without loops and multiple edges) on the vertex

set [n + 2] with the following two properties: (�) All of the edges f1; n+ 2g and

fi; i + 1g are edges of G, and (�) G is noncrossing, i.e., there are not both edges

fa; cg and fb; dg with a < b < c < d. Note that an arbitrary noncrossing graph

on [n + 2] can be obtained from those satisfying (�){(�) by deleting any subset

of the required edges in (�). Hence the total number of noncrossing graphs on

[n + 2] is 2n+2sn.

(q) rn�1 is the number of reexive and symmetric relations R on the set [n] such that

if iRj with i < j, then we never have uRv for i � u < j < v.

(r) rn�1 is the number of reexive and symmetric relations R on the set [n] such that

if iRj with i < j, then we never have uRv for i < u � j < v.

(s) rn�1 is the number of ways to cover with disjoint dominos (or dimers) the set

of squares consisting of 2i squares in the ith row for 1 � i � n � 1, and with

2(n � 1) squares in the nth row, such that the row centers lie on a vertical line.

See Figure 9 for the case n = 4.

40. [3{] Let an be the number of permutations w = w1w2 � � �wn 2 Sn such that we never

have wi+1 = wi � 1, e.g., a4 = 2, corresponding to 2413 and 3142. Equivalently, an is

the number of ways to place n nonattacking kings on an n � n chessboard with one

king in every row and column. Let

A(x) =
X
n�0

anx
n

= 1 + x+ 2x4 + 14x5 + 90x6 + 646x7 + 5242x8 + � � � :
Show that A(xR(x)) =

P
n�0 n!x

n := E(x), where

R(x) =
X
n�0

rnx
n =

1

2x

�
1� x�

p
1� 6x+ x2

�
;
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the generating function for Schr�oder numbers. Deduce that

A(x) = E

�
x(1� x)

1 + x

�
:

41. [3] A permutation w 2 Sn is called 2-stack sortable if S2(w) = w, where S is the oper-

ator of Exercise 19(ii). Show that the number S2(n) of 2-stack sortable permutations

in Sn is given by

S2(n) =
2(3n)!

(n+ 1)! (2n+ 1)!
:

42. [2] A king moves on the vertices of the in�nite chessboard Z�Z by stepping from (i; j)

to any of the eight surrounding vertices. Let f(n) be the number of ways in which a

king can walk from (0; 0) to (n; 0) in n steps. Find F (x) =
P

n�0 f(n)x
n, and �nd a

linear recurrence with polynomial coe�cients satis�ed by f(n).

43. (a) [2+] A secondary structure is a graph (without loops or multiple edges) on the

vertex set [n] such that (a) fi; i+ 1g is an edge for all 1 � i � n� 1, (b) for all i,

there is at most one j such that fi; jg is an edge and jj � ij 6= 1, and (c) if fi; jg
and fk; lg are edges with i < k < j, then i � l � j. (Equivalently, a secondary

structure may be regarded as a 3412-avoiding involution (as in Exercise 19(kk))

such that no orbit consists of two consecutive integers.) Let s(n) be the number

of secondary structures with n vertices. For instance, s(5) = 8, given by

s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s s s s s s s s s�� @@ �� @@ �� @@

�� @@ �� @@ �� @@ �
��

@
@@

�� @@

Let S(x) =
P

n�0 s(n)x
n = 1 + x + x2 + 2x3 + 4x4 + 8x5 + 17x6 + 37x7 + 82x8 +

185x9 + 423x10 + � � �. Show that

S(x) =
x2 � x+ 1�p

1� 2x� x2 � 2x3 + x4

2x2
:

(b) [3{] Show that s(n) is the number of walks in n steps from (0; 0) to the x-axis,

with steps (1; 0), (0; 1), and (0;�1), never passing below the x-axis, such that

(0; 1) is never followed directly by (0;�1).
44. De�ne a Catalan triangulation of the M�obius band to be an abstract simplicial complex

triangulating the M�obius band that uses no interior vertices, and has vertices labelled

1; 2; : : : ; n in order as one traverses the boundary. (If we replace the M�obius band by a

disk, then we get the triangulations of Corollary 2.3(vi) or Exercise 19(a).) Figure 10

shows the smallest such triangulation, with �ve vertices (where we identify the vertical

edges of the rectangle in opposite directions). Let MB(n) be the number of Catalan
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Figure 10: A Catalan triangulation of the M�obius band

triangulations of the M�obius band with n vertices. Show that

X
n�0

MB(n)xn =
x2
�
(2� 5x� 4x2) + (�2 + x + 2x2)

p
1� 4x

�
(1� 4x)

�
1� 4x+ 2x2 + (1� 2x)

p
1� 4x

�
= x5 + 14x6 + 113x7 + 720x8 + 4033x9 + 20864x10 + � � � :

45. [3{] Let f(n) be the number of nonisomorphic n-element posets with no 3-element

antichain. For instance, f(4) = 10, corresponding to

r
r
r
r

r
r

r r

r r
r
r

r
r r

r

r r
r r

r r
r r

r
r r

r

r
r
r

r
r
r
r
r

r r
r r

@@ ��

�� @@ @@ ��
�� @@

��@@ @@
@@

@@

Let F (x) =
P

n�0 f(n)x
n = 1+ x+ 2x2 + 4x3 + 10x4 + 26x5 + 75x6 + 225x7 + 711x8 +

2311x9 + 7725x10 + � � �. Show that

F (x) =
4

2� 2x+
p
1� 4x +

p
1� 4x2

:

46. (a) [3+] Let f(n) denote the number of subsets S of N � N of cardinality n with the

following property: If p 2 S then there is a lattice path from (0; 0) to p with steps

(0; 1) and (1; 0), all of whose vertices lie in S. Show that

X
n�1

f(n)xn =
1

2

 r
1 + x

1� 3x
� 1

!

= x + 2x2 + 5x3 + 13x4 + 35x5 + 96x6 + 267x7

+750x8 + 2123x9 + 6046x10 + � � � :
(b) [3+] Show that the number of such subsets contained in the �rst octant 0 � x � y

is the Motzkin number Mn�1 (de�ned in Exercise 37).

47. (a) [3] Let Pn be the Bruhat order on the symmetric group Sn as de�ned in Exercise

3.75(a). Show that the following two conditions on a permutation w 2 Sn are

equivalent:

i. The interval [0̂; w] of Pn is rank-symmetric, i.e., if � is the rank function of

Pn (so �(w) is the number of inversions of w), then

#fu 2 [0̂; w] : �(u) = ig = #fu 2 [0̂; w] : �(w)� �(u) = ig;
for all 0 � i � �(w).
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ii. The permutation w = w1w2 � � �wn is 4231 and 3412-avoiding, i.e., there do

not exist a < b < c < d such that wd < wb < wc < wa or wc < wd < wa < wb.

(b) [3{] Call a permutation w 2 Sn smooth if it satis�es (i) (or (ii)) above. Let f(n)

be the number of smooth w 2 Sn. Show that

X
n�0

f(n)xn =
1

1� x� x2

1�x

�
2x

1+x�(1�x)C(x)
� 1
�

= 1 + x+ 2x2 + 6x3 + 22x4 + 88x5 + 366x6

+1552x7 + 6652x8 + 28696x9 + � � � ;

where C(x) = (1�p
1� 4x)=2x is the generating function for the Catalan num-

bers.

48. [3] Let f(n) be the number of 1342-avoiding permutations w = w1w2 � � �wn in Sn, i.e.,

there do not exist a < b < c < d such that wa < wd < wb < wc. Show that

X
n�0

f(n)xn =
32x

1 + 20x� 8x2 � (1� 8x)3=2

= 1 + x+ 2x2 + 6x3 + 23x4 + 103x5 + 512x6 + 2740x7 + 15485x8 + � � � :

49. (a) [3{] Let Bn denote the board consisting of the following number of squares in each

row (read top to bottom), with the centers of the rows lying on a vertical line: 2,

4, 6, : : :, 2(n � 1), 2n (three times), 2(n � 1), : : :, 6, 4, 2. Figure 11 shows the

board B3. Let f(n) be the number of ways to cover Bn with disjoint dominos (or

dimers). (A domino consists of two squares with an edge in common.) Show that

f(n) is equal to the central Delannoy number D(n; n) (as de�ned in Section 3).

(b) [3{] What happens when there are only two rows of length 2n?

50. [3] Let B denote the \chessboard" N �N . A position consists of a �nite subset S of B,

whose elements we regard as pebbles. A move consists of replacing some pebble, say at

cell (i; j), with two pebbles at cells (i+1; j) and (i; j +1), provided that each of these

cells is not already occupied. A position S is reachable if there is some sequence of

moves, beginning with a single pebble at the cell (0; 0), that terminates in the position

S. A subset T of B is unavoidable if every reachable set intersects T . A subset T of B

is minimally unavoidable if T is unavoidable, but no proper subset of T is unavoidable.

Let u(n) be the number of n-element minimally unavoidable subsets of B. Show that

X
n�0

u(n)xn = x3
(1� 3x+ x2)

p
1� 4x� 1 + 5x� x2 � 6x3

1� 7x + 14x2 � 9x3

= 4x5 + 22x6 + 98x7 + 412x8 + 1700x9 + 6974x10 + 28576x11 + � � � :
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Figure 11: A board with D(3; 3) = 63 domino tilings
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