
ADDITIONAL PROBLEMS FOR EC1 AND EC2

version of 30 July 2017

CHAPTER 1

1. (a) [2] Let 0 ≤ k ≤ 2. Show that for n ≥ 3, the number of per-
mutations w ∈ Sn whose number of inversions is congruent to k
modulo 3 is independent of k. For instance, when n = 3 there are
two permutations with 0 or 3 inversions, two with one inversion,
and two with two inversions.

(b) [2+] Let M be the multiset {1a1 , . . . , kak}, where each ai is a
positive integer. Find a simple characterization of those sequences
(a1, . . . , ak) for which the number of permutations of M with an
even number of inversions is equal to the number with an odd
number of inversions. Your condition should not involve any sums.

2. [3] Let σ(n, k) be the number of surjections [n] → [k]. Regarding n
as fixed, let cn be the value of k that maximizes σ(n, k). Show that
cn ∼ n/(2 log 2) ≈ 0.7213475n.

3. [2–] Let f(n) be the number of partitions of n for which each part
occurs at most twice. For instance, f(5) = 5, the partitions being 5,
41, 32, 311, 221. Let g(n) be the number of partitions of n whose parts
are not divisible by three. Show that f(n) = g(n) for all n ≥ 0.

4. [2+] Let f(n) be the number of ways to choose a permutation w ∈ Sn

and then choose an element of each cycle of w. (Set f(0) = 1.) For
instance, f(1) = 1 and f(2) = 3. Find a simple formula (no infinite
sums, in particular) for

∑

n≥0 f(n)
xn

n!
. (You don’t need to find a formula

for f(n).)

5. [2+] Find the number f(n) of pairs (π, σ) of partitions of [n] such that
σ covers π in the lattice Πn of partitions of [n]. For those not familiar
with this poset terminology, this means that σ is obtained from π by
merging two blocks of π into a single block. Express your answer in
terms of Bell numbers. It should not involve any summation symbols
or implied summations like B(0) +B(1) + · · ·+B(n).
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6. (a) [3–] For 0 ≤ k ≤ d define a polynomial Pd,k(n) by

∑

n≥0

Pd,k(n)x
n =

(1 + x)k

(1− x)d+1
.

Show that Pd,k(n) has positive coefficients.

(b) [5–] Is there a nice combinatorial interpretation of the coefficients
of d!Pd,k(n)? The case k = d is especially interesting.

7. [3] For S, T ⊆ [n−1], define βn(S, T ) to be the number of permutations
w ∈ Sn satisfying D(w) = S and D(w−1) = T . Let An be the 2n−1 ×
2n−1 matrix whose rows and columns are indexed by the subsets of
[n− 1] (in some order), and whose (S, T )-entry is βn(S, T ). Show that
rank(An) = p(n), the number of partitions of n.

8. [2+] Evaluate the sum

Fn :=
∑

(−1)⌊
n−1

2
⌋−k,

where the sum is over all chains ∅ ⊂ S1 ⊂ · · · ⊂ Sk ⊂ [n] of subsets of
[n] such that #Si is even for 1 ≤ i ≤ k. Note. The notation S ⊂ T
means that S is a subset of T and S 6= T . The chain ∅ ⊂ [n] (the case

k = 0) contributes (−1)⌊
n−1

2
⌋ to the sum.

9. (a) [2+] For id 6= w ∈ Sn, let m1(w) be the smallest element of the
descent set D(w). Set m1(id) = 0. Find the expected value E1(n)
of m1(w) over all w ∈ Sn. Express your answer as a simple sum.
Find δ1 := limn→∞E1(n).

(b) [3] Let mk(w) denote the kth smallest element of the descent set
D(w). Set mk(w) = 0 if des(w) < k. Let δk := limn→∞Ek(n),
where Ek(n) is the expected value of mk(w) for w ∈ Sn. Find an
explicit formula for

∑

k≥1 δkx
k and an asymptotic formula for δk

as k → ∞.

10. (a) [2+] Fix n ≥ 1. Let oa(n) be the number of sets S ⊆ [n − 1] for
which αn(S) is odd. Find a simple formula for oa(n) involving
the number f(m) of ordered set partitions of an m-element set.
(An exercise in Chapter 1 may prove useful.) Note. Though
irrelevant here, we have by Example 3.18.10 that

∑

m≥0 f(m)x
m

m!
=

1/(2− ex).
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(b) [3–] Fix n ≥ 1. Let ob(n) be the number of sets S ⊆ [n − 1] for
which βn(S) is odd. Is ob(n) always a power of 2?

(c) [5–] What more can be said about the numbers ob(n)?

Note. For some analogous problems, see Exercises 1.14(b), 1.15 and
7.15.

11. [3–] Let p be a prime. Find a simple description of all positive integers
d with the following property:

A(d, k) ≡ (−1)k−1

(

d− 1

k − 1

)

(mod p), for all 1 ≤ k ≤ d,

where A(d, k) is an Eulerian number.

12. (a) [2+] Let 1 ≤ a ≤ b ≤ c ≤ d with ad = bc. Show that
(

a+d
a

)

≤
(

b+c
b

)

.

(b) [5–] Show that the polynomial
(

b+c

b

)

−
(

a+d

a

)

has nonnegative co-

efficients. Here
(

n

k

)

denotes a q-binomial coefficient.

(c) [5–] Show in fact that the coefficients of
(

b+c

b

)

−
(

a+d

a

)

are uni-
modal.

13. Call two permutations u, v ∈ Sn equivalent if v can be obtained from
u by interchanging adjacent elements that differ by 1 (clearly an equiv-
alence relation). For instance, the equivalence classes for n = 3 are
{123, 213, 132} and {231, 321, 312}.

(a) [3–] Let f(n) be the number of equivalence classes in Sn, with
f(0) = 1. Find a simple formula for f(n) as a finite sum. Use this
to express the generating function F (x) =

∑

n≥0 f(n)x
n in terms

of the power series G(x) =
∑

n≥0 n!x
n.

(b) [2+] Show that the size of every equivalence class is a product of
Fibonacci numbers.

(c) [3–] Let N(n) be the number of one-element equivalence classes
in Sn. Express the generating function

∑

n≥0N(n)xn in terms of
G(x).

14. [2+] Show by simple combinatorial reasoning that the Bell number
B(n) is even if and only if n ≡ 2 (mod 3).
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CHAPTER 2

15. [2+] Let f(n) be the number of permutations w ∈ S2n such that we
never have w(i) = i for 1 ≤ i ≤ n (not 1 ≤ i ≤ 2n). Find a formula for
f(n) involving a single summation symbol and find a simple expression
(no summations) for limn→∞ f(n)/(2n)!.

CHAPTER 3

16. [2] Find a finite poset P with the following property, or show that no
such P exists. The longest chain in P hasm elements. P can be written
as a union of two chains C1 and C2, but cannot be written in this way
where #C1 = m.

17. (a) [2] How many nonisomorphic n-element posets contain an (n−1)-
element antichain?

(b) [2+] How many nonisomorphic n-element posets contain an (n−
1)-element chain?

(c) [2–] How many nonisomorphic n-element posets contain both an
(n− 1)-element antichain and an (n− 1)-element chain?

18. (a) [3–] Find a finite poset P with the following property. The au-
tomorphism group Aut(P ) of P acts transitively on the set M of
minimal elements of P . Moreover, the restriction of Aut(P ) to M
does not contain a full cycle of the elements of M .

(b) [5–] Does such a poset exist if all maximal chains have two ele-
ments?

19. [2+] Let w = t1, . . . , tp be a permutation of the elements of a finite poset
P . Call a permutation w′ a permissible swap of w if it is obtained from
w by interchanging some ti and ti+1 where ti < ti+1. Clearly a sequence
of permissible swaps must eventually terminate in a permutation v that
has no permissible swaps. Show that v is independent of the sequence
of permissible swaps.

20. [2+] For each permutation w ∈ Sn, let σw be the simplex in Rn defined
by

σw = {(x1, . . . , xn) ∈ Rn : 0 ≤ xw(1) ≤ xw(2) ≤ · · · ≤ xw(n) ≤ 1}.
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For any nonempty subset S ⊆ Sn, define

XS =
⋃

w∈S

σw ⊂ Rn.

Show that XS is convex if and only if S is the set of linear extensions
of some partial ordering of [n].

21. [2+] Let 0 ≤ p ≤ 1, and let P be a finite n-element poset with 0̂ and 1̂.
Let σ : P → [n] be a linear extension of P . Define a random digraph
D on the vertex set [n] as follows. For each s < t in P , choose the edge
s → t of D with probability p.

Now start at the vertex 0̂ of D. If there is an arrow from 0̂, then move
to the vertex t for which 0̂ → t is an edge of D and σ(t) is as small as
possible; otherwise stop. Continue this procedure (always moving from
a vertex u to a vertex v for which u → v is an edge of D and σ(v) is as
small as possible) until unable to continue. What is the probability that
we end at vertex 1̂? Try to give an elegant proof avoiding recurrence
relations, linear algebra, etc.

22. (a) [2+] Let f(n) be the average value of µP (0̂, 1̂), where P ranges
over all (induced) subposets of the boolean algebra Bn containing
0̂ and 1̂. (The number of such P is 22

n−2.) Define the Genocchi

number Gn by
∑

n≥0

Gn
xn

n!
=

2x

1 + ex
,

as in Exercise 5.8(d). Show that f(n) = 2Gn+1/(n+ 1).

(b) [2] It follows from (a) that f(n) = 0 when n is even. Give a
noncomputational proof.

23. (a) [2] Let Un be the set of all lattice paths λ of length n − 1 (i.e.,
with n− 1 steps), starting at (0, 0), with steps (1, 1) and (1,−1).
Thus #Un = 2n−1. Regard the n integer points on the path λ as
the elements of a poset Pλ, such that λ is the Hasse diagram of
Pλ. Find

∑

λ∈Un
e(Pλ).

(b) [2+] Give Pλ the labeling ωλ by writing the numbers 1, 2, . . . , n
along the path. For example, when n = 8 one possible pair
(Pλ, ωλ) is given by
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1
3

4

5

6

7

8

2

Find
∑

λ∈Un
ΩPλ,ωλ

(m) and
∑

λ∈Un
WPλ,ωλ

(q).

(c) [3–] Let Vn consist of those λ ∈ Un which never fall below the x-
axis. It is well-known that Vn =

(

n−1
⌊(n−1)/2⌋

)

. Show that
∑

λ∈Vn
e(Pλ)

is equal to the number of permutations w ∈ Sn of odd order. A
formula for this number is given in EC2, Exercise 5.10(c) (the case
k = 2).

(d) [5–] Is there a nice bijective proof or “conceptual proof” of (c)?

(e) [5–] Are there nice expressions for
∑

λ∈Vn
ΩPλ,ωλ

(m) and/or
∑

λ∈Vn
WPλ,ωλ

(q)?

(f) [3–] Now let Wn consist of all λ ∈ V2n+1 that end at the x-axis. It
is well-known that #Wn is the Catalan number Cn−1 =

1
n

(

2(n−1)
n−1

)

.
Show that

∑

λ∈Wn
e(Pλ) is equal to the Eulerian-Catalan number

ECn = A(2n+ 1, n+ 1)/(n+ 1) of EC1, Exercise 1.53.

24. [2+] Let P be a finite poset with 0̂ and 1̂. For each t ∈ P define a
polynomial ft(x) with coefficients in Z[y] as follows:

f0̂(x) = y

ft(x+ y) =
∑

s≤t

fs(x).

Express f1̂(x) in terms of the zeta polynomial ZP (n).

CHAPTER 4

25. (a) [2+] Let fk(n) be the middle coefficient (i.e., the coefficient of
q⌊kn/2⌋) of the q-binomial coefficient

(

n+k

k

)

. Find a simple formula
for the generating function

∑

n≥0 f3(n)x
n.

(b) [3–] Show that for any k ∈ P, fk(n) is a quasipolyomial.
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26. Let fk(n) denote the number of odd coefficients in the q-binomial co-
efficient

(

n

k

)

.

(a) [2+] Show that

∑

n≥2

f2(n)x
n =

x2(1 + x)

(1− x)2(1 + x2)
.

(b) [5–] Show that

∑

n≥3

f3(n)x
n =

P3(x)

φ2
1φ

2
2φ3φ2

4φ6φ12
,

where P3(x) has coefficients (beginning with the coefficient of x3)

1, 4, 4, 8, 6, 4, 8, 4, 6, 8, 4, 4, 1,

and where φk is the kth cyclotomic polynomial, normalized to
have constant term 1.

(c) [3] Show that fk(n) a quasipolynomial for fixed k. More gener-
ally, if fk,p,j(n) is the number of coefficients of

(

n

k

)

congruent to j
modulo the prime p, then for fixed k, p, j the function fk,p,j(n) is
a quasipolyomial in n.

27. [2+] Let f(n) denote the number of sequences a1a2 · · · an with terms
1, 2, 3 such that no two “cyclically consecutive” elements are equal, i.e.,
we cannot have ai = ai+1 (subscripts taken modulo n), and such that
we cannot have 3 cyclically followed by 1. Give a simple formula for
f(n) in terms of the Lucas numbers Ln, defined by L1 = 1, L2 = 3,
Ln+1 = Ln + Ln−1. Use the transfer-matrix method.

28. [3–] Fix integers d ≥ 0, N ≥ 1. Let f(n) be an integer-valued quasipoly-
nomial of degree d and quasiperiod N . Suppose that f(n) = cnd +
O(nd−1) for some constant c > 0. Write

∑

n≥0

f(n)xn =
P (x)

Q(x)
,

where P and Q are relatively prime polynomials. What is the smallest
possible value of c? What is the least possible degree of Q(x) for which
this value of c is achieved?
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29. [2+] Let g(n) be the number of ways to tile a 2×n rectangle with a× b
rectangles for any integers a, b ≥ 1. (Set g(0) = 1.) Show that

∑

n≥0

g(n)xn =
(1− x)(1− 3x)

1− 6x+ 7x2
.

Note. The next six problems (ending in Problem 35) involve walks in
undirected graphs G. A walk in an undirected graph G can be converted
into a walk in a digraph DG by replacing each nonloop edge of G adjacent to
vertices u and v by the two directed edges u → v and v → u. The adjacency
matrix of G is denoted A(G).

30. (a) [2+] Let Hn be the complete bipartite graph Knn with n vertex-
disjoint edges removed. Thus Hn has 2n vertices and n(n − 1)
edges, each of degree (number of incident edges) n − 1. Show by
linear algebra that the eigenvalues of G are ±1 (n− 1 times each)
and ±(n− 1) (once each).

(b) [3–] Give a combinatorial proof. (The proof need not be a bijec-
tion, but it should use only combinatorial reasoning.)

31. [2+] Let n ≥ 1. The complete p-partite graph K(n, p) has vertex set
V = V1 ·∪ · · · ·∪Vp (disjoint union), where each #Vi = n, and an edge
from every element of Vi to every element of Vj when i 6= j. (If u, v ∈ Vi

then there is no edge uv.) Thus K(1, p) is the complete graph Kp, and
K(n, 2) is the complete bipartite graph Knn.

(a) Use equation (4.36) of EC1 to find the number of closed walks of
length ℓ in K(n, p).

(b) Deduce from (a) the eigenvalues of K(n, p).

32. [2+] Let G be any finite simple graph, with eigenvalues λ1, . . . , λp.
(“Simple” means no loops or multiple edges.) Let G(n) be the graph
obtained from G by replacing each vertex v of G with a set Vv of n
vertices, such that if uv is an edge of G, then there is an edge from
every vertex of Vu to every vertex of Vv (and no other edges). For
instance, Kp(n) = K(n, p). Find the eigenvalues of G(n) in terms of
λ1, . . . , λp.
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33. [2] Let G be a (finite) graph with vertices v1, . . . , vp and eigenvalues
λ1, . . . , λp. By Corollary 4.7.4 there are real numbers c1(i, j), . . . , cp(i, j)
such that for all ℓ ≥ 1,

(

A(G)ℓ
)

ij
=

p
∑

k=1

ck(i, j)λ
ℓ
k.

Show that ck(i, i) ≥ 0. Show also that if i 6= j then we can have
ck(i, j) < 0. (The simplest possible example will work.)

34. [2] Let G be a finite graph with eigenvalues λ1, . . . , λp. Let G⋆ be the
graph with the same vertex set as G, and with η(u, v) edges between
vertices u and v (including u = v), where η(u, v) is the number of walks
in G of length two from u to v. For example,

G G*
Find the eigenvalues of G⋆ in terms of those of G.

35. [2+] Let G be a finite simple (no loops or multiple edges) graph with at
least two vertices. Suppose that for some ℓ ≥ 1, the number of walks of
length ℓ between any two vertices u, v (including u = v) is odd. Show
that there is a nonempty subset S of the vertices such that S has an
even number of elements, and such that every vertex v of G is adjacent
to an even number of vertices in S. (A vertex v is adjacent to itself if
and only if there is a loop at v.)

CHAPTER 5

36. [3–] Let T (x) =
∑

n≥0 n
n−1 xn

n!
and U(x) =

∑

n≥0 n
n xn

n!
. Show that

U(x)3 − U(x)2 =
T (x)

(1− T (x))3
=

∑

n≥0

nn+1x
n

n!
.
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37. [2] Let h(n) be the number of ways n children can divide up into groups,
where each group consists of a nonempty subset of children standing
in a circle, with some children (at least one) inside the circle. This is
just like Example 5.2.3, except that the circles can contain any positive
number of children, not just one (perhaps not very physically realistic).
As usual set h(0) = 1. For instance, h(1) = 0, h(2) = 2, h(3) = 6,
h(4) = 30. Find Eh(x) =

∑

n≥0 h(n)
xn

n!
. Your answer should not

involve logarithms.

38. (a) [2+] Let h(n) be the number of ways n children can form a set of
concentric circles by holding hands. For instance, with 12 children,
we could have four of them forming a circle C1 (in 3!

(

12
4

)

ways).
Inside C1 is a circle C2 of just one child. Inside C2 is a circle C3 of
two children. Outside C1 is a circle C4 of two children, and inside
C4 is a circle C5 of the remaining three children. Show that

Eh(x) = (1− x)−1/(1+log(1−x))

= 1 + x+ 4
x2

2!
+ 24

x3

3!
+ 190

x4

4!
+ 1860

x5

5!
+ · · · .

(b) [2+] Now the children can arrange themselves into circles in any

way. That is, inside any circle C is a disjoint union (possibly
empty) of circles with a similar structure inside each of them.
Show that

Eh(x) = 1 +
(

1− (1 + x)−1/(1+x)
)〈−1〉

= 1 + x+ 4
x2

2!
+ 27

x3

3!
+ 260

x4

4!
+ 3280

x5

5!
+ · · · .

39. [2+] Let H(x) =
∑

n≥0 h(n)
xn

n!
, where h(n) is the number of certain

structures that can be put on an n-set as in Section 5.1. (Thus each
structure is uniquely a disjoint union of connected structures.) Let
r(n) (respectively, s(n)) be the number of ways of putting a structure
on an n-set and then putting the connected components into a cycle
(respectively, linearly ordering them). Express Er(x) and Es(x) in
terms of H(x). Use this to express Es(x) in terms of Er(x). Then give
a simple explanation of this last formula.

40. Let f(n) be the number of distinct graphs G (allowing multiple) edges
on the vertex set [2n] such that the edges of G can be partitioned into
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two complete matchings. Thus G has 2n edges. Find a simple formula
for the generating function

F (x) =
∑

n≥0

f(n)
xn

(2n)!
= 1 +

x

2!
+ 6

x2

4!
+ · · · .

41. [2+] Fix k ≥ 1. Choose an unrooted tree T on the vertex set [n]
uniformly at random. What is the probability pk(n) that vertex 1 has
degree k (i.e., has exactly k neighbors)? Find limn→∞ pk(n).

42. (a) [2+] Let f(n) be the number of ways to choose a rooted tree T on
[n] and then for each vertex v of T , either do nothing or choose a
child of v. (Thus if v is an endpoint we have only one choice—do
nothing.) For instance, f(1) = 1, f(2) = 4, f(3) = 33. Find a
formula for f(n) as a simple sum.

(b) [3–] Give a simple combinatorial proof.

CHAPTER 6

43. (a) [3+] Show that the power series

F (x) =
∑

n≥0

(10n)!n!

(5n)! (4n)! (2n)!
xn

is algebraic.

(b) [3+] Do the same for

G(x) =
∑

n≥0

(30n)!n!

(15n)! (10n)! (6n)!
xn.

Find the (minimal) degree of G(x).

44. (a) [2+] What curious property does the following power series pos-
sess?

F (x) = x− 1

2
x2 +

1

4
x3 − 1

8
x5 +

13

64
x7 − 145

256
x9 +

1305

1024
x10

−1587

1024
x11 +

8379

8192
x12 − 2009

16384
x13 + · · · .
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(b) [5–] Is there a “reasonable” formula for the coefficients?

45. (a) [2+] Let f(n) be the number of plane trees with n vertices such
that if a vertex u has exactly one child v, then v is an endpoint.
Let

F (x) =
∑

n≥1

f(n)xn = x+ x2 + x3 + 3x4 + · · · .

Find an explicit formula for F (x) and F (x)〈−1〉.

(b) [5–] Is there some simple combinatorial explanation for the rela-
tionship between these two generating functions? Can this phe-
nomenon be generalized?

46. (a) [2+] Let t be an indeterminate. Find the coefficients of the gen-
erating function F (x, y) = 1/(1− x− y)t.

(b) [3–] Find a simple formula (involving a single finite sum) for the
diagonal D(z) = DF (x, y) when t is a positive integer.

47. [5–] Let f(n) be an integer-valued unbounded P -recursive function.
Show that f(n) is composite for infinitely many positive integers n.
(This surely must be true, since otherwise there is a simple recurrence
for generating arbitrarily large primes. Perhaps the result is already
known, but I have been unable to find it in the literature.)

48. (a) [2+] Let fd(n) be the number of walks in the first quadrant of Zd

(i.e., all coordinates nonnegative) starting at the origin and with
steps ±ei, where ei is the ith unit coordinate vector. Show that
for fixed d, the function fd(n) is P -recursive.

(b) [3–] Find a simple formula for f2(n) and a three-term linear re-
currence with polynomial coefficients satisfied by f2(n).

49. [2] Let f : N → Q be P -recursive, and let d be the least integer for
which there is a recurrence

Pd(n)f(n+ d) + Pd−1(n)f(n+ d− 1) + · · ·+ P0(n)f(n) = 0, n ≥ 0,

with Pi(n) ∈ C[n] and Pd(n) 6= 0. Show that there exists such a
recurrence with Pi(n) ∈ Z[n].

50. (a) [3–] Show that f(n) = nn is not P -recursive.
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(b) [2+] Does there exist a P -recursive function f : N → R such that

f(n) ∼ nn, i.e., limn→∞
f(n)
nn = 1?

51. [2] Let f : N → C be P -recursive. Show that log f(n)
n logn

is bounded as

n → ∞. Thus for instance 2n
2

is not P -recursive.

52. (a) [3–] Show that for α ∈ R there exists a P -recursive function
f : N → R such that f(n) ∼ nα.

(b) [2–] Let A be the set of all α ∈ R for which there exists a P -
recursive function f : N → Z satisfying f(n) ∼ nα. Show that A
is a submonoid of the additive reals.

(c) [3] Show that 2−k ∈ A for all k ∈ N and that
√
17 ∈ A.

(d) [5–] What more can be said about the monoid A?

53. [2+] Let f(n) = n!+ 1
n!
. Using just hand computation, find a nontrivial

linear recurrence with polynomial coefficients satisfied by f(n).

54. [2] Let u ∈ K[[x]] be D-finite, say

pd(x)u
(d) + pd−1(x)u

(d−1) + · · ·+ p1(x)u
′ + p0(x)u = 0 (12)

as in EC2, equation (6.31). Find a nontrivial homogeneous linear dif-
ferential equation with polynomial coefficients satisfied by u+ 1. (You
can write the coefficients in any form that makes it clear that they are
polynomials in x.)

55. (a) [2] Let 1 ≤ n1 < n2 < n3 < · · · , and let

F (x) =
∑

i≥0

aix
ni ∈ K[[x]],

where char(K) = 0 and ai 6= 0 for all i ≥ 0. Show that if

lim sup
i→∞

(ni+1 − ni) = ∞,

then F (x) is not D-finite. For instance,
∑

n≥0 x
(n
2
) is not D-finite.

(b) [2] Show that (a) need not be true if char(K) > 0. Show in fact
that (a) can fail for algebraic F (x).
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(c) [5–] Suppose that lim supi→∞ n
1/i
i = ∞. Is it true that then F (x)

is not D-finite for any field K? (Perhaps this is already known.)

56. [3+] Fix a subset F of Sk, and let Avn(F) denote the number of
permutations w ∈ Sn that avoid the patterns in F (in the sense of
en.wikipedia.org/wiki/Permutation pattern). Show that Avn(F)
need not be D-finite.
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