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Basic Notation

P positive integers

N nonnegative integers

Z integers

Q rational numbers

R real numbers

C complex numbers

[n] the set {1, 2, . . . , n} for n ∈ N (so [0] = ∅)

Zn the group of integers modulo n

R[x] the ring of polynomials in the variable x with coefficients
in the ring R

Y X for sets X and Y , the set of all functions f : X → Y

:= equal by definition

Fq the finite field with q elements

(j) 1 + q + q2 + · · ·+ qj−1

#S or |S| cardinality (number of elements) of the finite set S

S ·∪T the disjoint union of S and T , i.e., S ∪ T , where S ∩ T = ∅

2S the set of all subsets of the set S

(
S
k

)
the set of k-element subsets of S

((
S
k

))
the set of k-element multisets on S

KS the vector space with basis S over the field K
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Bn the poset of all subsets of [n], ordered by inclusion

ρ(x) the rank of the element x in a graded poset

[xn]F (x) coefficient of xn in the polynomial or power series F (x)

x⋖ y, y ⋗ x y covers x in a poset P

δij the Kronecker delta, which equals 1 if i = j and 0 otherwise

|L| the sum of the parts (entries) of L, if L is any array of
nonnegative integers

ℓ(λ) length (number of parts) of the partition λ

p(n) number of partitions of the integer n ≥ 0

kerϕ the kernel of a linear transformation or group homomorphism

Sn symmetric group of all permutations of 1, 2, . . . , n

ι the identity permutation of a set X, i.e., ι(x) = x for all x ∈ X
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Chapter 1

Walks in graphs

Given a finite set S and integer k ≥ 0, let
(

S
k

)
denote the set of k-element

subsets of S. A multiset may be regarded, somewhat informally, as a set
with repeated elements, such as {1, 1, 3, 4, 4, 4, 6, 6}. We are only concerned
with how many times each element occurs, and not on any ordering of the
elements. Thus for instance {2, 1, 2, 4, 1, 2} and {1, 1, 2, 2, 2, 4} are the same
multiset: they each contain two 1’s, three 2’s, and one 4 (and no other
elements). We say that a multiset M is on a set S if every element of
M belongs to S. Thus the multiset in the example above is on the set
S = {1, 3, 4, 6} and also on any set containing S. Let

((
S
k

))
denote the

set of k-element multisets on S. For instance, if S = {1, 2, 3} then (using
abbreviated notation),

(
S

2

)
= {12, 13, 23},

((
S

2

))
= {11, 22, 33, 12, 13, 23}.

We now define what is meant by a graph. Intuitively, graphs have vertices
and edges, where each edge “connects” two vertices (which may be the same).
It is possible for two different edges e and e′ to connect the same two vertices.
We want to be able to distinguish between these two edges, necessitating the
following more precise definition. A (finite) graph G consists of a vertex
set V = {v1, . . . , vp} and edge set E = {e1, . . . , eq}, together with a function
ϕ : E →

((
V
2

))
. We think that if ϕ(e) = uv (short for {u, v}), then e connects

u and v or equivalently e is incident to u and v. If there is at least one edge
incident to u and v then we say that the vertices u and v are adjacent. If
ϕ(e) = vv, then we call e a loop at v. If several edges e1, . . . , ej (j > 1)
satisfy ϕ(e1) = · · · = ϕ(ej) = uv, then we say that there is a multiple edge

9



10 CHAPTER 1. WALKS IN GRAPHS

between u and v. A graph without loops or multiple edges is called simple.
In this case we can think of E as just a subset of

(
V
2

)
[why?].

The adjacency matrix of the graph G is the p×p matrix A = A(G), over
the field of complex numbers, whose (i, j)-entry aij is equal to the number of
edges incident to vi and vj . Thus A is a real symmetric matrix (and hence
has real eigenvalues) whose trace is the number of loops in G. For instance,
if G is the graph

1

3

54

2

then

A(G) =





2 1 0 2 0
1 0 0 0 1
0 0 0 0 0
2 0 0 0 1
0 1 0 1 1




.

A walk inG of length ℓ from vertex u to vertex v is a sequence v1, e1, v2, e2, . . . ,
vℓ, eℓ, vℓ+1 such that:

• each vi is a vertex of G

• each ej is an edge of G

• the vertices of ei are vi and vi+1, for 1 ≤ i ≤ ℓ

• v1 = u and vℓ+1 = v.

1.1 Theorem. For any integer ℓ ≥ 1, the (i, j)-entry of the matrix A(G)ℓ

is equal to the number of walks from vi to vj in G of length ℓ.
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Proof. This is an immediate consequence of the definition of matrix multi-
plication. Let A = (aij). The (i, j)-entry of A(G)ℓ is given by

(A(G)ℓ)ij =
∑

aii1ai1i2 · · ·aiℓ−1j ,

where the sum ranges over all sequences (i1, . . . , iℓ−1) with 1 ≤ ik ≤ p.
But since ars is the number of edges between vr and vs, it follows that the
summand aii1ai1i2 · · ·aiℓ−1j in the above sum is just the number (which may
be 0) of walks of length ℓ from vi to vj of the form

vi, e1, vi1 , e2, . . . , viℓ−1
, eℓ, vj

(since there are aii1 choices for e1, ai1i2 choices for e2, etc.) Hence summing
over all (i1, . . . , iℓ−1) just gives the total number of walks of length ℓ from vi

to vj , as desired.

We wish to use Theorem 1.1 to obtain an explicit formula for the number
(A(G)ℓ)ij of walks of length ℓ in G from vi to vj . The formula we give will
depend on the eigenvalues of A(G). The eigenvalues of A(G) are also called
simply the eigenvalues of G. Recall that a real symmetric p×pmatrix M has
p linearly independent real eigenvectors, which can in fact be chosen to be
orthonormal (i.e., orthogonal and of unit length). Let u1, . . . , up be real or-
thonormal eigenvectors for M , with corresponding eigenvalues λ1, . . . , λp. All
vectors u will be regarded as p×1 column vectors, unless specified otherwise.
We let t denote transpose, so ut is a 1×p row vector. Thus the dot (or scalar
or inner) product of the vectors u and v is given by utv (ordinary matrix mul-
tiplication). In particular, ut

iuj = δij (the Kronecker delta). Let U = (uij)
be the matrix whose columns are u1, . . . , up, denoted U = [u1, . . . , up]. Thus
U is an orthogonal matrix, so

U t = U−1 =




ut

1
...
ut

p



 ,

the matrix whose rows are ut
1, . . . , u

t
p. Recall from linear algebra that the

matrix U diagonalizes M , i.e.,

U−1MU = diag(λ1, . . . , λp),

where diag(λ1, . . . , λp) denotes the diagonal matrix with diagonal entries
λ1, . . . , λp (in that order).
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1.2 Corollary. Given the graph G as above, fix the two vertices vi and vj.
Let λ1, . . . , λp be the eigenvalues of the adjacency matrix A(G). Then there
exist real numbers c1, . . . , cp such that for all ℓ ≥ 1, we have

(A(G)ℓ)ij = c1λ
ℓ
1 + · · ·+ cpλ

ℓ
p. (1.1)

In fact, if U = (urs) is a real orthogonal matrix such that U−1AU = diag(λ1, . . . , λp),
then we have

ck = uikujk.

Proof. We have [why?]

U−1AℓU = diag(λℓ
1, . . . , λ

ℓ
p).

Hence

Aℓ = U · diag(λℓ
1, . . . , λ

ℓ
p)U

−1.

Taking the (i, j)-entry of both sides (and using U−1 = U t) gives [why?]

(Aℓ)ij =
∑

k

uikλ
ℓ
kujk,

as desired.

In order for Corollary 1.2 to be of any use we must be able to compute the
eigenvalues λ1, . . . , λp as well as the diagonalizing matrix U (or eigenvectors
ui). There is one interesting special situation in which it is not necessary to
compute U . A closed walk in G is a walk that ends where it begins. The
number of closed walks in G of length ℓ starting at vi is therefore given by
(A(G)ℓ)ii, so the total number fG(ℓ) of closed walks of length ℓ is given by

fG(ℓ) =

p∑

i=1

(A(G)ℓ)ii

= tr(A(G)ℓ),

where tr denotes trace (sum of the main diagonal entries). Now recall that
the trace of a square matrix is the sum of its eigenvalues. If the matrix M
has eigenvalues λ1, . . . , λp then [why?] M ℓ has eigenvalues λℓ

1, . . . , λ
ℓ
p. Hence

we have proved the following.
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1.3 Corollary. Suppose A(G) has eigenvalues λ1, . . . , λp. Then the number
of closed walks in G of length ℓ is given by

fG(ℓ) = λℓ
1 + · · ·+ λℓ

p.

We now are in a position to use various tricks and techniques from linear
algebra to count walks in graphs. Conversely, it is sometimes possible to
count the walks by combinatorial reasoning and use the resulting formula to
determine the eigenvalues of G. As a first simple example, we consider the
complete graph Kp with vertex set V = {v1, . . . , vp}, and one edge between
any two distinct vertices. Thus Kp has p vertices and

(
p
2

)
= 1

2
p(p− 1) edges.

1.4 Lemma. Let J denote the p× p matrix of all 1’s. Then the eigenvalues
of J are p (with multiplicity one) and 0 (with multiplicity p− 1).

Proof. Since all rows are equal and nonzero, we have rank(J) = 1. Since a
p×p matrix of rank p−m has at least m eigenvalues equal to 0, we conclude
that J has at least p − 1 eigenvalues equal to 0. Since tr(J) = p and the
trace is the sum of the eigenvalues, it follows that the remaining eigenvalue
of J is equal to p.

1.5 Proposition. The eigenvalues of the complete graph Kp are as follows:
an eigenvalue of −1 with multiplicity p− 1, and an eigenvalue of p− 1 with
multiplicity one.

Proof. We have A(Kp) = J−I, where I denotes the p×p identity matrix. If
the eigenvalues of a matrix M are µ1, . . . , µp, then the eigenvalues of M + cI
(where c is a scalar) are µ1 + c, . . . , µp + c [why?]. The proof follows from
Lemma 1.4.

1.6 Corollary. The number of closed walks of length ℓ in Kp from some
vertex vi to itself is given by

(A(Kp)
ℓ)ii =

1

p
((p− 1)ℓ + (p− 1)(−1)ℓ). (1.2)

(Note that this is also the number of sequences (i1, . . . , iℓ) of numbers 1, 2, . . . , p
such that i1 = i, no two consecutive terms are equal, and iℓ 6= i1 [why?].)

Proof. By Corollary 1.3 and Proposition 1.5, the total number of closed walks
in Kp of length ℓ is equal to (p − 1)ℓ + (p − 1)(−1)ℓ. By the symmetry of
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the graph Kp, the number of closed walks of length ℓ from vi to itself does
not depend on i. (All vertices “look the same.”) Hence we can divide the
total number of closed walks by p (the number of vertices) to get the desired
answer.

A combinatorial proof of Corollary 1.6 is quite tricky (Exercise 1.1). Our
algebraic proof gives a first hint of the power of algebra to solve enumerative
problems.

What about non-closed walks in Kp? It’s not hard to diagonalize ex-
plicitly the matrix A(Kp) (or equivalently, to compute its eigenvectors), but
there is an even simpler special argument. We have

(J − I)ℓ =

ℓ∑

k=0

(−1)ℓ−k

(
ℓ

k

)
Jk, (1.3)

by the binomial theorem.1 Now for k > 0 we have Jk = pk−1J [why?], while
J0 = I. (It is not clear a priori what is the “correct” value of J0, but in
order for equation (1.3) to be valid we must take J0 = I.) Hence

(J − I)ℓ =

ℓ∑

k=1

(−1)ℓ−k

(
ℓ

k

)
pk−1J + (−1)ℓI.

Again by the binomial theorem we have

(J − I)ℓ =
1

p
((p− 1)ℓ − (−1)ℓ)J + (−1)ℓI. (1.4)

Taking the (i, j)-entry of each side when i 6= j yields

(A(Kp)
ℓ)ij =

1

p
((p− 1)ℓ − (−1)ℓ). (1.5)

If we take the (i, i)-entry of (1.4) then we recover equation (1.2). Note the
curious fact that if i 6= j then

(A(Kp)
ℓ)ii − (A(Kp)

ℓ)ij = (−1)ℓ.

1We can apply the binomial theorem in this situation because I and J commute. If
A and B are p× p matrices that don’t necessarily commute, then the best we can say is
(A + B)2 = A2 + AB + BA + B2, and similarly for higher powers.
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We could also have deduced (1.5) from Corollary 1.6 using

p∑

i=1

p∑

j=1

(
A(Kp)

ℓ
)

ij
= p(p− 1)ℓ,

the total number of walks of length ℓ in Kp. Details are left to the reader.
We now will show how equation (1.2) itself determines the eigenvalues

of A(Kp). Thus if (1.2) is proved without first computing the eigenvalues
of A(Kp) (which in fact is what we did two paragraphs ago), then we have
another means to compute the eigenvalues. The argument we will give can
in principle be applied to any graph G, not just Kp. We begin with a simple
lemma.

1.7 Lemma. Suppose α1, . . . , αr and β1, . . . , βs are nonzero complex numbers
such that for all positive integers ℓ, we have

αℓ
1 + · · ·+ αℓ

r = βℓ
1 + · · ·+ βℓ

s. (1.6)

Then r = s and the α’s are just a permutation of the β’s.

Proof. We will use the powerful method of generating functions. Let x be a
complex number whose absolute value (or modulus) is close to 0. Multiply
(1.6) by xℓ and sum on all ℓ ≥ 1. The geometric series we obtain will
converge, and we get

α1x

1− α1x
+ · · ·+ αrx

1− αrx
=

β1x

1− β1x
+ · · ·+ βsx

1− βsx
. (1.7)

This is an identity valid for sufficiently small (in modulus) complex num-
bers. By clearing denominators we obtain a polynomial identity. But if two
polynomials in x agree for infinitely many values, then they are the same
polynomial [why?]. Hence equation (1.7) is actually valid for all complex
numbers x (ignoring values of x which give rise to a zero denominator).

Fix a complex number γ 6= 0. Multiply (1.7) by 1− γx and let x→ 1/γ.
The left-hand side becomes the number of αi’s which are equal to γ, while
the right-hand side becomes the number of βj ’s which are equal to γ [why?].
Hence these numbers agree for all γ, so the lemma is proved.

1.8 Example. Suppose that G is a graph with 12 vertices and that the
number of closed walks of length ℓ in G is equal to 3 · 5ℓ + 4ℓ + 2(−2)ℓ + 4.
Then it follows from Corollary 1.3 and Lemma 1.7 [why?] that the eigenvalues
of A(G) are given by 5, 5, 5, 4,−2,−2, 1, 1, 1, 1, 0, 0.



16 CHAPTER 1. WALKS IN GRAPHS

Notes for Chapter 1

The connection between graph eigenvalues and the enumeration of walks
is considered “folklore.” The subject of spectral graph theory, which is con-
cerned with the spectrum (multiset of eigenvalues) of various matrices asso-
ciated with graphs, began around 1931 in the area of quantum chemistry.
The first mathematical paper was published by L. Collatz and U. Sinogowitz
in 1957. A good general reference is the book2 [26] by Cvetković, Doob,
and Sachs. Two textbooks on this subject are by Cvetković, Rowlinson, and
Simić [27] and by Brouwer and Haemers [14].

2All citations to the literature refer to the bibliography beginning on page 261.
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Chapter 2

Cubes and the Radon
transform

Let us now consider a more interesting example of a graph G, one whose
eigenvalues have come up in a variety of applications. Let Z2 denote the
cyclic group of order 2, with elements 0 and 1, and group operation being
addition modulo 2. Thus 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0. Let Zn

2

denote the direct product of Z2 with itself n times, so the elements of Zn
2 are

n-tuples (a1, . . . , an) of 0’s and 1’s, under the operation of component-wise
addition. Define a graph Cn, called the n-cube, as follows: the vertex set of
Cn is given by V (Cn) = Zn

2 , and two vertices u and v are connected by an
edge if they differ in exactly one component. Equivalently, u+ v has exactly
one nonzero component. If we regard Zn

2 as consisting of real vectors, then
these vectors form the set of vertices of an n-dimensional cube. Moreover,
two vertices of the cube lie on an edge (in the usual geometric sense) if and
only if they form an edge of Cn. This explains why Cn is called the n-cube.
We also see that walks in Cn have a nice geometric interpretation — they
are simply walks along the edges of an n-dimensional cube.

We want to determine explicitly the eigenvalues and eigenvectors of Cn.
We will do this by a somewhat indirect but extremely useful and powerful
technique, the finite Radon transform. Let V denote the set of all functions
f : Zn

2 → R, where R denotes the field of real numbers.1 Note that V is a
vector space over R of dimension 2n [why?]. If u = (u1, . . . , un) and v =

1For abelian groups other than Zn

2
it is necessary to use complex numbers rather than

real numbers. We could use complex numbers here, but there is no need to do so.

21
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(v1, . . . , vn) are elements of Zn
2 , then define their dot product by

u · v = u1v1 + · · ·+ unvn, (2.1)

where the computation is performed modulo 2. Thus we regard u · v as an
element of Z2. The expression (−1)u·v is defined to be the real number +1
or −1, depending on whether u · v = 0 or 1, respectively. Since for integers
k the value of (−1)k depends only on k (mod 2), it follows that we can treat
u and v as integer vectors without affecting the value of (−1)u·v. Thus, for
instance, formulas such as

(−1)u·(v+w) = (−1)u·v+u·w = (−1)u·v(−1)u·w

are well-defined and valid. From a more algebraic viewpoint, the map Z →
{−1, 1} sending n to (−1)n is a group homomorphism, where of course the
product on {−1, 1} is multiplication.

We now define two important bases of the vector space V. There will be
one basis element of each basis for each u ∈ Zn

2 . The first basis, denoted B1,
has elements fu defined as follows:

fu(v) = δuv, (2.2)

the Kronecker delta. It is easy to see that B1 is a basis, since any g ∈ V
satisfies

g =
∑

u∈Zn
2

g(u)fu (2.3)

[why?]. Hence B1 spans V, so since #B1 = dimV = 2n, it follows that B1 is
a basis. The second basis, denoted B2, has elements χu defined as follows:

χu(v) = (−1)u·v.

In order to show that B2 is a basis, we will use an inner product on V (denoted
〈·, ·〉) defined by

〈f, g〉 =
∑

u∈Zn
2

f(u)g(u).

Note that this inner product is just the usual dot product with respect to
the basis B1.

2.1 Lemma. The set B2 = {χu : u ∈ Zn
2} forms a basis for V.
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Proof. Since #B2 = dimV (= 2n), it suffices to show that B2 is linearly
independent. In fact, we will show that the elements of B2 are orthogonal2.
We have

〈χu, χv〉 =
∑

w∈Zn
2

χu(w)χv(w)

=
∑

w∈Zn
2

(−1)(u+v)·w.

It is left as an easy exercise to the reader to show that for any y ∈ Zn
2 , we

have
∑

w∈Zn
2

(−1)y·w =

{
2n, if y = 0
0, otherwise,

where 0 denotes the identity element of Zn
2 (the vector (0, 0, . . . , 0)). Thus

〈χu, χv〉 = 0 if and only u + v = 0, i.e., u = v, so the elements of B2 are
orthogonal (and nonzero). Hence they are linearly independent as desired.

We now come to the key definition of the Radon transform.

Given a subset Γ of Zn
2 and a function f ∈ V, define a new function

ΦΓf ∈ V by

ΦΓf(v) =
∑

w∈Γ

f(v + w).

The function ΦΓf is called the (discrete or finite) Radon transform of f (on
the group Zn

2 , with respect to the subset Γ).

We have defined a map ΦΓ : V → V. It is easy to see that ΦΓ is a linear
transformation; we want to compute its eigenvalues and eigenvectors.

2.2 Theorem. The eigenvectors of ΦΓ are the functions χu, where u ∈ Zn
2 .

The eigenvalue λu corresponding to χu (i.e., ΦΓχu = λuχu) is given by

λu =
∑

w∈Γ

(−1)u·w.

2Recall from linear algebra that nonzero orthogonal vectors in a real vector space are
linearly independent.
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Proof. Let v ∈ Zn
2 . Then

ΦΓχu(v) =
∑

w∈Γ

χu(v + w)

=
∑

w∈Γ

(−1)u·(v+w)

=

(
∑

w∈Γ

(−1)u·w

)

(−1)u·v

=

(
∑

w∈Γ

(−1)u·w

)
χu(v).

Hence

ΦΓχu =

(
∑

w∈Γ

(−1)u·w

)

χu,

as desired.

Note that because the χu’s form a basis for V by Lemma 2.1, it follows
that Theorem 2.2 yields a complete set of eigenvalues and eigenvectors for
ΦΓ. Note also that the eigenvectors χu of ΦΓ are independent of Γ; only the
eigenvalues depend on Γ.

Now we come to the payoff. Let ∆ = {δ1, . . . , δn}, where δi is the ith
unit coordinate vector (i.e., δi has a 1 in position i and 0’s elsewhere). Note
that the jth coordinate of δi is just δij (the Kronecker delta), explaining
our notation δi. Let [Φ∆] denote the matrix of the linear transformation
Φ∆ : V → V with respect to the basis B1 of V given by (2.2).

2.3 Lemma. We have [Φ∆] = A(Cn), the adjacency matrix of the n-cube.

Proof. Let v ∈ Zn
2 . We have

Φ∆fu(v) =
∑

w∈∆

fu(v + w)

=
∑

w∈∆

fu+w(v),

since u = v + w if and only if u+ w = v. There follows

Φ∆fu =
∑

w∈∆

fu+w. (2.4)
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Equation (2.4) says that the (u, v)-entry of the matrix Φ∆ is given by

(Φ∆)uv =

{
1, if u+ v ∈ ∆
0, otherwise.

Now u + v ∈ ∆ if and only if u and v differ in exactly one coordinate. This
is just the condition for uv to be an edge of Cn, so the proof follows.

2.4 Corollary. The eigenvectors Eu (u ∈ Zn
2) of A(Cn) (regarded as linear

combinations of the vertices of Cn, i.e., of the elements of Zn
2) are given by

Eu =
∑

v∈Zn
2

(−1)u·vv. (2.5)

The eigenvalue λu corresponding to the eigenvector Eu is given by

λu = n− 2ω(u), (2.6)

where ω(u) is the number of 1’s in u. (The integer ω(u) is called the Ham-
ming weight or simply the weight of u.) Hence A(Cn) has

(
n
i

)
eigenvalues

equal to n− 2i, for each 0 ≤ i ≤ n.

Proof. For any function g ∈ V we have by (2.3) that

g =
∑

v

g(v)fv.

Applying this equation to g = χu gives

χu =
∑

v

χu(v)fv =
∑

v

(−1)u·vfv. (2.7)

Equation (2.7) expresses the eigenvector χu of Φ∆ (or even ΦΓ for any Γ ⊆ Zn
2 )

as a linear combination of the functions fv. But Φ∆ has the same matrix
with respect to the basis of the fv’s as A(Cn) has with respect to the vertices
v of Cn. Hence the expansion of the eigenvectors of Φ∆ in terms of the fv’s
has the same coefficients as the expansion of the eigenvectors of A(Cn) in
terms of the v’s, so equation (2.5) follows.

According to Theorem 2.2 the eigenvalue λu corresponding to the eigen-
vector χu of Φ∆ (or equivalently, the eigenvector Eu of A(Cn)) is given by

λu =
∑

w∈∆

(−1)u·w. (2.8)
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Now ∆ = {δ1, . . . , δn}, and δi ·u is 1 if u has a one in its ith coordinate and is
0 otherwise. Hence the sum in (2.8) has n−ω(u) terms equal to +1 and ω(u)
terms equal to −1, so λu = (n− ω(u))− ω(u) = n− 2ω(u), as claimed.

We have all the information needed to count walks in Cn.

2.5 Corollary. Let u, v ∈ Zn
2 , and suppose that ω(u+ v) = k (i.e., u and v

disagree in exactly k coordinates). Then the number of walks of length ℓ in
Cn between u and v is given by

(Aℓ)uv =
1

2n

n∑

i=0

k∑

j=0

(−1)j

(
k

j

)(
n− k
i− j

)
(n− 2i)ℓ, (2.9)

where we set
(

n−k
i−j

)
= 0 if j > i. In particular,

(Aℓ)uu =
1

2n

n∑

i=0

(
n

i

)
(n− 2i)ℓ. (2.10)

Proof. Let Eu and λu be as in Corollary 2.4. In order to apply Corollary 1.2,
we need the eigenvectors to be of unit length (where we regard the fv’s as
an orthonormal basis of V). By equation (2.5), we have

|Eu|2 =
∑

v∈Zn
2

((−1)u·v)2 = 2n.

Hence we should replace Eu by E ′
u = 1

2n/2Eu to get an orthonormal basis.
According to Corollary 1.2, we thus have

(Aℓ)uv =
1

2n

∑

w∈Zn
2

EuwEvwλ
ℓ
w.

Now Euw by definition is the coefficient of fw in the expansion (2.5), i.e.,
Euw = (−1)u+w (and similarly for Ev), while λw = n− 2ω(w). Hence

(Aℓ)uv =
1

2n

∑

w∈Zn
2

(−1)(u+v)·w(n− 2ω(w))ℓ. (2.11)

The number of vectors w of Hamming weight i which have j 1’s in common
with u + v is

(
k
j

)(
n−k
i−j

)
, since we can choose the j 1’s in u + v which agree
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with w in
(

k
j

)
ways, while the remaining i− j 1’s of w can be inserted in the

n − k remaining positions in
(

n−k
i−j

)
ways. Since (u + v) · w ≡ j (mod 2), the

sum (2.11) reduces to (2.9) as desired. Clearly setting u = v in (2.9) yields
(2.10), completing the proof.

It is possible to give a direct proof of equation (2.10) avoiding linear al-
gebra, though we do not do so here. Thus by Corollary 1.3 and Lemma 1.7
(exactly as was done for Kn) we have another determination of the eigen-
values of Cn. With a little more work one can also obtain a direct proof of
equation (2.9). Later in Example 9.12, however, we will use the eigenvalues
of Cn to obtain a combinatorial result for which a nonalgebraic proof was
found only recently and is by no means easy.

2.6 Example. Setting k = 1 in (2.9) yields

(Aℓ)uv =
1

2n

n∑

i=0

[(
n− 1

i

)
−
(
n− 1

i− 1

)]
(n− 2i)ℓ

=
1

2n

n−1∑

i=0

(
n− 1

i

)
(n− 2i)ℓ+1

n− i .

Note (for those familiar with the representation theory of finite groups).
The functions χu : Zn

2 → R are just the irreducible (complex) characters
of the group Zn

2 , and the orthogonality of the χu’s shown in the proof of
Lemma 2.1 is the usual orthogonality relation for the irreducible characters
of a finite group. The results of this chapter extend readily to any finite
abelian group. Exercise 2.5 does the case Zn, the cyclic group of order n.
For nonabelian finite groups the situation is much more complicated because
not all irreducible representations have degree one (i.e., are homomorphisms
G → C∗, the multiplicative group of C), and there do not exist formulas as
explicit as the ones for abelian groups.

We can give a little taste of the situation for arbitrary groups as follows.
Let G be a finite group, and let M(G) be its multiplication table. Regard
the entries of M (G) as commuting indeterminates, so that M(G) is simply
a matrix with indeterminate entries. For instance, let G = Z3. Let the
elements of G be a, b, c, where say a is the identity. Then

M(G) =




a b c
b c a
c a b



 .
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We can compute that det M(G) = (a+b+c)(a+ωb+ω2c)(a+ω2b+ωc), where
ω = e2πi/3. In general, when G is abelian, Dedekind knew that det M(G)
factors into certain explicit linear factors over C. Theorem 2.2 is equivalent
to this statement for the group G = Zn

2 [why?]. Equation (12.5) gives the
factorization for G = Zn. (For each w ∈ G one needs to interchange the
row indexed by the group element w with the row indexed by w−1 in order
to convert M (Zn) to the circulant matrices of equation (12.5), but these
operations only affect the sign of the determinant.) Dedekind asked Frobe-
nius about the factorization of det M (G), known as the group determinant,
for nonabelian finite G. For instance, let G = S3 (the symmetric group of
all permutations of 1, 2, 3), with elements (in cycle notation) a = (1)(2)(3),
b = (1, 2)(3), c = (1, 3)(2), d = (1)(2, 3), e = (1, 2, 3), f = (1, 3, 2). Then
det M(G) = f1f2f

2
3 , where

f1 = a+ b+ c+ d+ e+ f

f2 = −a+ b+ c+ d− e− f
f3 = a2 − b2 − c2 − d2 + e2 + f 2 − ae− af + bc + bd+ cd− ef.

Frobenius showed that in general there is a set P of irreducible homogeneous
polynomials f , of some degree df , where #P is the number of conjugacy
classes of G, for which

det M(G) =
∏

f∈P
fdf .

Note that taking the degree of both sides gives #G =
∑

f d
2
f . Frobenius’

result was a highlight in his development of group representation theory.
The numbers df are just the degrees of the irreducible (complex) represen-
tations of G. For the symmetric group Sn, these degrees are the numbers
fλ of Theorem 8.1, and Appendix 1 to Chapter 8 gives a bijective proof that∑

λ(f
λ)2 = n!.

Notes for Chapter 2

The Radon transform first arose in a continuous setting in the paper
[92] of J.K.A. Radon and has been applied to such areas as computerized
tomography. The finite version was first defined by E. Bolker [10]. For
some further applications to combinatorics see J. Kung [68]. For the Radon
transform on the n-cube Zn

2 , see P. Diaconis and R. Graham [29]. For the
generalization to Zn

k , see M. DeDeo and E. Velasquez [28].
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For an exposition of the development of group representation theory by
Frobenius and other pioneers, see the survey articles of Hawkins [55][56][57].



Chapter 3

Random walks

Let G be a finite graph. We consider a random walk on the vertices of G
of the following type. Start at a vertex u. (The vertex u could be chosen
randomly according to some probability distribution or could be specified
in advance.) Among all the edges incident to u, choose one uniformly at
random (i.e., if there are k edges incident to u, then each of these edges is
chosen with probability 1/k). Travel to the vertex v at the other end of the
chosen edge and continue as before from v. Readers with some familiarity
with probability theory will recognize this random walk as a special case of
a finite-state Markov chain. Many interesting questions may be asked about
such walks; the basic one is to determine the probability of being at a given
vertex after a given number ℓ of steps.

Suppose vertex u has degree du, i.e., there are du edges incident to u
(counting loops at u once only). Let M = M(G) be the matrix whose
rows and columns are indexed by the vertex set {v1, . . . , vp} of G, and whose
(u, v)-entry is given by

Muv =
µuv

du

, (3.1)

where µuv is the number of edges between u and v (which for simple graphs
will be 0 or 1). Thus Muv is just the probability that if one starts at u, then
the next step will be to v. We call M the probability matrix associated with
G. An elementary probability theory argument (equivalent to Theorem 1.1)
shows that if ℓ is a positive integer, then (M ℓ)uv is equal to the probability
that one ends up at vertex v in ℓ steps given that one has started at u.
Suppose now that the starting vertex is not specified, but rather we are given
probabilities ρu summing to 1 and that we start at vertex u with probability

33
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ρu. Let P be the row vector P = [ρv1 , . . . , ρvp ]. Then again an elementary

argument shows that if PM ℓ = [σv1 , . . . , σvp ], then σv is the probability of
ending up at v in ℓ steps (with the given starting distribution). By reasoning
as in Chapter 1, we see that if we know the eigenvalues and eigenvectors of
M , then we can compute the crucial probabilities (M ℓ)uv and σu.

Since the matrix M is not the same as the adjacency matrix A, what
does all this have to do with adjacency matrices? The answer is that in one
important case M is just a scalar multiple of A. We say that the graph G
is regular of degree d if each du = d, i.e., each vertex is incident to d edges.
In this case it’s easy to see that M(G) = 1

d
A(G). Hence the eigenvectors

Eu of M(G) and A(G) are the same, and the eigenvalues are related by
λu(M) = 1

d
λu(A). Thus random walks on a regular graph are closely related

to the adjacency matrix of the graph.

3.1 Example. Consider a random walk on the n-cube Cn which begins at
the “origin” (the vector (0, . . . , 0)). What is the probability pℓ that after ℓ
steps one is again at the origin? Before applying any formulas, note that
after an even (respectively, odd) number of steps, one must be at a vertex
with an even (respectively, odd) number of 1’s. Hence pℓ = 0 if ℓ is odd.
Now note that Cn is regular of degree n. Thus by (2.6), we have

λu(M(Cn)) =
1

n
(n− 2ω(u)).

By (2.10) we conclude that

pℓ =
1

2nnℓ

n∑

i=0

(
n

i

)
(n− 2i)ℓ.

Note that the above expression for pℓ does indeed reduce to 0 when ℓ is odd.

It is worth noting that even though the probability matrix M need not
be a symmetric matrix, nonetheless it has only real eigenvalues.

3.2 Theorem. Let G be a finite graph. Then the probability matrix M =
M(G) is diagonalizable and has only real eigenvalues.

Proof. Since we are assuming that G is connected and has at least two ver-
tices, it follows that dv > 0 for every vertex v of G. Let D be the diago-
nal matrix whose rows and columns are indexed by the vertices of G, with
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Dvv =
√
dv. Then

(DMD−1)uv =
√
du ·

µuv

du
· 1√

dv

=
µuv√
dudv

.

Hence DMD−1 is a symmetric matrix and thus has only real eigenvalues.
But if B and C are any p×p matrices with C invertible, then B and CBC−1

have the same characteristic polynomial and hence the same eigenvalues.
Therefore all the eigenvalues of M are real. Moreover, B is diagonalizable
if and only if CBC−1 is diagonalizable. (In fact, B and CBC−1 have the
same Jordan canonical form.) Since a symmetric matrix is diagonalizable, it
follows that M is also diagonalizable.

Let us give one further example of the connection between linear algebra
and random walks on graphs. Let u and v be vertices of a connected graph
G. Define the access time or hitting time H(u, v) to be the expected number
of steps that a random walk (as defined above) starting at u takes to reach
v for the first time. Thus if the probability is pn that we reach v for the first
time in n steps, then by definition of expectation we have

H(u, v) =
∑

n≥1

npn. (3.2)

Conceivably this sum could be infinite, though we will see below that this is
not the case. Note that H(v, v) = 0.

As an example, suppose that G has three vertices u, v, w with an edge
between u and w and another edge between w and v. We can compute
H(u, v) as follows. After one step we will be at w. Then with probability 1

2

we will step to v and with probability 1
2

back to u. Hence [why?]

H(u, v) =
1

2
· 2 +

1

2
(2 +H(u, v)). (3.3)

Solving this linear equation gives H(u, v) = 4.
We want to give a formula for the access time H(u, v) in terms of linear

algebra. The proof requires some basic results on eigenvalues and eigenvec-
tors of nonnegative matrices, which we will explain and then state without
proof. An r × r real matrix B is called nonnegative if every entry is non-
negative. We say that B is irreducible if it is not the 1× 1 matrix [0] and if
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there does not exist a permutation matrix P (a matrix with one 1 in every
row and column, and all other entries 0) such that

PBP−1 =

[
C D

0 E

]
,

where C and E are square matrices of size greater than zero. For instance,
the adjacency matrix A and probability matrix M of a graph G are irre-
ducible if and only if G is connected and is not an isolated vertex (that is,
a vertex v incident to no edges, not even a loop from v to itself). We now
state without proof a version of the Perron–Frobenius theorem. There are
some other parts of the Perron-Frobenius theorem that we don’t need here
and are omitted.

3.3 Theorem. Let B be a nonnegative irreducible square matrix. If ρ is the
maximum absolute value of the eigenvalues of B, then ρ > 0, and there is
an eigenvalue equal to ρ. Moreover, there is an eigenvector for ρ (unique up
to multiplication by a positive real number) all of whose entries are positive.

Now let M be the probability matrix defined by equation (3.1). Let M [v]
denote M with the row and column indexed by v deleted. Thus if G has p
vertices, then M [v] is a (p − 1) × (p − 1) matrix. Let T [v] be the column
vector of length p − 1 whose rows are indexed by the vertices w 6= v, with
T [v]w = µ(w, v)/dw. Write Ip−1 for the identity matrix of size p− 1.

3.4 Theorem. The matrix Ip−1 −M [v] is invertible, and

H(u, v) = ((Ip−1 −M [v])−2T [v])u, (3.4)

the u-entry of the column vector (Ip−1 −M [v])−2T [v].

Proof. We first give a “formal” argument and then justify its validity. The
probability that when we take n steps from u, we never reach v and end up
at some vertex w is (M [v]n)uw [why?]. The probability that once we reach
w the next step is to v is µ(w, v)/dw. Hence by definition of expectation we
have

H(u, v) =
∑

w 6=v

∑

n≥0

(n+ 1)
µ(w, v)

dw
(M [v]n)uw. (3.5)

We claim that if x is a complex number satisfying |x| < 1, then
∑

n≥0

(n+ 1)xn = (1− x)−2. (3.6)
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This identity is a simple exercise in calculus. For instance, we can compute
the coefficient of xn in the product (1 − x)2

∑
n≥0(n + 1)xn. We can also

differentiate the familiar identity

∑

n≥0

xn =
1

1− x. (3.7)

Another proof is obtained by expanding (1− x)−2 by the binomial theorem
for the exponent −2. Convergence for |x| < 1 follows for example from the
corresponding result for equation (3.7).

Let us “blindly” apply (3.6) to equation (3.5). We obtain

H(u, v) =
∑

w 6=v

((Ip−1 −M [v])−2)uw
µ(w, v)

dw

= ((Ip−1 −M [v])−2T [v])u, (3.8)

as claimed.
It remains to justify our derivation of equation (3.8). For an arbitrary

real (or complex) r× r matrix B, we can define
∑

n≥0(n+ 1)Bn entry-wise,
that is, we set

∑
n≥0(n+ 1)Bn = C if

∑

n≥0

(n+ 1)(Bn)ij = Cij

for all i and j indexing the rows and columns of B and C.
It is straightforward to verify by induction on m the identity

(Ir −B)2
(
Ir + 2B + 3B2 + · · ·+mBm−1

)
= Ir − (m+ 1)Bm +mBm−1.

(3.9)
Suppose that B is diagonalizable and that all eigenvalues λ1, . . . , λr of B

satisfy |λj| < 1. Note that our proof of equation (1.1) extends to any di-
agonalizable matrix. (The matrix U need not be orthogonal, but this is
irrelevant to the proof.) Hence

(Bn)ij = c1λ
n
1 + · · ·+ crλ

n
r ,

where c1, . . . , cr are complex numbers (independent from n). Hence from
equation (3.9) we see that the limit as m → ∞ of the right-hand side ap-
proaches Ir. It follows [why?] that

∑
n≥0(n+ 1)Bn converges to (Ir −B)−2.
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Note. The above argument shows that Ir−B is indeed invertible. This
fact is also an immediate consequence of the hypothesis that all eigenvalues of
B have absolute value less than one, since in particular there is no eigenvalue
λ = 1.

From the discussion above, it remains to show that M [v] is diagonalizable,
with all eigenvalues of absolute value less than one. The diagonalizability of
M [v] is shown in exactly the same way as for M in Theorem 3.2. (Thus
we see also that M [v] has real eigenvalues, though we don’t need this fact
here.) It remains to show that the eigenvalues θ1, . . . , θp−1 of M [v] satisfy
|θj| < 1. We would like to apply Theorem 3.3 to the matrix M [v], but this
matrix might not be irreducible since the graph G − v (defined by deleting
from G the vertex v and all incident edges) need not be connected or may
be just an isolated vertex. If G− v has connected components H1, . . . , Hm,
then we can order the vertices of G− v so that M [v] has the block structure

M [v] =





N1 0 · · · 0
0 N2 · · · 0

...
0 0 · · · Nm




,

where each Ni is irreducible or is the 1× 1 matrix [0] (corresponding to Hi

being an isolated vertex). The eigenvalues of M [v] are the eigenvalues of the
Ni’s.

We need to show that each eigenvalue of Ni has absolute value less than
one. If Ni = [0] then the only eigenvalue is 0, so we may assume that Hi

is not an isolated vertex. Suppose that Hi has k vertices, so Ni is a k × k
matrix. Let ρi be the largest real eigenvalue of Ni, so by Theorem 3.3 all
eigenvalues λ of Ni satisfy |λ| ≤ ρi. Let U = [u1, . . . , uk] be an eigenvector
for ρi with positive entries (which exists by Theorem 3.3). We regard U as a
column vector. Let V be the row vector of length k of all 1’s. Consider the
matrix product VNiU . On the one hand we have

VNiU = V (ρiU) = ρi(u1 + · · ·+ uk). (3.10)

On the other hand, if σj denotes the jth column sum of Ni, then

VNiU = [σ1, . . . , σk]U = σ1u1 + · · ·+ σkuk. (3.11)



39

Now every σj satisfies 0 ≤ σj ≤ 1, and at least one σh satisfies σh < 1 [why?].
Since each uj > 0, it follows from equation (3.11) that VNiU < u1+ · · ·+uk.
Comparing with equation (3.10) gives ρi < 1.

Since the eigenvalues of M [v] are just the eigenvalues of the Ni’s, we see
that all eigenvalues θ of M [v] satisfy |θ| < 1. This completes the proof of
Theorem 3.4.

3.5 Example. Let G be the graph of Figure 3.1 with v = v4. Then

M =





1
3

1
3

0 1
3

1
4

0 1
4

1
2

0 1
2

0 1
2

1
4

1
2

1
4

0





I3 −M [v] =





2
3
−1

3
0

−1
4

1 −1
4

0 −1
2

1





(I3 −M [v])−2 =





55
16

13
6

17
24

13
8

7
3

11
12

17
16

11
6

13
8





(I3 −M [v])−2





1
3
1
2
1
2



 =





31
12
13
6
25
12



 .

Thus H(v1, v) = 31/12, H(v2, v) = 13/6, and H(v3, v) = 25/12.

Note. The method used to prove that
∑

n≥0(n + 1)Bn converges when
all eigenvalues of B have absolute value less than one can be extended, with
a little more work (mostly concerned with non-diagonalizability), to show the
following. Let F (x) =

∑
n≥0 anx

n be a power series with complex coefficients
an. Let α > 0 be such that F (x) converges whenever |x| < α. Let B be
a square matrix (over the complex numbers) whose eigenvalues λ all satisfy
|λ| < α. Then the matrix power series

∑
n≥0 anBn converges in the entry-

wise sense described above.

Notes for Chapter 3
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v
v

v

v

2

3

4

1

Figure 3.1: A graph for Example 3.5

Random walks on graphs is a vast subject, of which we have barely
scratched the surface. Two typical questions considerably deeper than what
we have considered are the following: how rapidly does a random walk ap-
proach the stationary distribution of Exercise 3.1? Assuming G is connected,
what is the expected number of steps needed to visit every vertex? For a nice
survey of random walks in graphs, see Lovász [73]. The topic of matrix power
series is part of the subject of matrix analysis. For further information, see
for instance Chapter 5 of the text by Horn and Johnson [59]. Our proof of
Theorem 3.4 is somewhat “naive,” avoiding the development of the theory
of matrix norms.
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Chapter 4

The Sperner property

In this chapter we consider a surprising application of certain adjacency
matrices to some problems in extremal set theory. An important role will
also be played by finite groups in Chapter 5, which is a continuation of the
present chapter. In general, extremal set theory is concerned with finding (or
estimating) the most or least number of sets satisfying given set-theoretic or
combinatorial conditions. For example, a typical easy problem in extremal
set theory is the following: what is the most number of subsets of an n-
element set with the property that any two of them intersect? (Can you solve
this problem?) The problems to be considered here are most conveniently
formulated in terms of partially ordered sets, or posets for short. Thus we
begin with discussing some basic notions concerning posets.

4.1 Definition. A poset P is a finite set, also denoted P , together with a
binary relation denoted ≤ satisfying the following axioms:

(P1) (reflexivity) x ≤ x for all x ∈ P .

(P2) (antisymmetry) If x ≤ y and y ≤ x, then x = y.

(P3) (transitivity) If x ≤ y and y ≤ z, then x ≤ z.

One easy way to obtain a poset is the following. Let P be any collection
of sets. If x, y ∈ P , then define x ≤ y in P if x ⊆ y as sets. It is easy to see
that this definition of ≤ makes P into a poset. If P consists of all subsets
of an n-element set S, then P is called a (finite) boolean algebra of rank n
and is denoted by BS. If S = {1, 2, . . . , n}, then we denote BS simply by

45
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Bn. Boolean algebras will play an important role throughout this chapter
and the next.

There is a simple way to represent small posets pictorially. The Hasse
diagram of a poset P is a planar drawing, with elements of P drawn as dots.
If x < y in P (i.e., x ≤ y and x 6= y), then y is drawn “above” x (i.e., with
a larger vertical coordinate). An edge is drawn between x and y if y covers
x, i.e., x < y and no element z satisfies x < z < y. We then write x ⋖ y or
y ⋗ x. By the transitivity property (P3), all the relations of a finite poset
are determined by the cover relations, so the Hasse diagram determines P .
(This is not true for infinite posets; for instance, the real numbers R with
their usual order is a poset with no cover relations.) The Hasse diagram of
the boolean algebra B3 looks like

φ

23

3

123

1312

21

We say that two posets P and Q are isomorphic if there is a bijection
(one-to-one and onto function) ϕ : P → Q such that x ≤ y in P if and only
if ϕ(x) ≤ ϕ(y) in Q. Thus one can think that two posets are isomorphic if
they differ only in the names of their elements. This is exactly analogous to
the notion of isomorphism of groups, rings, etc. It is an instructive exercise
(see Exercise 4.1) to draw Hasse diagrams of the one poset of order (number
of elements) one (up to isomorphism), the two posets of order two, the five
posets of order three, and the sixteen posets of order four. More ambitious
readers can try the 63 posets of order five, the 318 of order six, the 2045 of
order seven, the 16999 of order eight, the 183231 of order nine, the 2567284
of order ten, the 46749427 of order eleven, the 1104891746 of order twelve,
the 33823827452 of order thirteen, the 1338193159771 of order fourteen, the
68275077901156 of order fifteen, and the 4483130665195087 of order sixteen.
Beyond this the number is not currently known.

A chain C in a poset is a totally ordered subset of P , i.e., if x, y ∈ C then
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either x ≤ y or y ≤ x in P . A finite chain is said to have length n if it has
n + 1 elements. Such a chain thus has the form x0 < x1 < · · · < xn. We say
that a finite poset is graded of rank n if every maximal chain has length n.
(A chain is maximal if it’s contained in no larger chain.) For instance, the
boolean algebra Bn is graded of rank n [why?]. A chain y0 < y1 < · · · < yj

is said to be saturated if each yi+1 covers yi. Such a chain need not be
maximal since there can be elements of P less than y0 or greater than yj. If
P is graded of rank n and x ∈ P , then we say that x has rank j, denoted
ρ(x) = j, if the largest saturated chain of P with top element x has length
j. Thus [why?] if we let Pj = {x ∈ P : ρ(x) = j}, then P is a disjoint
union P = P0 ·∪P1 ·∪ · · · ·∪Pn, and every maximal chain of P has the form
x0 < x1 < · · · < xn where ρ(xj) = j. We call Pi the ith level of P . We write
pj = #Pj , the number of elements of P of rank j. For example, if P = Bn

then ρ(x) = |x| (the cardinality of x as a set) and

pj = #{x ⊆ {1, 2, . . . , n} : |x| = j} =

(
n

j

)
.

(Note that we use both |S| and #S for the cardinality of a finite set S.)
If a graded poset P of rank n has pi elements of rank i, then define the
rank-generating function

F (P, q) =

n∑

i=0

piq
i =

∑

x∈P

qρ(x).

For instance, F (Bn, q) = (1 + q)n [why?].
We say that a graded poset P of rank n (always assumed to be finite)

is rank-symmetric if pi = pn−i for 0 ≤ i ≤ n, and rank-unimodal if p0 ≤
p1 ≤ · · · ≤ pj ≥ pj+1 ≥ pj+2 ≥ · · · ≥ pn for some 0 ≤ j ≤ n. If P is both
rank-symmetric and rank-unimodal, then we clearly have

p0 ≤ p1 ≤ · · · ≤ pm ≥ pm+1 ≥ · · · ≥ pn, if n = 2m

p0 ≤ p1 ≤ · · · ≤ pm = pm+1 ≥ pm+2 ≥ · · · ≥ pn, if n = 2m+ 1.

We also say that the sequence p0, p1, . . . , pn itself or the polynomial F (q) =
p0 + p1q + · · · + pnq

n is symmetric or unimodal, as the case may be. For
instance, Bn is rank-symmetric and rank-unimodal, since it is well-known
(and easy to prove) that the sequence

(
n
0

)
,
(

n
1

)
, . . . ,

(
n
n

)
(the nth row of Pas-

cal’s triangle) is symmetric and unimodal. Thus the polynomial (1 + q)n is
symmetric and unimodal.
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A few more definitions, and then finally some results! An antichain in a
poset P is a subset A of P for which no two elements are comparable, i.e.,
we can never have x, y ∈ A and x < y. For instance, in a graded poset P the
“levels” Pj are antichains [why?]. We will be concerned with the problem of
finding the largest antichain in a poset. Consider for instance the boolean
algebra Bn. The problem of finding the largest antichain in Bn is clearly
equivalent to the following problem in extremal set theory: find the largest
collection of subsets of an n-element set such that no element of the collection
contains another. A good guess would be to take all the subsets of cardinality
⌊n/2⌋ (where ⌊x⌋ denotes the greatest integer ≤ x), giving a total of

(
n

⌊n/2⌋
)

sets in all. But how can we actually prove there is no larger collection? Such
a proof was first given by Emanuel Sperner in 1927 and is known as Sperner’s
theorem. We will give three proofs of Sperner’s theorem in this chapter: one
proof uses linear algebra and will be applied to certain other situations; the
second proof is an elegant combinatorial argument due to David Lubell in
1966; while the third proof is another combinatorial argument closely related
to the linear algebra proof. We present the last two proofs for their “cultural
value.” Our extension of Sperner’s theorem to certain other situations will
involve the following crucial definition.

4.2 Definition. Let P be a graded poset of rank n. We say that P has the
Sperner property or is a Sperner poset if

max{#A : A is an antichain of P} = max{#Pi : 0 ≤ i ≤ n}.

In other words, no antichain is larger than the largest level Pi.

Thus Sperner’s theorem is equivalent to saying that Bn has the Sperner
property. Note that if P has the Sperner property then there may still be
antichains of maximum cardinality other than the biggest Pi; there just can’t
be any bigger antichains.

4.3 Example. A simple example of a graded poset that fails to satisfy the
Sperner property is the following:
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We now will discuss a simple combinatorial condition which guarantees
that certain graded posets P are Sperner. We define an order-matching from
Pi to Pi+1 to be a one-to-one function µ : Pi → Pi+1 satisfying x < µ(x) for
all x ∈ Pi. Clearly if such an order-matching exists then pi ≤ pi+1 (since µ
is one-to-one). Easy examples (such as the diagram above) show that the
converse is false, i.e., if pi ≤ pi+1 then there need not exist an order-matching
from Pi to Pi+1. We similarly define an order-matching from Pi to Pi−1 to
be a one-to-one function µ : Pi → Pi−1 satisfying µ(x) < x for all x ∈ Pi.

4.4 Proposition. Let P be a graded poset of rank n. Suppose there exists
an integer 0 ≤ j ≤ n and order-matchings

P0 → P1 → P2 → · · · → Pj ← Pj+1 ← Pj+2 ← · · · ← Pn. (4.1)

Then P is rank-unimodal and Sperner.

Proof. Since order-matchings are one-to-one it is clear that

p0 ≤ p1 ≤ · · · ≤ pj ≥ pj+1 ≥ pj+2 ≥ · · · ≥ pn.

Hence P is rank-unimodal.
Define a graph G as follows. The vertices of G are the elements of P .

Two vertices x, y are connected by an edge if one of the order-matchings
µ in the statement of the proposition satisfies µ(x) = y. (Thus G is a
subgraph of the Hasse diagram of P .) Drawing a picture will convince you
that G consists of a disjoint union of paths, including single-vertex paths
not involved in any of the order-matchings. The vertices of each of these
paths form a chain in P . Thus we have partitioned the elements of P into
disjoint chains. Since P is rank-unimodal with biggest level Pj, all of these
chains must pass through Pj [why?]. Thus the number of chains is exactly
pj . Any antichain A can intersect each of these chains at most once, so the
cardinality |A| of A cannot exceed the number of chains, i.e., |A| ≤ pj. Hence
by definition P is Sperner.

It is now finally time to bring some linear algebra into the picture. For
any (finite) set S, we let RS denote the real vector space consisting of all
formal linear combinations (with real coefficients) of elements of S. Thus S
is a basis for RS, and in fact we could have simply defined RS to be the
real vector space with basis S. The next lemma relates the combinatorics we
have just discussed to linear algebra and will allow us to prove that certain
posets are Sperner by the use of linear algebra (combined with some finite
group theory).
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4.5 Lemma. Suppose there exists a linear transformation U : RPi → RPi+1

(U stands for “up”) satisfying:

• U is one-to-one.

• For all x ∈ Pi, U(x) is a linear combination of elements y ∈ Pi+1

satisfying x < y. (We then call U an order-raising operator.)

Then there exists an order-matching µ : Pi → Pi+1.
Similarly, suppose there exists a linear transformation U : RPi → RPi+1

satisfying:

• U is onto.

• U is an order-raising operator.

Then there exists an order-matching µ : Pi+1 → Pi.

Proof. Suppose U : RPi → RPi+1 is a one-to-one order-raising operator. Let
[U ] denote the matrix of U with respect to the bases Pi of RPi and Pi+1 of
RPi+1. Thus the rows of [U ] are indexed by the elements y1, . . . , ypi+1

of Pi+1

(in some order), and the columns by the elements x1, . . . , xpi
of Pi. Since U

is one-to-one, the rank of [U ] is equal to pi (the number of columns). Since
the row rank of a matrix equals its column rank, [U ] must have pi linearly
independent rows. Say we have labelled the elements of Pi+1 so that the first
pi rows of [U ] are linearly independent.

Let A = (aij) be the pi × pi matrix whose rows are the first pi rows of
[U ]. (Thus A is a square submatrix of [U ].) Since the rows of A are linearly
independent, we have

det(A) =
∑
±a1π(1) · · ·apiπ(pi) 6= 0,

where the sum is over all permutations π of 1, . . . , pi. Thus some term
±a1π(1) · · ·apiπ(pi) of the above sum in nonzero. Since U is order-raising, this
means that [why?] yk > xπ(k) for 1 ≤ k ≤ pi. Hence the map µ : Pi → Pi+1

defined by µ(xk) = yπ−1(k) is an order-matching, as desired.
The case when U is onto rather than one-to-one is proved by a completely

analogous argument. It can also be deduced from the one-to-one case by
considering the transpose of the matrix [U ].
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Note. Although it does not really help in understanding the theory, it
is interesting to regard a one-to-one order-raising operator as a “quantum
order-matching.” Rather than choosing a single element y = µ(x) that is
matched with x ∈ Pi, we choose all possible elements y ∈ Pi+1 satisfying
y > x at the same time. If U(x) =

∑
y>x cyy (where cy ∈ R), then we

are choosing y with “weight” cy. As explained in the proof of Lemma 4.5
above, we “break the symmetry” and obtain a single matched element µ(x)
by choosing some nonvanishing term in the expansion of a determinant.

We now want to apply Proposition 4.4 and Lemma 4.5 to the boolean
algebra Bn. For each 0 ≤ i < n, we need to define a linear transformation
Ui : R(Bn)i → R(Bn)i+1, and then prove it has the desired properties. We
simply define Ui to be the simplest possible order-raising operator, namely,
for x ∈ (Bn)i, let

Ui(x) =
∑

y∈(Bn)i+1
y>x

y. (4.2)

Note that since (Bn)i is a basis for R(Bn)i, equation (4.2) does indeed define
a unique linear transformation Ui : R(Bn)i → R(Bn)i+1. By definition Ui is
order-raising; we want to show that Ui is one-to-one for i < n/2 and onto for
i ≥ n/2. There are several ways to show this using only elementary linear
algebra; we will give what is perhaps the simplest proof, though it is quite
tricky. The idea is to introduce “dual” or “adjoint” operators Di : R(Bn)i →
R(Bn)i−1 to the Ui’s (D stands for “down”), defined by

Di(y) =
∑

x∈(Bn)i−1
x<y

x, (4.3)

for all y ∈ (Bn)i. Let [Ui] denote the matrix of Ui with respect to the bases
(Bn)i and (Bn)i+1, and similarly let [Di] denote the matrix of Di with respect
to the bases (Bn)i and (Bn)i−1. A key observation which we will use later is
that

[Di+1] = [Ui]
t, (4.4)

i.e., the matrix [Di+1] is the transpose of the matrix [Ui] [why?]. Now let
Ii : R(Bn)i → R(Bn)i denote the identity transformation on R(Bn)i, i.e.,
Ii(u) = u for all u ∈ R(Bn)i. The next lemma states (in linear algebraic
terms) the fundamental combinatorial property of Bn which we need. For
this lemma set Un = 0 and D0 = 0 (the 0 linear transformation between the
appropriate vector spaces).
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4.6 Lemma. Let 0 ≤ i ≤ n. Then

Di+1Ui − Ui−1Di = (n− 2i)Ii. (4.5)

(Linear transformations are multiplied right-to-left, so AB(u) = A(B(u)).)

Proof. Let x ∈ (Bn)i. We need to show that if we apply the left-hand side
of equation (4.5) to x, then we obtain (n− 2i)x. We have

Di+1Ui(x) = Di+1




∑

|y|=i+1
x⊂y

y





=
∑

|y|=i+1
x⊂y

∑

|z|=i
z⊂y

z.

If x, z ∈ (Bn)i satisfy |x ∩ z| < i− 1, then there is no y ∈ (Bn)i+1 such that
x ⊂ y and z ⊂ y. Hence the coefficient of z in Di+1Ui(x) when it is expanded
in terms of the basis (Bn)i is 0. If |x ∩ z| = i− 1, then there is one such y,
namely, y = x ∪ z. Finally if x = z then y can be any element of (Bn)i+1

containing x, and there are n− i such y in all. It follows that

Di+1Ui(x) = (n− i)x+
∑

|z|=i
|x∩z|=i−1

z. (4.6)

By exactly analogous reasoning (which the reader should check), we have for
x ∈ (Bn)i that

Ui−1Di(x) = ix+
∑

|z|=i
|x∩z|=i−1

z. (4.7)

Subtracting (4.7) from (4.6) yields (Di+1Ui − Ui−1Di)(x) = (n − 2i)x, as
desired.

4.7 Theorem. The operator Ui defined above is one-to-one if i < n/2 and
is onto if i ≥ n/2.

Proof. Recall that [Di] = [Ui−1]
t. From linear algebra we know that a (rect-

angular) matrix times its transpose is positive semidefinite (or just semidefi-
nite for short) and hence has nonnegative (real) eigenvalues. By Lemma 4.6
we have

Di+1Ui = Ui−1Di + (n− 2i)Ii.
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Thus the eigenvalues of Di+1Ui are obtained from the eigenvalues of Ui−1Di

by adding n− 2i. Since we are assuming that n− 2i > 0, it follows that the
eigenvalues of Di+1Ui are strictly positive. Hence Di+1Ui is invertible (since
it has no 0 eigenvalues). But this implies that Ui is one-to-one [why?], as
desired.

The case i ≥ n/2 is done by a “dual” argument (or in fact can be deduced
directly from the i < n/2 case by using the fact that the poset Bn is “self-
dual,” though we will not go into this). Namely, from the fact that

UiDi+1 = Di+2Ui+1 + (2i+ 2− n)Ii+1

we get that UiDi+1 is invertible, so now Ui is onto, completing the proof.

Combining Proposition 4.4, Lemma 4.5, and Theorem 4.7, we obtain the
famous theorem of Sperner.

4.8 Corollary. The boolean algebra Bn has the Sperner property.

It is natural to ask whether there is a less indirect proof of Corollary 4.8.
In fact, several nice proofs are known; we first give one due to David Lubell,
mentioned before Definition 4.2.

Lubell’s proof of Sperner’s theorem. First we count the total number
of maximal chains ∅ = x0 < x1 < · · · < xn = {1, . . . , n} in Bn. There are n
choices for x1, then n− 1 choices for x2, etc., so there are n! maximal chains
in all. Next we count the number of maximal chains x0 < x1 < · · · < xi =
x < · · · < xn which contain a given element x of rank i. There are i choices
for x1, then i− 1 choices for x2, up to one choice for xi. Similarly there are
n− i choices for xi+1, then n− i− 1 choices for xi+2, etc., up to one choice
for xn. Hence the number of maximal chains containing x is i!(n− i)!.

Now let A be an antichain. If x ∈ A, then let Cx be the set of maximal
chains of Bn which contain x. Since A is an antichain, the sets Cx, x ∈ A
are pairwise disjoint. Hence

∣∣∣∣∣
⋃

x∈A

Cx

∣∣∣∣∣ =
∑

x∈A

|Cx|

=
∑

x∈A

(ρ(x))!(n− ρ(x))!
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Since the total number of maximal chains in the Cx’s cannot exceed the total
number n! of maximal chains in Bn, we have

∑

x∈A

(ρ(x))!(n− ρ(x))! ≤ n!.

Divide both sides by n! to obtain

∑

x∈A

1(
n

ρ(x)

) ≤ 1.

Since
(

n
i

)
is maximized when i = ⌊n/2⌋, we have

1(
n

⌊n/2⌋
) ≤ 1(

n
ρ(x)

) ,

for all x ∈ A (or all x ∈ Bn). Thus

∑

x∈A

1(
n

⌊n/2⌋
) ≤ 1,

or equivalently,

|A| ≤
(

n

⌊n/2⌋

)
.

Since
(

n
⌊n/2⌋

)
is the size of the largest level of Bn, it follows that Bn is Sperner.

�

There is another nice way to show directly that Bn is Sperner, namely,
by constructing an explicit order-matching µ : (Bn)i → (Bn)i+1 when i <
n/2. We will define µ by giving an example. Let n = 21, i = 9, and
S = {3, 4, 5, 8, 12, 13, 17, 19, 20}. We want to define µ(S). Let (a1, a2, . . . , a21)
be a sequence of ±1’s, where ai = 1 if i ∈ S, and ai = −1 if i 6∈ S. For the
set S above we get the sequence (writing − for −1)

− − 1 1 1 − − 1 − − − 1 1 − − − 1 − 1 1 − .

Replace any two consecutive terms 1− with 0 0:

− − 1 1 0 0 − 0 0 − − 1 0 0 − − 0 0 1 0 0.

Ignore the 0’s and replace any two consecutive terms 1− with 0 0:

− − 1 0 0 0 0 0 0 − − 0 0 0 0 − 0 0 1 0 0.
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Continue:
− − 0 0 0 0 0 0 0 0 − 0 0 0 0 − 0 0 1 0 0.

At this stage no further replacement is possible. The nonzero terms consist
of a sequence of −’s followed by a sequence of 1’s. There is at least one −
since i < n/2. Let k be the position (coordinate) of the last −; here k = 16.
Define µ(S) = S∪{k} = S∪{16}. The reader can check that this procedure
gives an order-matching. In particular, why is µ injective (one-to-one), i.e.,
why can we recover S from µ(S)?

It can be checked that if we glue together the order-matchings (Bn)i →
(Bn)i+1 for i < n/2 just defined, along with an obvious dual construction
(Bn)i → (Bn)i−1 for i > n/2 then we obtain more than just a partition
of Bn into saturated chains passing through the middle level (n even) or
middle two levels (n odd), as in the proof of Proposition 4.4. We in fact
have the additional property that these chains are all symmetric, i.e., they
begin at some level i ≤ n/2 and end at level n − i. Such a decomposition
of a rank-symmetric, rank-unimodal graded poset P into saturated chains is
called a symmetric chain decomposition. A symmetric chain decomposition
implies that for any j ≥ 1, the largest size of a union of j antichains is equal
to the largest size of a union of j levels of P (Exercise 4.6). (The Sperner
property corresponds to the case j = 1). It can be a challenging problem to
decide whether certain posets have a symmetric chain decomposition (e.g.,
Exercises 5.5(b), 5.6 and 6.6), though we will not discuss this topic further
here.

In view of the above elegant proof of Lubell and the explicit description of
an order-matching µ : (Bn)i → (Bn)i+1, the reader may be wondering what
was the point of giving a rather complicated and indirect proof using linear
algebra. Admittedly, if all we could obtain from the linear algebra machinery
we have developed was just another proof of Sperner’s theorem, then it would
have been hardly worth the effort. But in the next chapter we will show how
Theorem 4.7, when combined with a little finite group theory, can be used to
obtain many interesting combinatorial results for which simple, direct proofs
are not known.

Notes for Chapter 4

For further information on combinatorial aspects of partially ordered sets
in general, see Caspard-Leclerc-Monjardet [21], P. Fishburn [34], R. Stanley
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[109, Ch. 3], and W. Trotter [115]. Sperner’s theorem (Corollary 4.8) was
first proved by E. Sperner [102]. The elegant proof of Lubell appears in [74].
A general reference on the Sperner property is the book by K. Engel [33].
For more general results on the combinatorics of finite sets, see I. Anderson
[2]. The linear algebraic approach to the Sperner property discussed here
is due independently to M. Pouzet [88] (further developed by Pouzet and
Rosenberg [89]) and R. Stanley [103][105]. For further information on explicit
order matchings, symmetric chain decompositions, etc., see the text [2] of
Anderson mentioned above.



Chapter 5

Group actions on boolean
algebras

Let us begin by reviewing some facts from group theory. Suppose that X is
an n-element set and that G is a group. We say that G acts on the set X if
for every element π of G we associate a permutation (also denoted π) of X,
such that for all x ∈ X and π, σ ∈ G we have

π(σ(x)) = (πσ)(x).

Thus [why?] an action of G on X is the same as a homomorphism ϕ : G →
SX , where SX denotes the symmetric group of all permutations of X. We
sometimes write π · x instead of π(x).

5.1 Example. (a) Let the real number α act on the xy-plane by rotation
counterclockwise around the origin by an angle of α radians. It is easy to
check that this defines an action of the group R of real numbers (under
addition) on the xy-plane. The kernel of this action, i.e., the kernel of the
homomorphism ϕ : R→ SR2, is the cyclic subgroup of R generated by 2π.

(b) Now let α ∈ R act by translation by a distance α to the right, i.e.,
adding (α, 0). This yields a completely different action of R on the xy-plane.
This time the action is faithful, i.e., the kernel is the trivial subgroup {0}.

(c) Let X = {a, b, c, d} and G = Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}.
Let G act as follows:

(0, 1) · a = b, (0, 1) · b = a, (0, 1) · c = c, (0, 1) · d = d

(1, 0) · a = a, (1, 0) · b = b, (1, 0) · c = d, (1, 0) · d = c.

59
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The reader should check that this does indeed define an action. In particular,
since (1, 0) and (0, 1) generate G, we don’t need to define the action of (0, 0)
and (1, 1) — they are uniquely determined.

(d) Let X and G be as in (c), but now define the action by

(0, 1) · a = b, (0, 1) · b = a, (0, 1) · c = d, (0, 1) · d = c

(1, 0) · a = c, (1, 0) · b = d, (1, 0) · c = a, (1, 0) · d = b.

Again one can check that we have an action of Z2 × Z2 on {a, b, c, d}. The
two actions of G = Z2 × Z2 that we have just defined are quite different;
for instance, in the first action we have some elements of X fixed by some
nonidentity element of G (such as (0, 1) · c = c), while the second action
fails to have this property. See also Example 5.2(c,d) below for another
fundamental way in which the two actions differ.

Recall what is meant by an orbit of the action of a group G on a set X.
Namely, we say that two elements x, y of X are G-equivalent if π(x) = y
for some π ∈ G. The relation of G-equivalence is an equivalence relation,
and the equivalence classes are called orbits. Thus x and y are in the same
orbit if π(x) = y for some π ∈ G. The orbits form a partition of X, i.e,
they are pairwise-disjoint, nonempty subsets of X whose union is X. The
orbit containing x is denoted Gx; this is sensible notation since Gx consists
of all elements π(x) where π ∈ G. Thus Gx = Gy if and only if x and y are
G-equivalent (i.e., in the same G-orbit). The set of all G-orbits is denoted
X/G.

5.2 Example. (a) In Example 5.1(a), the orbits are circles with center (0, 0),
including the degenerate circle whose only point is (0, 0).

(b) In Example 5.1(b), the orbits are horizontal lines. Note that although
in (a) and (b) the same group G acts on the same set X, the orbits are
different.

(c) In Example 5.1(c), the orbits are {a, b} and {c, d}.
(d) In Example 5.1(d), there is only one orbit {a, b, c, d}. Again we have

a situation in which a group G acts on a set X in two different ways, with
different orbits.

We wish to consider the situation where X = Bn, the boolean algebra of
rank n (so |Bn| = 2n). We begin by defining an automorphism of a poset
P to be an isomorphism ϕ : P → P . (This definition is exactly analogous
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to the definition of an automorphism of a group, ring, etc.) The set of all
automorphisms of P forms a group, denoted Aut(P ) and called the automor-
phism group of P , under the operation of composition of functions (just as
is the case for groups, rings, etc.)

Now consider the case P = Bn. Any permutation π of {1, . . . , n} acts on
Bn as follows: if x = {i1, i2, . . . , ik} ∈ Bn, then

π(x) = {π(i1), π(i2), . . . , π(ik)}. (5.1)

This action of π on Bn is an automorphism [why?]; in particular, if |x| = i,
then also |π(x)| = i. Equation (5.1) defines an action of the symmetric group
Sn of all permutations of {1, . . . , n} on Bn [why?]. (In fact, it is not hard
to show that every automorphism of Bn is of the form (5.1) for π ∈ Sn.) In
particular, any subgroup G of Sn acts on Bn via (5.1) (where we restrict π
to belong to G). In what follows this action is always meant.

5.3 Example. Let n = 3, and let G be the subgroup of S3 with elements ι
and (1, 2). Here ι denotes the identity permutation, and (using disjoint cycle
notation) (1, 2) denotes the permutation which interchanges 1 and 2, and
fixes 3. There are six orbits of G (acting on B3). Writing e.g. 13 as short for
{1, 3}, the six orbits are {∅}, {1, 2}, {3}, {12}, {13, 23}, and {123}.

We now define the class of posets which will be of interest to us here.
Later we will give some special cases of particular interest.

Let G be a subgroup of Sn. Define the quotient poset Bn/G as follows.
The elements of Bn/G are the orbits of G. If o and o

′ are two orbits, then
define o ≤ o

′ in Bn/G if there exist x ∈ o and y ∈ o
′ such that x ≤ y in Bn.

It’s easy to check that this relation ≤ is indeed a partial order.

5.4 Example. (a) Let n = 3 and G be the group of order two generated
by the cycle (1, 2), as in Example 5.3. Then the Hasse diagram of B3/G is
shown below, where each element (orbit) is labeled by one of its elements.
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φ

1

12

123

13

3

(b) Let n = 5 and G be the group of order five generated by the cycle
(1, 2, 3, 4, 5). Then B5/G has Hasse diagram

124

φ

1

13

1234

12345

12

123

One simple property of a quotient poset Bn/G is the following.

5.5 Proposition. The quotient poset Bn/G defined above is graded of rank
n and rank-symmetric.

Proof. We leave as an exercise the easy proof that Bn/G is graded of rank
n, and that the rank of an element o of Bn/G is just the rank in Bn of any
of the elements x ∈ o. Thus the number of elements pi(Bn/G) of rank i is
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equal to the number of orbits o ∈ (Bn)i/G. If x ∈ Bn, then let x̄ denote the
set-theoretic complement of x, i.e.,

x̄ = {1, . . . , n} − x = {1 ≤ i ≤ n : i 6∈ x}.

Then {x1, . . . , xj} is an orbit of i-element subsets of {1, . . . , n} if and only if
{x̄1, . . . , x̄j} is an orbit of (n− i)-element subsets [why?]. Hence |(Bn)i/G| =
|(Bn)n−i/G|, so Bn/G is rank-symmetric.

Let π ∈ Sn. We associate with π a linear transformation (still denoted
π) π : R(Bn)i → R(Bn)i by the rule

π




∑

x∈(Bn)i

cxx



 =
∑

x∈(Bn)i

cxπ(x),

where each cx is a real number. This defines an action of Sn, or of any
subgroup G of Sn, on the vector space R(Bn)i. The matrix of π with respect
to the basis (Bn)i is just a permutation matrix, i.e., a matrix with one 1 in
every row and column, and 0’s elsewhere. We will be interested in elements
of R(Bn)i which are fixed by every element of a subgroup G of Sn. The set
of all such elements is denoted R(Bn)G

i , so

R(Bn)
G
i = {v ∈ R(Bn)i : π(v) = v for all π ∈ G}.

5.6 Lemma. A basis for R(Bn)G
i consists of the elements

vo :=
∑

x∈o

x,

where o ∈ (Bn)i/G, the set of G-orbits for the action of G on (Bn)i.

Proof. First note that if o is an orbit and x ∈ o, then by definition of orbit we
have π(x) ∈ o for all π ∈ G (or all π ∈ Sn). Since π permutes the elements
of (Bn)i, it follows that π permutes the elements of o. Thus π(vo) = vo,
so vo ∈ R(Bn)G

i . It is clear that the vo’s are linearly independent since any
x ∈ (Bn)i appears with nonzero coefficient in exactly one vo.

It remains to show that the vo’s span R(Bn)
G
i , i.e., any v =

∑
x∈(Bn)i

cxx ∈
R(Bn)G

i can be written as a linear combination of vo’s. Given x ∈ (Bn)i, let
Gx = {π ∈ G : π(x) = x}, the stabilizer of x. We leave as an easy exercise
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the standard fact that π(x) = σ(x) (where π, σ ∈ G) if and only if π and
σ belong to the same left coset of Gx, i.e., πGx = σGx. It follows that in
the multiset of elements π(x), where π ranges over all elements of G and x
is fixed, every element y in the orbit Gx appears #Gx times, and no other
elements appear. In other words,

∑

π∈G

π(x) = |Gx| · vGx.

(Do not confuse the orbit Gx with the subgroup Gx!) Now apply π to v and
sum on all π ∈ G. Since π(v) = v (because v ∈ R(Bn)G

i ), we get

|G| · v =
∑

π∈G

π(v)

=
∑

π∈G




∑

x∈(Bn)i

cxπ(x)





=
∑

x∈(Bn)i

cx

(
∑

π∈G

π(x)

)

=
∑

x∈(Bn)i

cx · (#Gx) · vGx.

Dividing by |G| expresses v as a linear combination of the elements vGx (or
vo), as desired.

Now let us consider the effect of applying the order-raising operator Ui

to an element v of R(Bn)G
i .

5.7 Lemma. If v ∈ R(Bn)
G
i , then Ui(v) ∈ R(Bn)G

i+1.

Proof. Note that since π ∈ G is an automorphism of Bn, we have x < y
in Bn if and only if π(x) < π(y) in Bn. It follows [why?] that if x ∈ (Bn)i

then
Ui(π(x)) = π(Ui(x)).

Since Ui and π are linear transformations, it follows by linearity that Uiπ(u) =
πUi(u) for all u ∈ R(Bn)i. In other words, Uiπ = πUi. Then

π(Ui(v)) = Ui(π(v))

= Ui(v),
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so Ui(v) ∈ R(Bn)G
i+1, as desired. �

We come to the main result of this chapter, and indeed our main result
on the Sperner property.

5.8 Theorem. Let G be a subgroup of Sn. Then the quotient poset Bn/G
is graded of rank n, rank-symmetric, rank-unimodal, and Sperner.

Proof. Let P = Bn/G. We have already seen in Proposition 5.5 that P
is graded of rank n and rank-symmetric. We want to define order-raising
operators Ûi : RPi → RPi+1 and order-lowering operators D̂i : RPi → RPi−1.
Let us first consider just Ûi. The idea is to identify the basis element vo of
RBG

n with the basis element o of RP , and to let Ûi : RPi → RPi+1 correspond
to the usual order-raising operator Ui : R(Bn)i → R(Bn)i+1. More precisely,
suppose that the order-raising operator Ui for Bn given by (4.2) satisfies

Ui(vo) =
∑

o′∈(Bn)i+1/G

co,o′vo′, (5.2)

where o ∈ (Bn)i/G. (Note that by Lemma 5.7, Ui(vo) does indeed have the
form given by (5.2).) Then define the linear operator Ûi : R((Bn)i/G) →
R((Bn)i/G) by

Ûi(o) =
∑

o′∈(Bn)i+1/G

co,o′o
′.

Note. We can depict the “transport of Ui to Ûi” by a commutative diagram:

(RBn)G
i

Ui−−−→ (RBn)G
i+1

∼=
y

y∼=

R(Bn/G)i
Ûi−−−→ R(Bn/G)i+1

The arrows pointing down are the linear transformations induced by vo 7→ o.
The map obtained by applying the top arrow followed by the rightmost down
arrow is the same as applying the leftmost down arrow followed by the bottom
arrow.

We claim that Ûi is order-raising. We need to show that if co,o′ 6= 0, then
o
′ > o in Bn/G. Since vo′ =

∑
x′∈o′

x′, the only way co,o′ 6= 0 in (5.2) is for
some x′ ∈ o

′ to satisfy x′ > x for some x ∈ o. But this is just what it means
for o

′ > o, so Ûi is order-raising.
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Now comes the heart of the argument. We want to show that Ûi is one-
to-one for i < n/2. Now by Theorem 4.7, Ui is one-to-one for i < n/2. Thus
the restriction of Ui to the subspace R(Bn)G

i is one-to-one. (The restriction
of a one-to-one function is always one-to-one.) But Ui and Ûi are exactly the
same transformation, except for the names of the basis elements on which
they act. Thus Ûi is also one-to-one for i < n/2.

An exactly analogous argument can be applied to Di instead of Ui. We
obtain one-to-one order-lowering operators D̂i : R(Bn)G

i → R(Bn)G
i−1 for i >

n/2. It follows from Proposition 4.4, Lemma 4.5, and equation (4.4) that
Bn/G is rank-unimodal and Sperner, completing the proof.

We will consider two interesting applications of Theorem 5.8. For our
first application, we let n =

(
m
2

)
for some m ≥ 1, and let M = {1, . . . , m}.

Set X =
(

M
2

)
, the set of all two-element subsets of M . Think of the elements

of X as (possible) edges of a simple graph with vertex set M . If BX is the
boolean algebra of all subsets of X (so BX and Bn are isomorphic), then
an element x of BX is a collection of edges on the vertex set M , in other
words, just a simple graph on M . Define a subgroup G of SX as follows.
Informally, G consists of all permutations of the edges

(
M
2

)
that are induced

from permutations of the vertices M . More precisely, if π ∈ Sm, then define
π̂ ∈ SX by π̂ · {i, j} = {π · i, π · j}. Thus G is isomorphic to Sm.

When are two graphs x, y ∈ BX in the same orbit of the action of G on
BX? Since the elements of G just permute vertices, we see that x and y are
in the same orbit if we can obtain x from y by permuting vertices. This is
just what it means for two simple graphs x and y to be isomorphic — they
are the same graph except for the names of the vertices (thinking of edges
as pairs of vertices). Thus the elements of BX/G are isomorphism classes of
simple graphs on the vertex set M . In particular, #(BX/G) is the number
of nonisomorphic m-vertex simple graphs, and #(BX/G)i is the number of
nonisomorphic such graphs with i edges. We have x ≤ y in BX/G if there
is some way of labelling the vertices of x and y so that every edge of x is an
edge of y. Equivalently, some spanning subgraph of y (i.e., a subgraph of y
with all the vertices of y) is isomorphic to x, as illustrated in Figure 5.1 for
the case m = 4. Hence by Theorem 5.8 there follows the following result,
which is by no means obvious and has no known non-algebraic proof.

5.9 Theorem. (a) Fix m ≥ 1. Let pi be the number of nonisomorphic
simple graphs with m vertices and i edges. Then the sequence p0, p1, . . . , p(m

2 )
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Figure 5.1: The poset BX/G of nonisomorphic graphs with four vertices

is symmetric and unimodal.
(b) Let T be a collection of simple graphs with m vertices such that no

element of T is isomorphic to a spanning subgraph of another element of T .
Then #T is maximized by taking T to consist of all nonisomorphic simple
graphs with ⌊1

2

(
m
2

)
⌋ edges.

Our second example of the use of Theorem 5.8 is more subtle and will be
the topic of the next chapter.

Digression: edge reconstruction. Much work has been done on “re-
construction problems,” that is, trying to reconstruct a mathematical struc-
ture such as a graph from some of its substructures. The most famous of
such problems is vertex reconstruction: given a simple graph G on p vertices
v1, . . . , vp, let Gi be the subgraph obtained by deleting vertex vi (and all in-
cident edges). Given the multiset {G1, . . . , Gp} of vertex-deleted subgraphs
graphs, can G be uniquely reconstructed? It is important to realize that the
vertices are unlabelled, so given Gi we don’t know for any j which vertex is
vj . The famous vertex reconstruction conjecture (still open) states that for
p ≥ 3 any graph G can be reconstructed from the multiset {G1, . . . , Gp}.
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Here we will be concerned with edge reconstruction, another famous open
problem. Given a simple graph G with edges e1, . . . , eq, let Hi = G− ei, the
graph obtained from G by removing the edge ei.

Edge Reconstruction Conjecture. A simple graph G can be uniquely
reconstructed from its number of vertices and the multiset {H1, . . . , Hq} of
edge-deleted subgraphs.

Note. As in the case of vertex-reconstruction, the subgraphs Hi are
unlabelled. The reason for including the number of vertices is that for any
graph with no edges, we have {H1, . . . , Hq} = ∅, so we need to specify the
number of vertices to obtain G.

Note. It can be shown that if G can be vertex-reconstructed, then
G can be edge reconstructed. Hence the vertex-reconstruction conjecture
implies the edge-reconstruction conjecture.

The techniques developed above to analyze group actions on boolean alge-
bra can be used to prove a special case of the edge-reconstruction conjecture.
Note that a simple graph with p vertices has at most

(
p
2

)
edges.

5.10 Theorem. Let G be a simple graph with p vertices and q > 1
2

(
p
2

)
edges.

Then G is edge-reconstructible.

Proof. Let Pq be the set of all simple graphs with q edges on the vertex set

[p] = {1, 2, . . . , p}, so #Pq =
((p

2)
q

)
. Let RPq denote the real vector space

with basis Pq. Define a linear transformation ψq : RPq → RPq−1 by

ψq(Γ) = Γ1 + · · ·+ Γq,

where Γ1, . . . ,Γq are the (labelled) graphs obtained from Γ by deleting a
single edge. By Theorem 4.7, ψq is injective for q > 1

2

(
p
2

)
. (Think of ψq as

adding edges to the complement of Γ, i.e., the graph with vertex set [p] and
edge set

(
[p]
2

)
− E(Γ).)

The symmetric group Sp acts on Pq by permuting the vertices, and hence
acts on RPq, the real vector space with basis Pq. A basis for the fixed space
(RPq)

Sp consists of the distinct sums Γ̃ =
∑

π∈Sp
π(Γ), where Γ ∈ Pq. We

may identify Γ̃ with the unlabelled graph isomorphic to Γ, since Γ̃ = Γ̃′ if and
only if Γ and Γ′ are isomorphic. Just as in the proof of Theorem 5.8, when
we restrict ψq to (RPq)

Sp for q > 1
2

(
p
2

)
we obtain an injection ψq : (RPq)

Sp →
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(RPq−1)
Sp. In particular, for nonisomorphic unlabelled graphs Γ̃, Γ̃′ with p

vertices, we have

Γ̃1 + · · ·+ Γ̃q = ψq(Γ̃) 6= ψq(Γ̃
′) = Γ̃′

1 + · · ·+ Γ̃′
q.

Hence the unlabelled graphs Γ̃1, . . . , Γ̃q determine Γ̃, as desired.

Polynomials with real zeros. There are many techniques other than
the linear algebra used to prove Theorem 5.8 for showing that sequences
are unimodal. Here we will discuss a technique based on simple analysis
(calculus) for showing that sequences are unimodal. In fact, we will consider
some stronger properties than unimodality.

A sequence a0, a1, . . . , an of real numbers is called logarithmically concave,
or log-concave for short, if a2

i ≥ ai−1ai+1 for 1 ≤ i ≤ n − 1. We say that
a0, a1, . . . , an is strongly log-concave if b2i ≥ bi−1bi+1 for 1 ≤ i ≤ n− 1, where
bi = ai/

(
n
i

)
. Strong log-concavity is equivalent to [why?]

a2
i ≥

(
1 +

1

i

)(
1 +

1

n− i

)
ai−1ai+1, 1 ≤ i ≤ n− 1,

from which it follows that strong log-concavity implies log-concavity.
Assume now that each ai ≥ 0. Does log-concavity then imply unimodal-

ity? The answer is no, a counterexample being 1, 0, 0, 1. However, only this
type of counterexample can occur, as we now explain. We say that the se-
quence a0, a1, . . . , an has no internal zeros if whenever we have i < j < k,
ai 6= 0, and ak 6= 0, then aj 6= 0.

5.11 Proposition. Let α = (a0, a1, . . . , an) be a sequence of nonnegative real
numbers with no internal zeros. If α is log-concave, then α is unimodal.

Proof. If there are only two values of j for which aj 6= 0 then we always have
ai−1ai+1 = 0 so the conclusion is clear. Now assume that there are at least
three values of j for which aj 6= 0, and assume that the proposition is false.
Then there exists 1 ≤ i ≤ n− 1 for which ai−1 > ai ≤ ai+1 and ai+1 > 0, so
a2

i < ai−1ai+1, a contradiction.

Now we come to a fundamental method for proving log-concavity.

5.12 Theorem (I. Newton). Let

P (x) =

n∑

i=0

bix
i =

n∑

i=0

(
n

i

)
aix

i
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be a real polynomial all of whose zeros are real numbers. Then the sequence
b0, b1, . . . , bn is strongly log-concave, or equivalently, the sequence a0, a1, . . . , an

is log-concave. Morevover, if each bi ≥ 0 (so the zeros of P (x) are nonpositive
[why?]) then the sequence b0, b1, . . . , bn has no internal zeros.

Proof. Let degP (x) = m ≤ n. By the Fundamental Theorem of Algebra,
P (x) has exactly m real zeros, counting multiplicities. Suppose that α is a
zero of multiplicity r > 1, so P (x) = (x−α)rL(x) for some polynomial L(x)
satisfying L(α) 6= 0. A simple computation shows that α is a zero of P ′(x)
(the derivative of P (x)) of multiplicty r − 1. Moreover, if α < β are both
zeros of P (x), then Rolle’s theorem shows that P ′(x) has a zero γ satisfying
α < γ < β. It follows [why?] that P ′(x) has at least m− 1 real zeros. Since
degP ′(x) = m − 1 we see that P ′(x) has exactly m − 1 real zeros and no
other zeros.

Let Q(x) = di−1

dxi−1P (x). Thus Q(x) is a polynomial of degree at most
m − i + 1 with only real zeros. Let R(x) = xm−i+1Q(1/x), a polynomial of
degree at most m − i + 1. The zeros of R(x) are just reciprocals of those
zeros of Q(x) not equal to 0, with possible new zeros at 0. At any rate, all

zeros of R(x) are real. Now let S(x) = dm−i−1

dxm−i−1R(x), a polynomial of degree
at most two. By Rolle’s theorem (with a suitable handling of multiple zeros
as above), every zero of S(x) is real. An explicit computation yields

S(x) =
m!

2
(ai−1x

2 + 2aix+ ai+1).

If ai−1 = 0 then trivially a2
i ≥ ai−1ai+1. Otherwise S(x) is a quadratic

polynomial. Since it has real zeros, its discriminant ∆ is nonnegative. But

∆ = (2ai)
2 − 4ai−1ai+1 = 4(a2

i − ai−1ai+1) ≥ 0,

so the sequence a0, a1, . . . , an is log-concave as claimed.
It remains to show that if each ai ≥ 0 then the sequence a0, a1, . . . , an

has no internal zeros. Suppose to the contrary that for some i < j < k we
have ai > 0, aj = 0, ak > 0. By arguing as in the previous paragraph we will
obtain a polynomial of the form c+dxk−i with only real zeros, where c, d > 0.
But since k − i ≥ 2 we have that every such polynomial has a nonreal zero
[why?], a contradiction which completes the proof.

In order to give combinatorial applications of Theorem 5.12 we need to
find polynomials with real zeros whose coefficients are of combinatorial in-
terest. One such example appears in Exercise 9.8, based on the fact that the
characteristic polynomial of a symmetric matrix has only real zeros.
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Notes for Chapter 5

The techniques developed in this chapter had their origins in papers of L.
H. Harper [54] and M. Pouzet and I. G. Rosenberg, [89]. The closest treat-
ment to ours appears in a paper of R. Stanley [105]. This latter paper also
contains the proof of Theorem 5.10 (edge reconstruction) given here. This
result was first proved by L. Lovász [72] by an inclusion-exclusion argument.
The condition q > 1

2

(
p
2

)
in Theorem 5.10 was improved to q > p(log2 p − 1)

by V. Müller [80] (generalizing the argument of Lovász) and by I. Krasikov
and Y. Roditty [67] (generalizing the argument of Stanley).

For further information on Newton’s Theorem 5.12, see e.g. G.H. Hardy,
J. E. Littlewood, and G. Pólya [53, p. 52]. For a general survey on uni-
modality, log-concavity, etc., see Stanley [107], with a sequel by F. Brenti
[13].
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Chapter 6

Young diagrams and q-binomial
coefficients

A partition λ of an integer n ≥ 0 is a sequence λ = (λ1, λ2, . . . ) of integers
λi ≥ 0 satisfying λ1 ≥ λ2 ≥ · · · and

∑
i≥1 λi = n. Thus all but finitely

many λi are equal to 0. Each λi > 0 is called a part of λ. We sometimes
suppress 0’s from the notation for λ, e.g., (5, 2, 2, 1), (5, 2, 2, 1, 0, 0, 0), and
(5, 2, 2, 1, 0, 0, . . . ) all represent the same partition λ (of 10, with four parts).
If λ is a partition of n, then we denote this by λ ⊢ n or |λ| = n.

6.1 Example. There are seven partitions of 5, namely (writing e.g. 221 as
short for (2, 2, 1)): 5, 41, 32, 311, 221, 2111, and 11111.

The subject of partitions of integers has been extensively developed, but
we will only be concerned here with a small part related to our previous
discussion. Given positive integers m and n, let L(m,n) denote the set of all
partitions with at mostm parts and with largest part at most n. For instance,
L(2, 3) = {∅, 1, 2, 3, 11, 21, 31, 22, 32, 33}. (Note that we are denoting by
∅ the unique partition (0, 0, . . . ) with no parts.) If λ = (λ1, λ2, . . . ) and
µ = (µ1, µ2, . . . ) are partitions, then define λ ≤ µ if λi ≤ µi for all i.
This makes the set of all partitions into a very interesting poset, denoted
Y and called Young’s lattice (named after the British mathematician Alfred
Young, 1873–1940). (It is called “Young’s lattice” rather than “Young’s
poset” because it turns out to have certain properties which define a lattice.
However, these properties are irrelevant to us here, so we will not bother to
define the notion of a lattice.) We will be looking at some properties of Y
in Chapter 8. The partial ordering on Y , when restricted to L(m,n), makes

77
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Figure 6.1: The posets L(1, 4), L(2, 2), and L(2, 3)

L(m,n) into a poset which also has some fascinating properties. Figure 6.1
shows L(1, 4), L(2, 2), and L(2, 3), while Figure 6.2 shows L(3, 3).

There is a nice geometric way of viewing partitions and the poset L(m,n).
The Young diagram (sometimes just called the diagram) of a partition λ is
a left-justified array of squares, with λi squares in the ith row. For instance,
the Young diagram of (4, 3, 1, 1) looks like:

If dots are used instead of boxes, then the resulting diagram is called a Ferrers
diagram. Thus the Ferrers diagram of (4, 3, 1, 1) looks like

The advantage of Young diagrams over Ferrers diagrams is that we can
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Figure 6.2: The poset L(3, 3)
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put numbers in the boxes of a Young diagram, which we will do in Chapter 8.
Observe that L(m,n) is simply the set of Young diagrams D fitting in an
m × n rectangle (where the upper-left (northwest) corner of D is the same
as the northwest corner of the rectangle), ordered by inclusion. We will
always assume that when a Young diagram D is contained in a rectangle R,
the northwest corners agree. It is also clear from the Young diagram point
of view that L(m,n) and L(n,m) are isomorphic partially ordered sets, the
isomorphism being given by transposing the diagram (i.e., interchanging rows
and columns). If λ has Young diagram D, then the partition whose diagram
is Dt (the transpose of D) is called the conjugate of λ and is denoted λ′. For
instance, (4, 3, 1, 1)′ = (4, 2, 2, 1), with diagram

6.2 Proposition. The poset L(m,n) is graded of rank mn and rank-symmetric.
The rank of a partition λ is just |λ| (the sum of the parts of λ or the number
of squares in its Young diagram).

Proof. As in the proof of Proposition 5.5, we leave to the reader everything
except rank-symmetry. To show rank-symmetry, consider the complement λ̄
of λ in an m × n rectangle R, i.e., all the squares of R except for λ. (Note
that λ̄ depends on m and n, and not just λ.) For instance, in L(4, 5), the
complement of (4, 3, 1, 1) looks like

If we rotate the diagram of λ̄ by 180◦ then we obtain the diagram of a
partition λ̃ ∈ L(m,n) satisfying |λ|+|λ̃| = mn. This correspondence between
λ and λ̃ shows that L(m,n) is rank-symmetric.
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Our main goal in this chapter is to show that L(m,n) is rank-unimodal
and Sperner. Let us write pi(m,n) as short for pi(L(m,n)), the number of
elements of L(m,n) of rank i. Equivalently, pi(m,n) is the number of par-
titions of i with largest part at most n and with at most m parts, or, in
other words, the number of distinct Young diagrams with i squares which
fit inside an m× n rectangle (with the same northwest corner, as explained
previously). Though not really necessary for our goal, it is nonetheless in-
teresting to obtain some information on these numbers pi(m,n). First let us
consider the total number #L(m,n) of elements in L(m,n).

6.3 Proposition. We have #L(m,n) =
(

m+n
m

)
.

Proof. We will give an elegant combinatorial proof, based on the fact that(
m+n

m

)
is equal to the number of sequences a1, a2, . . . , am+n, where each aj

is either N or E, and there are m N ’s (and hence n E’s) in all. We will
associate a Young diagram D contained in an m × n rectangle R with such
a sequence as follows. Begin at the lower left-hand corner of R, and trace
out the southeast boundary of D, ending at the upper right-hand corner of
R. This is done by taking a sequence of unit steps (where each square of R
is one unit in length), each step either north or east. Record the sequence of
steps, using N for a step to the north and E for a step to the east.

Example. Let m = 5, n = 6, λ = (4, 3, 1, 1). Then R and D are given by:

The corresponding sequence of N ’s and E’s is NENNEENENEE.
It is easy to see (left to the reader) that the above correspondence gives

a bijection between Young diagrams D fitting in an m× n rectangle R, and
sequences of m N ’s and n E’s. Hence the number of diagrams is equal to(

m+n
m

)
, the number of sequences.
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We now consider how many elements of L(m,n) have rank i. To this end,
let q be an indeterminate; and given j ≥ 1 define (j) = 1+q+q2+ · · ·+qj−1.
Thus (1) = 1, (2) = 1 + q, (3) = 1 + q + q2, etc. Note that (j) is a
polynomial in q whose value at q = 1 is just j (denoted (j)q=1 = j). Next
define (j)! = (1)(2) · · · (j) for j ≥ 1, and set (0)! = 1. Thus (1)! = 1,
(2)! = 1 + q, (3)! = (1 + q)(1 + q + q2) = 1 + 2q + 2q2 + q3, etc., and
(j)!q=1 = j!. Finally define for k ≥ j ≥ 0,

(
k

j

)
=

(k)!

(j)!(k − j)!
.

The expression
(

k

j

)
is called a q-binomial coefficient (or Gaussian coefficient).

When q is regarded as a prime power rather than as an indeterminate, then
Exercise 4.4 gives a definition of

(
n

k

)
in terms of the field Fq. In this chapter

we have no need of this algebraic interpretation of
(

n

k

)
.

Since (r)!q=1 = r!, it is clear that
(

k

j

)

q=1

=

(
k

j

)
.

One sometimes says that
(

k

j

)
is a “q-analogue” of the binomial coefficient(

k
j

)
. There is no precise definition of a q-analogue P (q) of some mathematical

object P (such as a formula or definition). It should have the property that
there is a reasonable way to interpret P (1) as being P . Ideally P (q) should
have some interpretation involving Fq when q is regarded as a prime power.
The q-analogue of the set {1} is the finite field Fq, and the q-analogue of the
set [n] = {1, 2, . . . , n} is the vector space Fn

q .

6.4 Example. We have
(

k

j

)
=
(

k

k−j

)
[why?]. Moreover,

(
k

0

)
=

(
k

k

)
= 1

(
k

1

)
=

(
k

k − 1

)
= (k) = 1 + q + q2 + · · ·+ qk−1

(
4

2

)
=

(4)(3)(2)(1)

(2)(1)(2)(1)
= 1 + q + 2q2 + q3 + q4

(
5

2

)
=

(
5

3

)
= 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6.
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In the above example,
(

k

j

)
was always a polynomial in q (and with non-

negative integer coefficients). It is not obvious that this is always the case,
but it will follow easily from the following lemma.

6.5 Lemma. We have
(

k

j

)
=

(
k − 1

j

)
+ qk−j

(
k − 1

j − 1

)
, (6.1)

whenever k ≥ 1, with the initial conditions
(
0

0

)
= 1,

(
k

j

)
= 0 if j < 0 or j > k

(the same initial conditions satisfied by the binomial coefficients
(

k
j

)
).

Proof. This is a straightforward computation. Specifically, we have
(

k − 1

j

)
+ qk−j

(
k − 1

j − 1

)
=

(k − 1)!

(j)!(k − 1 − j)!
+ qk−j (k − 1)!

(j − 1)!(k − j)!

=
(k − 1)!

(j − 1)!(k − 1 − j)!

(
1

(j)
+

qk−j

(k − j)

)

=
(k − 1)!

(j − 1)!(k − 1 − j)!

(k − j) + qk−j(j)

(j)(k − j)

=
(k − 1)!

(j − 1)!(k − 1 − j)!

(k)

(j)(k − j)

=

(
k

j

)
.

Note that if we put q = 1 in (6.1) we obtain the well-known formula
(
k

j

)
=

(
k − 1

j

)
+

(
k − 1

j − 1

)
,

which is just the recurrence defining Pascal’s triangle. Thus equation (6.1)
may be regarded as a q-analogue of the Pascal triangle recurrence.

We can regard equation (6.1) as a recurrence relation for the q-binomial
coefficients. Given the initial conditions of Lemma 6.5, we can use (6.1) in-
ductively to compute

(
k

j

)
for any k and j. From this it is obvious by induction

that the q-binomial coefficient
(

k

j

)
is a polynomial in q with nonnegative inte-

ger coefficients. The following theorem gives an even stronger result, namely,
an explicit combinatorial interpretation of the coefficients.
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6.6 Theorem. Let pi(m,n) denote the number of elements of L(m,n) of
rank i. Then ∑

i≥0

pi(m,n)qi =

(
m + n

m

)
. (6.2)

Note. The sum on the left-hand side is really a finite sum, since pi(m,n) =
0 if i > mn.

Proof. Let P (m,n) denote the left-hand side of (6.2). We will show that

P (0, 0) = 1, and P (m,n) = 0 if m < 0 or n < 0 (6.3)

P (m,n) = P (m,n− 1) + qnP (m− 1, n). (6.4)

Note that equations (6.3) and (6.4) completely determine P (m,n). On
the other hand, substituting k = m + n and j = m in (6.1) shows that(

m+n

m

)
also satisfies (6.4). Moreover, the initial conditions of Lemma 6.5

show that
(

m+n

m

)
also satisfies (6.3). Hence (6.3) and (6.4) imply that

P (m,n) =
(

m+n

m

)
, so to complete the proof we need only establish (6.3)

and (6.4).
Equation (6.3) is clear, since L(0, n) consists of a single point (the empty

partition ∅), so
∑

i≥0 pi(0, n)qi = 1; while L(m,n) is empty (or undefined, if
you prefer) if m < 0 or n < 0.

The crux of the proof is to show (6.4). Taking the coefficient of qi of both
sides of (6.4), we see [why?] that (6.4) is equivalent to

pi(m,n) = pi(m,n− 1) + pi−n(m− 1, n). (6.5)

Consider a partition λ ⊢ i whose Young diagram D fits in an m×n rectangle
R. If D does not contain the upper right-hand corner of R, then D fits in
an m × (n − 1) rectangle, so there are pi(m,n − 1) such partitions λ. If on
the other hand D does contain the upper right-hand corner of R, then D
contains the whole first row of R. When we remove the first row of R, we
have left a Young diagram of size i−n which fits in an (m−1)×n rectangle.
Hence there are pi−n(m− 1, n) such λ, and the proof follows [why?].

Note that if we set q = 1 in (6.2), then the left-hand side becomes
#L(m,n) and the right-hand side

(
m+n

m

)
, agreeing with Proposition 6.3.

As the reader may have guessed by now, the poset L(m,n) is isomorphic
to a quotient poset Bs/G for a suitable integer s > 0 and finite group G
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acting on Bs. Actually, it is clear that we must have s = mn since L(m,n)
has rank mn and in general Bs/G has rank s. What is not so clear is the
right choice of G. To this end, let R = Rmn denote an m × n rectangle of
squares. For instance, R35 is given by the 15 squares of the diagram

We now define the group G = Gmn as follows. It is a subgroup of the group
SR of all permutations of the squares of R. A permutation π in G is allowed
to permute the elements in each row of R in any way, and then to permute
the rows among themselves in any way. The elements of each row can be
permuted in n! ways, so since there are m rows there are a total of n!m

permutations preserving the rows. Then the m rows can be permuted in m!
ways, so it follows that the order of Gmn is given by m!n!m. The group Gmn

is called the wreath product of Sn and Sm, denoted Sn ≀Sm or Sn wr Sm.
However, we will not discuss the general theory of wreath products here.

6.7 Example. Suppose m = 4 and n = 5, with the boxes of R labelled as
follows.

6

1 2 3 4 5

7 8 9 10

12 1311 14 15

16 17 18 19 20

Then a typical permutation π in G(4, 5) looks like

19

4 3

12 13

16 20 17 18

1 5 2

15 14 11

9 6 107 8
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i.e., π(16) = 1, π(20) = 2, etc.

We have just defined a group Gmn of permutations of the set R = Rmn of
squares of an m×n rectangle. Hence Gmn acts on the boolean algebra BR of
all subsets of the set R. The next lemma describes the orbits of this action.

6.8 Lemma. Every orbit o of the action of Gmn on BR contains exactly one
Young diagram D, i.e., exactly one subset D ⊆ R such that D is left-justified,
and if λi is the number of elements of D in row i of R, then λ1 ≥ λ2 ≥ · · · ≥
λm.

Proof. Let S be a subset of R, and suppose that S has αi elements in row i.
If π ∈ Gmn and π · S has βi elements in row i, then β1, . . . , βm is just some
permutation of α1, . . . , αm [why?]. There is a unique ordering λ1, . . . , λm of
α1, . . . , αm satisfying λ1 ≥ · · · ≥ λm, so the only possible Young diagram D
in the orbit π ·S is the one of shape λ = (λ1, . . . , λm). It’s easy to see that the
Young diagram Dλ of shape λ is indeed in the orbit π · S. For by permuting
the elements in the rows of R we can left-justify the rows of S, and then by
permuting the rows of R themselves we can arrange the row sizes of S to
be in weakly decreasing order. Thus we obtain the Young diagram Dλ as
claimed.

We are now ready for the main result of this chapter.

6.9 Theorem. Set R = Rmn. Then the quotient poset BR/Gmn is isomor-
phic to L(m,n).

Proof. Each element of BR/Gmn contains a unique Young diagram Dλ by
Lemma 6.8. Moreover, two different orbits cannot contain the same Young
diagram D since orbits are disjoint. Thus the map ϕ : BR/Gmn → L(m,n)
defined by ϕ(Dλ) = λ is a bijection (one-to-one and onto). We claim that
in fact ϕ is an isomorphism of partially ordered sets. We need to show the
following: let o and o

∗ be orbits of Gmn (i.e., elements of BR/Gmn). Let Dλ

and Dλ∗ be the unique Young diagrams in o and o
∗, respectively. Then there

exist D ∈ o and D∗ ∈ o
∗ satisfying D ⊆ D∗ if and only if λ ≤ λ∗ in L(m,n).

The “if” part of the previous sentence is clear, for if λ ≤ λ∗ then Dλ ⊆
Dλ∗ . So assume there exist D ∈ o and D∗ ∈ o

∗ satisfying D ⊆ D∗. The
lengths of the rows of D, written in decreasing order, are λ1, . . . , λm, and
similarly for D∗. Since each row of D is contained in a row of D∗, it follows
that for each 1 ≤ j ≤ m, D∗ has at least j rows of size at least λj . Thus
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the length λ∗j of the jth largest row of D∗ is at least as large as λj. In other
words, λj ≤ λ∗j , as was to be proved.

Combining the previous theorem with Theorem 5.8 yields the following
result.

6.10 Corollary. The posets L(m,n) are rank-symmetric, rank-unimodal,
and Sperner.

Note that the rank-symmetry and rank-unimodality of L(m,n) can be
rephrased as follows: the q-binomial coefficient

(
m+n

m

)
has symmetric and

unimodal coefficients. While rank-symmetry is easy to prove (see Propo-
sition 6.2), the unimodality of the coefficients of

(
m+n

m

)
is by no means

apparent. It was first proved by J. Sylvester in 1878 by a proof similar
to the one above, though stated in the language of the invariant theory of
binary forms. For a long time it was an open problem to find a combinato-
rial proof that the coefficients of

(
m+n

m

)
are unimodal. Such a proof would

give an explicit injection (one-to-one function) µ : L(m,n)i → L(m,n)i+1 for
i < 1

2
mn. (One difficulty in finding such maps µ is to make use of the hy-

pothesis that i < 1
2
mn.) Finally around 1989 such a proof was found by K.

M. O’Hara. However, O’Hara’s proof has the defect that the maps µ are not
order-matchings. Thus her proof does not prove that L(m,n) is Sperner, but
only that it’s rank-unimodal. It is an outstanding open problem in algebraic
combinatorics to find an explicit order-matching µ : L(m,n)i → L(m,n)i+1

for i < 1
2
mn.

Note that the Sperner property of L(m,n) (together with the fact that the
largest level is in the middle) can be stated in the following simple terms: the
largest possible collection C of Young diagrams fitting in an m× n rectangle
such that no diagram in C is contained in another diagram in C is obtained
by taking all the diagrams of size ⌊1

2
mn⌋. Although the statement of this

fact requires almost no mathematics to understand, there is no known proof
that doesn’t use algebraic machinery. The several known algebraic proofs are
all closely related, and the one we have given is the simplest. Corollary 6.10
is a good example of the efficacy of algebraic combinatorics.

An application to number theory. There is an interesting application
of Corollary 6.10 to a number-theoretic problem. Fix a positive integer k.
For a finite subset S of R+ = {β ∈ R : β > 0}, and for a real number α > 0,
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define

fk(S, α) = #

{
T ∈

(
S

k

)
:
∑

t∈T

t = α

}
.

In other words, fk(S, α) is the number of k-element subsets of S whose el-
ements sum to α. For instance, f3({1, 3, 4, 6, 7}, 11) = 2, since 1 + 3 + 7 =
1 + 4 + 6 = 11.

Given positive integers k < n, our object is to maximize fk(S, α) subject
to the condition that #S = n. We are free to choose both S and α, but k
and n are fixed. Call this maximum value hk(n). Thus

hk(n) = max
α∈R+

S⊂R+
#S=n

fk(S, α).

What sort of behavior can we expect of the maximizing set S? If the elements
of S are “spread out,” say S = {1, 2, 4, 8, . . . , 2n−1}, then all the subset
sums of S are distinct. Hence for any α ∈ R+ we have fk(S, α) = 0 or 1.
Similarly, if the elements of S are “unrelated” (e.g., linearly independent over
the rationals, such as S = {1,

√
2,
√

3, π, π2}), then again all subset sums are
distinct and fk(S, α) = 0 or 1. These considerations make it plausible that
we should take S = [n] = {1, 2, . . . , n} and then choose α appropriately. In

other words, we are led to the conjecture that for any S ∈
(

R+

n

)
and α ∈ R+,

we have
fk(S, α) ≤ fk([n], β), (6.6)

for some β ∈ R+ to be determined.
First let us evaluate fk([n], α) for any α. This will enable us to determine

the value of β in equation (6.6). Let S = {i1, . . . , ik} ⊆ [n] with

1 ≤ i1 < i2 < · · · < ik ≤ n, i1 + · · ·+ ik = α. (6.7)

Let jr = ir − r. Then (since 1 + 2 + · · ·+ k =
(

k+1
2

)
)

n− k ≥ jk ≥ jk−1 ≥ · · · ≥ j1 ≥ 0, j1 + · · ·+ jk = α−
(
k + 1

2

)
. (6.8)

Conversely, given j1, . . . , jk satisfying (6.8) we can recover i1, . . . , ik satisfying
(6.7). Hence fk([n], α) is equal to the number of sequences j1, . . . , jk satisfying
(6.8). Now let

λ(S) = (jk, jk−1, . . . , j1).



89

Note that λ(S) is a partition of the integer α −
(

k+1
2

)
with at most k parts

and with largest part at most n− k. Thus

fk([n], α) = pα−(k+1
2 )(k, n− k), (6.9)

or equivalently,
∑

α≥(k+1
2 )

fk([n], α)qα−(k+1
2 ) =

(
n

k

)
.

By the rank-unimodality (and rank-symmetry) of L(n−k, k) (Corollary 6.10),
the largest coefficient of

(
n

k

)
is the middle one, that is, the coefficient of

⌊k(n − k)/2⌋. It follows that for fixed k and n, fk([n], α) is maximized for
α = ⌊k(n − k)/2⌋ +

(
k+1
2

)
= ⌊k(n + 1)/2⌋. Hence the following result is

plausible.

6.11 Theorem. Let S ∈
(

R+

n

)
, α ∈ R+, and k ∈ P. Then

fk(S, α) ≤ fk([n], ⌊k(n + 1)/2⌋).

Proof. Let S = {a1, . . . , an} with 0 < a1 < · · · < an. Let T and U be distinct
k-element subsets of S with the same element sums, say T = {ai1 , . . . , aik}
and U = {aj1, . . . , ajk

} with i1 < i2 < · · · < ik and j1 < j2 < · · · < jk.

Define T ∗ = {i1, . . . , ik} and U∗ = {j1, . . . , jk}, so T ∗, U∗ ∈
(
[n]
k

)
. The crucial

observation is the following:

Claim. The elements λ(T ∗) and λ(U∗) are incomparable in L(k, n− k),
i.e., neither λ(T ∗) ≤ λ(U∗) nor λ(U∗) ≤ λ(T ∗).

Proof of claim. Suppose not, say λ(T ∗) ≤ λ(U∗) to be definite. Thus
by definition of L(k, n − k) we have ir − r ≤ jr − r for 1 ≤ r ≤ k. Hence
ir ≤ jr for 1 ≤ r ≤ k, so also air ≤ ajr (since a1 < · · · < an). But
ai1 + · · · + aik = aj1 + · · · + ajk

by assumption, so air = ajr for all r. This
contradicts the assumption that T and U are distinct and proves the claim.

It is now easy to complete the proof of Theorem 6.11. Suppose that
S1, . . . , Sr are distinct k-element subsets of S with the same element sums.
By the claim, {λ(S∗

1), . . . , λ(S∗
r )} is an antichain in L(k, n − k). Hence r

cannot exceed the size of the largest antichain in L(k, n−k). By Theorem 6.6
and Corollary 6.10, the size of the largest antichain in L(k, n−k) is given by
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p⌊k(n−k)/2⌋(k, n− k). By equation (6.9) this number is equal to fk([n], ⌊k(n+
1)/2⌋). In other words,

r ≤ fk([n], ⌊k(n+ 1)/2⌋),
which is what we wanted to prove.

Note that an equivalent statement of Theorem 6.11 is that hk(n) is equal
to the coefficient of q⌊k(n−k)/2⌋ in

(
n

k

)
[why?].

Variation on a theme. Suppose that in Theorem 6.11 we do not want
to specify the cardinality of the subsets of S. In other words, for any α ∈ R

and any finite subset S ⊂ R+, define

f(S, α) = #{T ⊆ S :
∑

t∈T

t = α}.

How large can f(S, α) be if we require #S = n? Call this maximum value
h(n). Thus

h(n) = max
α∈R+

S⊂R+
#S=n

f(S, α). (6.10)

For instance, if S = {1, 2, 3} then f(S, 3) = 2 (coming from the subsets {1, 2}
and {3}). This is easily seen to be best possible, i.e., h(3) = 2.

We will find h(n) in a manner analogous to the proof of Theorem 6.11.
The big difference is that the relevant poset M(n) is not of the form Bn/G,
so we will have to prove the injectivity of the order-raising operator Ui from
scratch. Our proofs will be somewhat sketchy; it shouldn’t be difficult for
the reader who has come this far to fill in the details.

Let M(n) be the set of all subsets of [n], with the ordering A ≤ B
if the elements of A are a1 > a2 > · · · > aj and the elements of B are
b1 > b2 > · · · > bk, where j ≤ k and ai ≤ bi for 1 ≤ i ≤ j. (The empty set ∅
is the bottom element of M(n).) Figure 6.3 shows M(1), M(2), M(3), and
M(4).

It is easy to see that M(n) is graded of rank
(

n+1
2

)
. The rank of the subset

T = {a1, . . . , ak} is
rank(T ) = a1 + · · ·+ ak. (6.11)

It follows [why?] that the rank-generating function of M(n) is given by

F (M(n), q) =

(n+1
2 )∑

i=0

(#M(n)i)q
i = (1 + q)(1 + q2) · · · (1 + qn).
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Figure 6.3: The posets M(1), M(2), M(3) and M(4)
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Define linear transformations

Ui : RM(n)i → RM(n)i+1, Di : RM(n)i → RM(n)i−1

by

Ui(x) =
∑

y∈M(n)i+1
x<y

y, x ∈ M(n)i

Di(x) =
∑

v∈M(n)i−1
v<x

c(v, x)v, x ∈M(n)i,

where the coefficient c(v, x) is defined as follows. Let the elements of v be
a1 > · · · > aj > 0 and the elements of x be b1 > · · · > bk > 0. Since x covers
v, there is a unique r for which ar = br − 1 (and ak = bk for all other k). In
the case br = 1 we set ar = 0. (E.g., if x is given by 5 > 4 > 1 and v by
5 > 4, then r = 3 and a3 = 0.) Set

c(v, x) =

{ (
n+1

2

)
, if ar = 0

(n− ar)(n + ar + 1), if ar > 0.

It is a straightforward computation (proof omitted) to obtain the com-
mutation relation

Di+1Ui − Ui−1Di =

((
n+ 1

2

)
− 2i

)
Ii, (6.12)

where Ii denotes the identity linear transformation on RM(n)i. Clearly by
definition Ui is order-raising. We want to show that Ui is injective (one-to-
one) for i < 1

2

(
n+1

2

)
. We can’t argue as in the proof of Lemma 4.6 that Ui−1Di

is semidefinite since the matrices of Ui−1 and Di are no longer transposes of
one another. Instead we use the following result from linear algebra.

6.12 Lemma. Let V and W be finite-dimensional vector spaces over a field.
Let A : V →W and B : W → V be linear transformations. Then

xdimV det(AB − xI) = xdim W det(BA− xI).

In other words, AB and BA have the same nonzero eigenvalues.
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We can now prove the key linear algebraic result.

6.13 Lemma. The linear transformation Ui is injective for i < 1
2

(
n+1

2

)
and

surjective (onto) for i ≥ 1
2

(
n+1

2

)
.

Proof. We prove by induction on i that Di+1Ui has positive real eigenvalues
for i < 1

2

(
n+1

2

)
. For i = 0 this is easy to check since dim RM(n)0 = 1.

Assume the induction hypothesis for some i < 1
2

(
n+1

2

)
− 1, i.e., assume that

DiUi−1 has positive eigenvalues. By Lemma 6.12, Ui−1Di has nonnegative
eigenvalues. By (6.12), we have

Di+1Ui = Ui−1Di +

((
n+ 1

2

)
− 2i

)
Ii.

Thus the eigenvalues of Di+1Ui are
(

n+1
2

)
− 2i more than those of Ui−1Di.

Since
(

n+1
2

)
−2i > 0, it follows that Di+1Ui has positive eigenvalues. Hence it

is invertible, so Ui is injective. Similarly (or by “symmetry”) Ui is surjective
for i ≥ 1

2

(
n+1

2

)
.

The main result on the posets M(n) now follows by a familiar argument.

6.14 Theorem. The poset M(n) is graded of rank
(

n+1
2

)
, rank-symmetric,

rank-unimodal, and Sperner.

Proof. We have already seen that M(n) is graded of rank
(

n+1
2

)
and rank-

symmetric. By the previous lemma, Ui is injective for i < 1
2

(
n+1

2

)
and

surjective for i ≥ 1
2

(
n+1

2

)
. The proof follows from Proposition 4.4 and

Lemma 4.5.

Note. As a consequence of Theorem 6.14, the polynomial F (M(n), q) =
(1 + q)(1 + q2) · · · (1 + qn) has unimodal coefficients. No combinatorial proof
of this fact is known, unlike the situation for L(m,n) (where we mentioned
the proof of O’Hara above).

We can now determine h(n) (as defined by equation (6.10)) by an argu-
ment analogous to the proof of Theorem 6.11.

6.15 Theorem. Let S ∈
(

R+

n

)
and α ∈ R+. Then

f(S, α) ≤ f

(
[n],

⌊
1

2

(
n + 1

2

)⌋)
= h(n).
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Proof. Let S = {a1, . . . , an} with 0 < a1 < · · · < an. Let T and U be
distinct subsets of S with the same element sums, say T = {ar1, . . . , arj

} and
U = {as1, . . . , ask

} with r1 < r2 < · · · < rj and s1 < s2 < · · · < sk. Define
T ∗ = {r1, . . . , rj} and U∗ = {s1, . . . , sk}, so T ∗, U∗ ∈ M(n). The following
fact is proved exactly in the same way as the analogous fact for L(m,n) (the
claim in the proof of Theorem 6.11) and will be omitted here.

Fact. The elements T ∗ and U∗ are incomparable in M(n), i.e., neither
T ∗ ≤ U∗ nor U∗ ≤ T ∗.

It is now easy to complete the proof of Theorem 6.15. Suppose that
S1, . . . , St are distinct subsets of S with the same element sums. By the
above fact, {S∗

1 , . . . , S
∗
t } is an antichain in M(n). Hence t cannot exceed the

size of the largest antichain in M(n). By Theorem 6.14, the size of the largest
antichain in M(n) is the size p⌊ 1

2(
n+1

2 )⌋ of the middle rank. By equation (6.11)

this number is equal to f([n], ⌊1
2

(
n+1

2

)
⌋). In other words,

t ≤ f

(
[n],

⌊
1

2

(
n + 1

2

)⌋)
,

which is what we wanted to prove.

Note. Theorem 6.15 is known as the weak Erdős-Moser conjecture. The
original (strong) Erdős-Moser conjecture deals with the case S ⊂ R rather
than S ⊂ R+. There is a difference between these two cases; for instance,
h(3) = 2 (corresponding to S = {1, 2, 3} and α = 3), while the set {−1, 0, 1}
has four subsets whose elements sum to 0 (including the empty set). (Can
you see where the proof of Theorem 6.15 breaks down if we allow S ⊂ R?)
The original Erdős-Moser conjecture asserts that if #S = 2m+ 1, then

f(S, α) ≤ f({−m,−m+ 1, . . . , m}, 0). (6.13)

This result can be proved by a somewhat tricky modification of the proof
given above for the weak case; see Exercise 6.5. No proof of the Erdős-
Moser conjecture (weak or strong) is known other than the one indicated
here (sometimes given in a more sophisticated context, as explained in the
next Note).

Note. The key to the proof of Theorem 6.15 is the definition of Ui and
Di which gives the commutation relation (6.12). The reader may be wonder-
ing how anyone managed to discover these definitions (especially that of Di).
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In fact, the original proof of Theorem 6.15 was based on the representation
theory of the orthogonal Lie algebra o(2n+1,C). In this context, the defini-
tions of Ui and Di are built into the theory of the “principal subalgebras” of
o(2n+1,C). R. A. Proctor was the first to remove the representation theory
from the proof and present it solely in terms of linear algebra.

Notes for Chapter 6

For an undergraduate level introduction to the theory of partitions, see
Andrews and Eriksson [4]. A more extensive treatment is given by Andrews
[3], while a brief introduction appears in [109, §1.8].

As already mentioned in the text, the rank-unimodality of L(m,n), that
is, of the coefficients of the q-binomial coefficient

(
m+n

m

)
, is due to J. J.

Sylvester [114], with a combinatorial proof later given by K.M. O’Hara [83].
An explication of O’Hara’s work was given by D. Zeilberger [123].

The unimodality of the coefficients of the polynomial (1+q)(1+q2) · · · (1+
qn) is implicit in the work of E.B. Dynkin [31][32, p. 332]. J.W.B. Hughes
was the first to observe explicitly that this polynomial arises as a special
case of Dynkin’s work. The Spernicity of L(m,n) and M(n), and a proof
of the Erdős-Moser conjecture, were first given by Stanley [103]. It was
mentioned in the text above that R.A. Proctor [90] was the first to remove
the representation theory from the proof and present it solely in terms of
linear algebra.

For two proofs of Lemma 6.12, see W.V. Parker [84] and J. Schmid [100].
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Chapter 7

Enumeration under group
action

In Chapters 5 and 6 we considered the quotient poset Bn/G, where G is
a subgroup of the symmetric group Sn. If pi is the number of elements
of rank i of this poset, then the sequence p0, p1, . . . , pn is rank-symmetric
and rank-unimodal. Thus it is natural to ask whether there is some nice
formula for the numbers pi. For instance, in Theorem 5.9 pi is the number
of nonisomorphic graphs with m vertices (where n =

(
m
2

)
) and i edges; is

there some nice formula for this number? For the group Gmn = Sn ≀Sm of
Theorem 6.6 we obtained a simple generating function for pi (i.e., a formula
for the rank-generating function F (Bmn/Gmn, q) =

∑
i piq

i), but this was a
very special situation. In this chapter we will present a general theory for
enumerating inequivalent objects subject to a group of symmetries, which
will include a formula for the rank-generating functions F (Bn/G, q). The
chief architect of this theory is G. Pólya (though much of it was anticipated
by J. H. Redfield) and hence is often called Pólya’s theory of enumeration or
just Pólya theory. See the references at the end of this chapter for further
historical information.

Pólya theory is most easily understood in terms of “colorings” of some ge-
ometric or combinatorial object. For instance, consider a row of five squares:

In how many ways can we color the squares using n colors? Each square can

99
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be colored any of the n colors, so there are n5 ways in all. These colorings
can by indicated as

CA B ED

where A,B,C,D,E are the five colors. Now assume that we are allowed to
rotate the row of five squares 180◦, and that two colorings are considered the
same if one can be obtained from the other by such a rotation. (We may
think that we have cut the row of five squares out of paper and colored them
on one side.) We say that two colorings are equivalent if they are the same
or can be transformed into one another by a 180◦ rotation. The first naive
assumption is that every coloring is equivalent to exactly one other (besides
itself), so the number of inequivalent colorings is n5/2. Clearly this reasoning
cannot be correct since n5/2 is not always an integer! The problem, of course,
is that some colorings stay the same when we rotate 180◦. In fact, these are
exactly the colorings

A B C B A

where A,B,C are any three colors. There are n3 such colorings, so the total
number of inequivalent colorings is given by

1

2
(number of colorings which don’t equal their 180◦ rotation)

+(number of colorings which equal their 180◦ rotation)

=
1

2
(n5 − n3) + n3

=
1

2
(n5 + n3).

Pólya theory gives a systematic method for obtaining formulas of this sort
for any underlying symmetry group.

The general setup is the following. LetX be a finite set, and G a subgroup
of the symmetric group SX . Think of G as a group of symmetries of X. Let
C be another set (which may be infinite), which we think of as a set of
“colors.” A coloring of X is a function f : X → C. For instance, X could be
the set of four squares of a 2× 2 chessboard, labelled as follows:
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1 2

3 4

Let C = {r, b, y} (the colors red, blue, and yellow). A typical coloring of
X would then look like

y r

r b

The above diagram thus indicates the function f : X → C given by f(1) =
r, f(2) = b, f(3) = y, f(4) = r.

Note. We could work in the slightly greater generality of a group G
acting on the set X, i.e., we are given a homomorphism ϕ : G → SX that
need not be injective. However, we then have a well-defined induced injective
homomorphism ψ : H → SX , where H = G/(kerϕ). The results obtained
below for H are identical to those we get for G, so nothing is lost by assuming
that ϕ is injective. In this case we can identify G with its image ϕ(G).

We define two colorings f and g to be equivalent (or G-equivalent, when

it is necessary to specify the group), denoted f ∼ g or f
G∼ g, if there exists

an element π ∈ G such that

g(π(x)) = f(x) for all x ∈ X.

We may write this condition more succinctly as gπ = f , where gπ denotes
the composition of functions (from right to left). It is easy to check, using
the fact that G is a group, that ∼ is an equivalence relation. One should
think that equivalent functions are the same “up to symmetry.”

7.1 Example. Let X be the 2 × 2 chessboard and C = {r, b, y} as above.
There are many possible choices of a symmetry group G, and this will af-
fect when two colorings are equivalent. For instance, consider the following
groups:

• G1 consists of only the identity permutation (1)(2)(3)(4).
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• G2 is the group generated by a vertical reflection. It consists of the
two elements (1)(2)(3)(4) (the identity element) and (1, 2)(3, 4) (the
vertical reflection).

• G3 is the group generated by a reflection in the main diagonal. It
consists of the two elements (1)(2)(3)(4) (the identity element) and
(1)(4)(2, 3) (the diagonal reflection).

• G4 is the group of all rotations of X. It is a cyclic group of order four
with elements (1)(2)(3)(4), (1, 2, 4, 3), (1, 4)(2, 3), and (1, 3, 4, 2).

• G5 is the dihedral group of all rotations and reflections of X. It has
eight elements, namely, the four elements of G4 and the four reflections
(1, 2)(3, 4), (1, 3)(2, 4), (1)(4)(2, 3), and (2)(3)(1, 4).

• G6 is the symmetric group of all 24 permutations of X. Although this
is a perfectly valid group of symmetries, it no longer has any connec-
tion with the geometric representation of X as the squares of a 2 × 2
chessboard.

Consider the inequivalent colorings of X with two red squares, one blue
square, and one yellow square, in each of the six cases above.

(G1) There are twelve colorings in all with two red squares, one blue square,
and one yellow square, and all are inequivalent under the trivial group
(the group with one element). In general, whenever G is the trivial
group then two colorings are equivalent if and only if they are the same
[why?].

(G2) There are now six inequivalent colorings, represented by

r r

y

r

r y

r

r

y y

r r

r

y r

r y

rb

b

b

b b

b

Each equivalence class contains two elements.

(G3) Now there are seven classes, represented by

r r

y

r r

y

y

r r

y

r r

r

y r

r

r y r

y r

bb b

b b b b
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The first five classes contain two elements each and the last two classes
only one element. Although G2 and G3 are isomorphic as abstract
groups, as permutation groups they have a different structure. Specifi-
cally, the generator (1, 2)(3, 4) of G2 has two cycles of length two, while
the generator (1)(4)(2, 3) has two cycles of length one and one of length
two. As we will see below, it is the lengths of the cycles of the elements
of G that determine the sizes of the equivalence classes. This explains
why the number of classes for G2 and G3 are different.

(G4) There are three classes, each with four elements. The size of each
class is equal to the order of the group because none of the colorings
have any symmetry with respect to the group, i.e., for any coloring
f , the only group element π that fixes f (so fπ = f) is the identity
(π = (1)(2)(3)(4)).

r r

y

r r

y

r

y rb b

b

(G5) Under the full dihedral group there are now two classes.

r

y

r r

y rb

b

The first class has eight elements and the second four elements. In
general, the size of a class is the index in G of the subgroup fixing
some fixed coloring in that class [why?]. For instance, the subgroup
fixing the second coloring above is {(1)(2)(3)(4), (1, 4)(2)(3)}, which
has index four in the dihedral group of order eight.

(G6) Under the group S4 of all permutations of the squares there is clearly
only one class, with all twelve colorings. In general, for any set X if the
group is the symmetric group SX then two colorings are equivalent if
and only if each color appears the same number of times [why?].
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Our object in general is to count the number of equivalence classes of
colorings which use each color a specified number of times. We will put the
information into a generating function — a polynomial whose coefficients are
the numbers we seek. Consider for example the set X, the group G = G5 (the
dihedral group), and the set C = {r, b, y} of colors in Example 7.1 above.
Let κ(i, j, k) be the number of inequivalent colorings using red i times, blue
j times, and yellow k times. Think of the colors r, b, y as variables, and form
the polynomial

FG(r, b, y) =
∑

i+j+k=4

κ(i, j, k)ribjyk.

Note that we sum only over i, j, k satisfying i+ j+k = 4 since a total of four
colors will be used to color the four-element set X. The reader should check
that

FG(r, b, y) = (r4 + b4 + y4) + (r3b+ rb3 + r3y + ry3 + b3y + by3)

+2(r2b2 + r2y2 + b2y2) + 2(r2by + rb2y + rby2).

For instance, the coefficient of r2by is two because, as we have seen above,
there are two inequivalent colorings using the colors r, r, b, y. Note that
FG(r, b, y) is a symmetric function of the variables r, b, y (i.e., it stays the
same if we permute the variables in any way), because insofar as counting
inequivalent colorings goes, it makes no difference what names we give the
colors. As a special case we may ask for the total number of inequivalent
colorings with four colors. This is obtained by setting r = b = y = 1 in
FG(r, b, y) [why?], yielding FG(1, 1, 1) = 3 + 6 + 2 · 3 + 2 · 3 = 21.

What happens to the generating function FG in the above example when
we use the n colors r1, r2, . . . , rn (which can be thought of as different shades
of red)? Clearly all that matters are the multiplicities of the colors, without
regard for their order. In other words, there are five cases: (a) all four colors
the same, (b) one color used three times and another used once, (c) two
colors used twice each, (d) one color used twice and two others once each,
and (e) four colors used once each. These five cases correspond to the five
partitions of 4, i.e., the five ways of writing 4 as a sum of positive integers
without regard to order: 4, 3+1, 2+2, 2+1+1, 1+1+1+1. Our generating



105

function becomes

FG(r1, r2, . . . , rn) =
∑

i

r4
i +

∑

i6=j

r3
i rj

+2
∑

i<j

r2
i r

2
j + 2

∑

i6=j
i6=k
j<k

r2
i rjrk + 3

∑

i<j<k<l

rirjrkrl,

where the indices in each sum lie between 1 and n. If we set all variables
equal to one (obtaining the total number of colorings with n colors), then
simple combinatorial reasoning yields

FG(1, 1, . . . , 1) = n+ n(n− 1) + 2

(
n

2

)
+ 2n

(
n− 1

2

)
+ 3

(
n

4

)

=
1

8
(n4 + 2n3 + 3n2 + 2n). (7.1)

Note that the polynomial (7.1) has the following description: the denomina-
tor 8 is the order of the group G5, and the coefficient of ni in the numerator
is just the number of permutations in G5 with i cycles! For instance, the
coefficient of n2 is 3, and G5 has the three elements (1, 2)(3, 4), (1, 3)(2, 4),
and (1, 4)(2, 3) with two cycles. We want to prove a general result of this
nature.

The basic tool which we will use is a simple result from the theory of
permutation groups known as Burnside’s lemma. It was actually first proved
by Cauchy when G is transitive (i.e., |Y/G| = 1 in Lemma 7.2 below) and by
Frobenius in the general case, and is sometimes called the Cauchy-Frobenius
lemma.

7.2 Lemma (Burnside’s lemma). Let Y be a finite set and G a subgroup of
SY . For each π ∈ G, let

Fix(π) = {y ∈ Y : π(y) = y},

so #Fix(π) is the number of cycles of length one in the permutation π. Let
Y/G be the set of orbits of G. Then

|Y/G| = 1

#G

∑

π∈G

#Fix(π).
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An equivalent form of Burnside’s lemma is the statement that the average
number of elements of Y fixed by an element of G is equal to the number of
orbits. Before proceeding to the proof, let us consider an example.

7.3 Example. Let Y = {a, b, c, d},
G = {(a)(b)(c)(d), (a, b)(c, d), (a, c)(b, d), (a, d)(b, c)},

and
G′ = {(a)(b)(c)(d), (a, b)(c)(d), (a)(b)(c, d), (a, b)(c, d)}.

Both groups are isomorphic to Z2 × Z2 (compare Example 5.1(c) and (d)).
By Burnside’s lemma the number of orbits of G is 1

4
(4 + 0 + 0 + 0) = 1.

Indeed, given any two elements i, j ∈ Y , it is clear by inspection that there
is a π ∈ G (which happens to be unique) such that π(i) = j. On the other
hand, the number of orbits of G′ is 1

4
(4 + 2 + 2 + 0) = 2. Indeed, the two

orbits are {a, b} and {c, d}.
Proof of Burnside’s lemma. For y ∈ Y let Gy = {π ∈ G : π · y = y}

(the set of permutations fixing y). Then

1

#G

∑

π∈G

#Fix(π) =
1

#G

∑

π∈G

∑

y∈Y
π·y=y

1

=
1

#G

∑

y∈Y

∑

π∈G
π·y=y

1

=
1

#G

∑

y∈Y

#Gy.

Now (as in the proof of Lemma 5.6) the multiset of elements π · y, π ∈ G,
contains every element in the orbit Gy the same number of times, namely
#G/#Gy times. Thus y occurs #G/#Gy times among the π · y, so

#G

#Gy
= #Gy.

Therefore

1

#G

∑

π∈G

#Fix(π) =
1

#G

∑

y∈Y

#G

#Gy

=
∑

y∈Y

1

#Gy
.
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How many times does a term 1/#O appear in the above sum, where O is
a fixed orbit? We are asking for the number of y such that Gy = O. But
Gy = O if and only if y ∈ O, so 1/#O appears #O times. Thus each orbit
gets counted exactly once, so the above sum is equal to the number of orbits.
�

7.4 Example. How many inequivalent colorings of the vertices of a regular
hexagon H are there using n colors, under cyclic symmetry? Let Cn be the
set of all n-colorings of H . Let G be the group of all permutations of Cn which
permute the colors cyclically, so G ∼= Z6. We are asking for the number of
orbits of G [why?]. We want to apply Burnside’s lemma, so for each of the
six elements σ of G we need to compute the number of colorings fixed by
that element. Let π be a generator of G.

• σ = 1 (the identity): All n6 colorings are fixed by σ.

• σ = π, π−1: Only the n colorings with all colors equal are fixed.

• σ = π2, π4: Any coloring of the form ababab is fixed (writing the colors
linearly in the order they appear around the hexagon, starting at any
fixed vertex). There are n choices for a and n for b, so n2 colorings in
all.

• σ = π3: The fixed colorings are of the form abcabc, so n3 in all.

Hence by Burnside’s lemma, we have

number of orbits =
1

6
(n6 + n3 + 2n2 + 2n).

The reader who has followed the preceding example will have no trouble
understanding the following result.

7.5 Theorem. Let G be a group of permutations of a finite set X. Then the
number NG(n) of inequivalent (with respect to G) n-colorings of X is given
by

NG(n) =
1

#G

∑

π∈G

nc(π), (7.2)

where c(π) denotes the number of cycles of π.



108 CHAPTER 7. ENUMERATION UNDER GROUP ACTION

Proof. Let πn denote the action of π ∈ G on the set Cn of n-colorings of
X. We want to determine the set Fix(πn), so that we can apply Burnside’s
lemma. Let C be the set of n colors. If f : X → C is a coloring fixed by π,
then for all x ∈ X we have

f(x) = πn · f(x) = f(π(x)).

Thus f ∈ Fix(πn) if and only if f(x) = f(π(x)). Hence f(x) = f(πk(x)) for
any k ≥ 1 [why?]. The elements y of X of the form πk(x) for k ≥ 1 are just
the elements of the cycle of π containing x. Thus to obtain f ∈ Fix(πn),
we should take the cycles σ1, . . . , σc(π) of π and color each element of σi the
same color. There are n choices for each σi, so nc(π) colorings in all fixed by
π. In other words, #Fix(πn) = nc(π), and the proof follows by Burnside’s
lemma.

We would now like not just to count the total number of inequivalent
colorings with n colors, but more strongly to specify the number of occurences
of each color. We will need to use not just the number c(π) of cycles of each
π ∈ G, but rather the lengths of each of the cycles of π. Thus given a
permutation π of an n-element set X, define the type of π to be

type(π) = (c1, c2, . . . , cn),

where π has ci i-cycles. For instance, if π = 4, 7, 3, 8, 2, 10, 11, 1, 6, 9, 5, then

type(π) = type (1, 4, 8)(2, 7, 11, 5)(3)(6, 10, 9)

= (1, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0).

Note that we always have
∑

i ici = n [why?]. Define the cycle indicator of π
to be the monomial

Zπ = zc1
1 z

c2
2 · · · zcn

n .

(Many other notations are used for the cycle indicator. The use of Zπ comes
from the German word Zyklus for cycle. The original paper of Pólya was
written in German.) Thus for the example above, we have Zπ = z1z

2
3z4.

Now given a subgroup G of SX , the cycle indicator (or cycle index poly-
nomial) of G is defined by

ZG = ZG(z1, . . . , zn) =
1

#G

∑

π∈G

Zπ.

Thus ZG (also denoted PG, Cyc(G), etc.) is a polynomial in the variables
z1, . . . , zn.
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7.6 Example. If X consists of the vertices of a square and G is the group
of rotations of X (a cyclic group of order 4), then

ZG =
1

4
(z4

1 + z2
2 + 2z4).

If reflections are also allowed (so G is the dihedral group of order 8), then

ZG =
1

8
(z4

1 + 3z2
2 + 2z2

1z2 + 2z4).

We are now ready to state the main result of this chapter.

7.7 Theorem (Pólya’s theorem, 1937). Let G be a group of permutations of
the n-element set X. Let C = {r1, r2, . . . } be a set of colors. Let κ(i1, i2, . . . )
be the number of inequivalent (under the action of G) colorings f : X → C
such that color rj is used ij times. Define

FG(r1, r2, . . . ) =
∑

i1,i2,...

κ(i1, i2, . . . )r
i1
1 r

i2
2 · · · .

(Thus FG is a polynomial or a power series in the variables r1, r2, . . . , de-
pending on whether or not C is finite or infinite.) Then

FG(r1, r2, . . . ) =

ZG(r1 + r2 + r3 + · · · , r2
1 + r2

2 + r2
3 + · · · , . . . , rj

1 + rj
2 + rj

3 + · · · , . . . ).
(In other words, substitute

∑
i r

j
i for zj in ZG.)

Before giving the proof let us consider an example.

7.8 Example. Suppose that in Example 7.6 our set of colors is C = {a, b, c, d},
and that we take G to be the group of cyclic symmetries. Then

FG(a, b, c, d) =
1

4

(
(a+ b+ c+ d)4 + (a2 + b2 + c2 + d2)2 + 2(a4 + b4 + c4 + d4)

)

= (a4 + · · · ) + (a3b+ · · · ) + 2(a2b2 + · · · ) + 3(a2bc + · · · ) + 6abcd.

An expression such as (a2b2 + · · · ) stands for the sum of all monomials in the
variables a, b, c, d with exponents 2, 2, 0, 0 (in some order). The coefficient of
all such monomials is 2, indicating two inequivalent colorings using one color
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twice and another color twice. If instead G were the full dihedral group, we
would get

FG(a, b, c, d) =
1

8

(
(a + b+ c+ d)4 + 3(a2 + b2 + c2 + d2)2

+ 2(a+ b+ c + d)2(a2 + b2 + c2 + d2) + 2(a4 + b4 + c4 + d4)
)

= (a4 + · · · ) + (a3b+ · · · ) + 2(a2b2 + · · · ) + 2(a2bc+ · · · ) + 3abcd.

Proof of Pólya’s theorem. Let #X = t and i1 + i2 + · · · = t, where
each ij ≥ 0. Let i = (i1, i2, ...), and let Ci denote the set of all colorings
of X with color rj used ij times. The group G acts on Ci, since if f ∈ Ci
and π ∈ G, then π · f ∈ Ci. (“Rotating” a colored object does not change
how many times each color appears.) Let πi denote the action of π on Ci.
We want to apply Burnside’s lemma to compute the number of orbits, so we
need to find #Fix(πi).

In order for f ∈ Fix(πi), we must color X so that (a) in any cycle of π,
all the elements get the same color, and (b) the color rj appears ij times.
Consider the product

Hπ =
∏

j

(rj
1 + rj

2 + · · · )cj(π),

where cj(π) is the number of j-cycles (cycles of length j) of π. When we
expand this product as a sum of monomials rj1

1 r
j2
2 · · · , we get one of these

monomials by choosing a term rj
k from each factor of Hπ and multiplying

these terms together. Choosing rj
k corresponds to coloring all the elements

of some j-cycle with rk. Since a factor rj
1 + rj

2 + · · · occurs precisely cj(π)
times in Hπ, choosing a term rj

k from every factor corresponds to coloring
X so that every cycle is monochromatic (i.e., all the elements of that cycle
get the same color). The product of these terms rj

k will be the monomial
rj1
1 r

j2
2 · · · , where we have used color rk a total of jk times. It follows that the

coefficient of ri1
i r

i2
2 · · · in Hπ is equal to #Fix(πi). Thus

Hπ =
∑

i

#Fix(πi)r
i1
1 r

i2
2 · · · . (7.3)

Now sum both sides of (7.3) over all π ∈ G and divide by #G. The left-hand
side becomes

1

#G

∑

π∈G

∏

j

(rj
1 + rj

2 + · · · )cj(π) = ZG(r1 + r2 + · · · , r2
1 + r2

2 + · · · , . . . ).
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On the other hand, the right-hand side becomes

∑

i

[
1

#G

∑

π∈G

#Fix(πi)

]
ri1
1 r

i2
2 · · · .

By Burnside’s lemma, the expression in brackets is just the number of orbits
of πi acting on Ci, i.e., the number of inequivalent colorings using color rj a
total of ij times, as was to be proved. �

7.9 Example (necklaces). A necklace of length ℓ is a circular arrangement
of ℓ (colored) beads. Two necklaces are considered the same if they are
cyclic rotations of one another. Let X be a set of ℓ (uncolored) beads, say
X = {1, 2, . . . , ℓ}. Regarding the beads as being placed equidistantly on a
circle in the order 1, 2, . . . , ℓ, let G be the cyclic group of rotations ofX. Thus
if π is the cycle (1, 2, . . . , ℓ), then G = {1, π, π2, . . . , πℓ−1}. For example, if
ℓ = 6 then the elements of G are

π0 = (1)(2)(3)(4)(5)(6)

π = (1, 2, 3, 4, 5, 6)

π2 = (1, 3, 5)(2, 4, 6)

π3 = (1, 4)(2, 5)(3, 6)

π4 = (1, 5, 3)(2, 6, 4)

π5 = (1, 6, 5, 4, 3, 2).

In general, if d is the greatest common divisor of m and ℓ (denoted d =
gcd(m, ℓ)), then πm has d cycles of length ℓ/d. An integer m satisfies 1 ≤
m ≤ ℓ and gcd(m, ℓ) = d if and only if 1 ≤ m/d ≤ ℓ/d and gcd(m/d, ℓ/d) = 1.
Hence the number of such integers m is given by the Euler phi-function (or
totient function) φ(ℓ/d), which by definition is equal to the number of integers
1 ≤ i ≤ ℓ/d such that gcd(i, ℓ/d) = 1. As an aside, recall that φ(k) can be
computed by the formula

φ(k) = k
∏

p|k
p prime

(
1− 1

p

)
. (7.4)

For instance, φ(1000) = 1000(1− 1
2
)(1− 1

5
) = 400. Putting all this together

gives the following formula for the cycle enumerator ZG(z1, . . . , zℓ):

ZG(z1, . . . , zℓ) =
1

ℓ

∑

d|ℓ
φ(ℓ/d)zd

ℓ/d,
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or (substituting ℓ/d for d),

ZG(z1, . . . , zℓ) =
1

ℓ

∑

d|ℓ
φ(d)z

ℓ/d
d .

There follows from Pólya’s theorem the following result (originally proved by
P. A. MacMahon (1854–1929) before Pólya discovered his general result).

7.10 Theorem. (a) The number Nℓ(n) of n-colored necklaces of length ℓ
is given by

Nℓ(n) =
1

ℓ

∑

d|ℓ
φ(ℓ/d)nd. (7.5)

(b) We have

FG(r1, r2, . . . ) =
1

ℓ

∑

d|ℓ
φ(d)(rd

1 + rd
2 + · · · )ℓ/d.

Note: (b) reduces to (a) if r1 = r2 = · · · = 1. Moreover, since clearly
Nℓ(1) = 1, putting n = 1 in (7.5) yields the well-known identity

∑

d|ℓ
φ(ℓ/d) = ℓ.

What if we are allowed to flip necklaces over, not just rotate them? Now
the group becomes the dihedral group of order 2ℓ, and the corresponding
inequivalent colorings are called dihedral necklaces. We leave to the reader
to work out the cycle enumerators

1

2ℓ




∑

d|ℓ
φ(d)z

ℓ/d
d +mz2

1z
m−1
2 +mzm

2



 , if ℓ = 2m

1

2ℓ




∑

d|ℓ
φ(d)z

ℓ/d
d + ℓz1z

m
2



 , if ℓ = 2m+ 1.

7.11 Example. Let G = Sℓ, the group of all permutations of {1, 2, . . . , ℓ} =
X. Thus for instance

ZS3(z1, z2, z3) =
1

6
(z3

1 + 3z1z2 + 2z3)

ZS4(z1, z2, z3, z4) =
1

24
(z4

1 + 6z2
1z2 + 3z2

2 + 8z1z3 + 6z4).
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It is easy to count the number of inequivalent colorings in Ci. If two colorings
of X use each color the same number of times, then clearly there is some
permutation of X which sends one of the colorings to the other. Hence Ci
consists of a single orbit. Thus

FSℓ
(r1, r2, . . . ) =

∑

i1+i2+···=ℓ

ri1
1 r

i2
2 · · · ,

the sum of all monomials of degree ℓ.
To count the total number of inequivalent n-colorings, note that

∑

ℓ≥0

FSℓ
(r1, r2, . . . )x

ℓ =
1

(1− r1x)(1− r2x) · · ·
, (7.6)

since if we expand each factor on the right-hand side into the series
∑

j≥0 r
j
ix

j

and multiply, the coefficient of xℓ will just be the sum of all monomials of
degree ℓ. For fixed n, let fn(ℓ) denote the number of inequivalent n-colorings
of X. Since fn(ℓ) = FSℓ

(1, 1, . . . , 1) (n 1’s in all), there follows from (7.6)
that ∑

ℓ≥0

fn(ℓ)xℓ =
1

(1− x)n
.

The right-hand side can be expanded (e.g. by Taylor’s theorem) as

1

(1− x)n
=
∑

ℓ≥0

(
n+ ℓ− 1

ℓ

)
xℓ.

Hence

fn(ℓ) =

(
n+ ℓ− 1

ℓ

)
.

It is natural to ask whether there might be a more direct proof of such a
simple result. This is actually a standard result in elementary enumerative
combinatorics. For fixed ℓ and n we want the number of solutions to i1 + i2 +
· · ·+ in = ℓ in nonnegative integers. Suppose that we arrange n− 1 vertical
bars and ℓ dots is a line. There are

(
n+ℓ−1

ℓ

)
such arrangements since there a

total of n+ ℓ− 1 positions, and we choose ℓ of them in which to place a dot.
An example of such an arrangement for ℓ = 8 and n = 7 is
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The number of dots in each “compartment,” read from left to right,
gives the numbers i1, . . . , in. For the example above, we get (i1, . . . , i7) =
(0, 0, 2, 1, 0, 3, 2). Since this correspondence between solutions to i1 + i2 +
· · ·+ in = ℓ and arrangements of bars and dots is clearly a bijection, we get(

n+ℓ−1
ℓ

)
solutions as claimed.

Recall (Theorem 7.5) that the number of inequivalent n-colorings of X
(with respect to any group G of permutations of X) is given by

1

#G

∑

π∈G

nc(π),

where c(π) denotes the number of cycles of π. Hence for G = Sℓ we get the
identity

1

ℓ!

∑

π∈Sℓ

nc(π) =

(
n + ℓ− 1

ℓ

)

=
1

ℓ!
n(n+ 1)(n+ 2) · · · (n+ ℓ− 1).

Multiplying by ℓ! yields

∑

π∈Sℓ

nc(π) = n(n + 1)(n+ 2) · · · (n+ ℓ− 1). (7.7)

Equivalently [why?], if we define c(ℓ, k) to be the number of permutations in
Sℓ with k cycles (called a signless Stirling number of the first kind), then

ℓ∑

k=1

c(ℓ, k)xk = x(x+ 1)(x+ 2) · · · (x+ ℓ− 1).

For instance, x(x + 1)(x + 2)(x + 3) = x4 + 6x3 + 11x2 + 6x, so (taking
the coefficient of x2) eleven permutations in S4 have two cycles, namely,
(123)(4), (132)(4), (124)(3), (142)(3), (134)(2), (143)(2), (234)(1), (243)(1),
(12)(34), (13)(24), (14)(23).

Although it was easy to compute the generating function FSℓ
(r1, r2, . . . )

directly without the necessity of computing the cycle indicator ZSℓ
(z1, . . . , zℓ),

we can still ask whether there is a formula of some kind for this polynomial.
First we determine explicitly its coefficients.
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7.12 Theorem. Let
∑
ici = ℓ. The number of permutations π ∈ Sℓ

with ci cycles of length i (or equivalently, the coefficient of zc1
1 z

c2
2 · · · in

ℓ!ZSℓ
(z1, . . . , zℓ)) is equal to ℓ!/1c1c1! 2

c2c2! · · · .

Example. The number of permutations in S15 with three 1-cycles, two
2-cycles, and two 4-cycles is 15!/13 · 3! · 22 · 2! · 42 · 2! = 851, 350, 500.

Proof of Theorem 7.12. Fix c = (c1, c2, . . . ) and let Xc be the set
of all permutations π ∈ Sℓ with ci cycles of length i. Given a permutation
σ = a1a2 · · ·aℓ in Sℓ, construct a permutation f(σ) ∈ Xc as follows. Let
the 1-cycles of f(σ) be (a1), (a2), . . . , (ac1). Then let the 2-cycles of f(σ)
be (ac1+1, ac1+2), (ac1+3, ac1+4), . . . , (ac1+2c2−1, ac1+2c2). Then let the 3-cycles
of f(σ) be (ac1+2c2+1, ac1+2c2+2, ac1+2c2+3), (ac1+2c2+4, ac1+2c2+5, ac1+2c2+6), . . . ,
(ac1+2c2+3c3−2, ac1+2c2+3c3−1, ac1+2c2+3c3), etc., continuing until we reach aℓ and
have produced a permutation in Xc. For instance, if ℓ = 11, c1 = 3, c2 =
2, c4 = 1, and σ = 4, 9, 6, 11, 7, 1, 3, 8, 10, 2, 5, then

f(σ) = (4)(9)(6)(11, 7)(1, 3)(8, 10, 2, 5).

We have defined a function f : Sℓ → Xc. Given π ∈ Xc, what is
#f−1(π), the number of permutations sent to π by f? A cycle of length
i can be written in i ways, namely,

(b1, b2, . . . , bi) = (b2, b3, . . . , bi, b1) = · · · = (bi, b1, b2, . . . , bi−1).

Moreover, there are ci! ways to order the ci cycles of length i. Hence

#f−1(π) = c1! c2! c3! · · · 1c12c23c3 · · · ,

the same number for any π ∈ Xc. It follows that

#Xc =
#Sℓ

c1!c2! · · · 1c12c2 · · ·
=

ℓ!

c1!c2! · · · 1c12c2 · · · ,

as was to be proved. �

As for the polynomial ZSℓ
itself, we have the following result. Write

exp y = ey.
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7.13 Theorem. We have

∑

ℓ≥0

ZSℓ
(z1, z2, . . . )x

ℓ = exp

(
z1x+ z2

x2

2
+ z3

x3

3
+ · · ·

)
.

Proof. There are some sophisticated ways to prove this theorem which “ex-
plain” why the exponential function appears, but we will be content here
with a “naive” computational proof. Write

exp

(
z1x+ z2

x2

2
+ z3

x3

3
+ · · ·

)

= ez1x · ez2
x2

2 · ez3
x3

3 · · ·

=

(
∑

n≥0

zn
1x

n

n!

)(
∑

n≥0

zn
2 x

2n

2nn!

)(
∑

n≥0

zn
3x

3n

3nn!

)

· · · .

When we multiply this product out, the coefficient of zc1
1 z

c2
2 · · ·xℓ, where

ℓ = c1 + 2c2 + · · · , is given by

1

1c1c1! 2c2c2! · · ·
=

1

ℓ!

(
ℓ!

1c1c1! 2c2c2! · · ·

)
.

By Theorem 7.12 this is just the coefficient of zc1
1 z

c2
2 · · · in ZSℓ

(z1, z2, . . . ), as
was to be proved.

As a check of Theorem 7.13, set each zi = n to obtain

∑

ℓ≥0

ZSℓ
(n, n, . . . )xℓ = exp

(
nx+ n

x2

2
+ n

x3

3
+ · · ·

)

= exp

(
n(x+

x2

2
+
x3

3
+ · · · )

)

= exp
(
n log(1− x)−1

)

=
1

(1− x)n

=
∑

ℓ≥0

(−n
ℓ

)
(−x)ℓ

=
∑

ℓ≥0

(
n + ℓ− 1

ℓ

)
xℓ,



117

the last step following from the easily checked equality
(−n

ℓ

)
= (−1)ℓ

(
n+ℓ−1

ℓ

)
.

Equating coefficients of xℓ in the first and last terms of the above string of
equalities gives

ZSℓ
(n, n, . . . ) =

(
n+ ℓ− 1

ℓ

)

=
n(n+ 1) · · · (n + ℓ− 1)

ℓ!
,

agreeing with Theorem 7.5 and equation (7.7).
Theorem 7.13 has many enumerative applications. We give one such

result here as an example.

7.14 Proposition. Let f(n) be the number of permutations π ∈ Sn of odd
order. Equivalently, πk = ι (the identity permutation) for some odd k. Then

f(n) =

{
12 · 32 · 52 · · · (n− 1)2, n even

12 · 32 · 52 · · · (n− 2)2 · n, n odd.

Proof. A permutation has odd order if and only if all its cycle lengths are
odd. Hence [why?]

f(n) = n!ZSn(zi = 1, i odd; zi = 0, i even).

Making this substitution in Theorem 7.13 gives

∑

n≥0

f(n)
xn

n!
= exp

(
x+

x3

3
+
x5

5
+ · · ·

)
.

Since − log(1− x) = x+ x2

2
+ x3

3
+ · · · , we get [why?]

∑

n≥0

f(n)
xn

n!
= exp

(
1

2
(− log(1− x) + log(1 + x))

)

= exp
1

2
log

(
1 + x

1− x

)

=

√
1 + x

1− x.
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We therefore need to find the coefficients in the power series expansion of√
(1 + x)/(1− x) at x = 0. There is a simple trick for doing so:

√
1 + x

1− x = (1 + x)(1− x2)−1/2

= (1 + x)
∑

m≥0

(−1/2

m

)
(−x2)m

=
∑

m≥0

(−1)m

(−1/2

m

)
(x2m + x2m+1),

where by definition

(−1/2

m

)
=

1

m!

(
−1

2

)(
−3

2

)
· · ·
(
−2m− 1

2

)
.

It is now a routine computation to check that the coefficient of xn/n! in√
(1 + x)/(1− x) agrees with the claimed value of f(n).

Quotients of boolean algebras. We will show how to apply Pólya
theory to the problem of counting the number of elements of given rank in a
quotient poset BX/G. Here X is a finite set, BX is the boolean algebra of all
subsets of X, and G is a group of permutations of X (with an induced action
on BX). What do colorings of X have to do with subsets? The answer is
very simple: a 2-coloring f : X → {0, 1} corresponds to a subset Sf of X by
the usual rule

s ∈ Sf ⇐⇒ f(s) = 1.

Note that two 2-colorings f and g are G-equivalent if and only if Sf and Sg

are in the same orbit of G (acting on BX). Thus the number of inequivalent
2-colorings f of X with i values equal to 1 is just #(BX/G)i, the number of
elements of BX/G of rank i. As an immediate application of Pólya’s theorem
(Theorem 7.7) we obtain the following result.

7.15 Corollary. We have

∑

i

#(BX/G)i q
i = ZG(1 + q, 1 + q2, 1 + q3, . . . ).
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Proof. If κ(i, j) denotes the number of inequivalent 2-colorings of X with
the colors 0 and 1 such that 0 is used j times and 1 is used i times (so
i+ j = #X), then by Pólya’s theorem we have

∑

i,j

κ(i, j)xiyj = ZG(x+ y, x2 + y2, x3 + y3, . . . ).

Setting x = q and y = 1 yields the desired result [why?].

Combining Corollary 7.15 with the rank-unimodality of BX/G (Theo-
rem 5.8) yields the following corollary.

7.16 Corollary. For any finite group G of permutations of a finite set X,
the polynomial ZG(1+ q, 1+ q2, 1+ q3, . . . ) has symmetric, unimodal, integer
coefficients.

7.17 Example. (a) For the poset P of Example 5.4(a) we haveG = {(1)(2)(3),
(1, 2)(3)}, so ZG(z1, z2, z3) = 1

2
(z3

1 + z1z2). Hence

3∑

i=0

(#Pi)q
i =

1

2

(
(1 + q)3 + (1 + q)(1 + q2)

)

= 1 + 2q + 2q2 + q3.

(b) For the poset P of Example 5.4(b) we have G = {(1)(2)(3)(4)(5),
(1, 2, 3, 4, 5), (1, 3, 5, 2, 4), (1, 4, 2, 5, 3), (1, 5, 4, 3, 2)}, so ZG(z1, z2, z3, z4, z5) =
1
5
(z5

1 + 4z5). Hence

5∑

i=0

(#Pi)q
i =

1

5

(
(1 + q)5 + 4(1 + q5)

)

= 1 + q + 2q2 + 2q3 + q4 + q5.

Note that we are equivalently counting 2-colored necklaces (as defined in
Example 7.9), say with colors red and blue, of length five according to the
number of blue beads. (c) Let X be the squares of a 2×2 chessboard, labelled
as follows:

1 2

3 4
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Let G be the wreath product S2 ≀S2, as defined in Chapter 6. Then

G = {(1)(2)(3)(4), (1, 2)(3)(4), (1)(2)(3, 4), (1, 2)(3, 4),

(1, 3)(2, 4), (1, 4)(2, 3), (1, 3, 2, 4), (1, 4, 2, 3)},
so

ZG(z1, z2, z3, z4) =
1

8
(z4

1 + 2z2
1z2 + 3z2

2 + 2z4).

Hence

4∑

i=0

(#Pi)q
i =

1

4

(
(1 + q)4 + 2(1 + q)2(1 + q2) + 3(1 + q2)2 + 2(1 + q4)

)

= 1 + q + 2q2 + q3 + q4

=

(
4

2

)
,

agreeing with Theorem 6.6.

Using more sophisticated methods (such as the representation theory of
the symmetric group), the following generalization of Corollary 7.16 can be
proved: let P (q) be any polynomial with symmetric, unimodal, nonnegative,
integer coefficients, such as 1 + q + 3q2 + 3q3 + 8q4 + 3q5 + 3q6 + q7 + q8 or
q5 + q6 (= 0+0q+ · · ·+0q4 + q5 + q6 +0q7 + · · ·+0q11). Then the polynomial
ZG(P (q), P (q2), P (q3), . . . ) has symmetric, unimodal, nonnegative, integer
coefficients.

Graphs. A standard application of Pólya theory is to the enumeration
of nonisomorphic graphs. We saw at the end of Chapter 5 that if M is an
m-element vertex set, X =

(
M
2

)
, and S

(2)
m is the group of permutations of X

induced by permutations of M , then an orbit of i-element subsets of X may
be regarded as an isomorphism class of graphs on the vertex set M with i
edges. Thus #(BX/S

(2)
m )i is the number of nonisomorphic graphs (without

loops or multiple edges) on the vertex set M with i edges. It follows from
Corollary 7.15 that if gi(m) denotes the number of nonisomorphic graphs
with m vertices and i edges, then

(m
2 )∑

i=0

gi(m)qi = Z
S

(2)
m

(1 + q, 1 + q2, 1 + q3, . . . ).
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Thus we would like to compute the cycle enumerator Z
S

(2)
m

(z1, z2, . . . ). If two

permutations π and σ ofM have the same cycle type (number of cycles of each
length), then their actions on X also have the same cycle type [why?]. Thus
for each possible cycle type of a permutation of M (i.e., for each partition
of m) we need to compute the induced cycle type on X. We also know
from Theorem 7.12 the number of permutations of M of each type. For
small values of m we can pick some permutation π of each type and compute
directly its action on X in order to determine the induced cycle type. For
m = 4 we have:

CYCLE INDUCED CYCLE
LENGTHS PERMUTATION LENGTHS

OF π NUMBER π π′ OF π′

1, 1, 1, 1 1 (1)(2)(3)(4) (12)(13)(14)(23)(24)(34) 1, 1, 1, 1, 1, 1
2, 1, 1 6 (1, 2)(3)(4) (12)(12, 23)(14, 24)(34) 2, 2, 1, 1
3, 1 8 (1, 2, 3)(4) (12, 23, 13)(14, 24, 34) 3, 3
2, 2 3 (1, 2)(3, 4) (12)(13, 24)(14, 23)(34) 2, 2, 1, 1
4 6 (1, 2, 3, 4) (12, 23, 34, 14)(13, 24) 4, 2

It follows that

Z
S

(2)
4

(z1, z2, z3, z4, z5, z6) =
1

24
(z6

1 + 9z2
1z

2
2 + 8z2

3 + 6z2z4).

If we set zi = 1 + qi and simplify, we obtain the polynomial

6∑

i=0

gi(4)qi = 1 + q + 2q2 + 3q3 + 2q4 + q5 + q6.

Indeed, this polynomial agrees with the rank-generating function of the poset
of Figure 5.1.

Suppose that we instead want to count the number hi(4) of nonisomorphic
graphs with four vertices and i edges, where now we allow at most two edges
between any two vertices. We can take M , X, and G = S

(2)
4 as before, but

now we have three colors: red for no edges, blue for one edge, and yellow
for two edges. A monomial ribjyk corresponds to a coloring with i pairs of
vertices having no edges between them, j pairs having one edge, and k pairs
having two edges. The total number e of edges is j + 2k. Hence if we let
r = 1, b = q, y = q2, then the monomial ribjyk becomes qj+2k = qe. It follows
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that
i(i−1)∑

i=0

hi(4)qi = Z
S

(2)
4

(1 + q + q2, 1 + q2 + q4, 1 + q3 + q6, . . . )

=
1

24

(
(1 + q + q2)6 + 9(1 + q + q2)2(1 + q2 + q4)2

+8(1 + q3 + q6)2 + 6(1 + q2 + q4)(1 + q4 + q8)
)

= 1 + q + 3q2 + 5q3 + 8q4 + 9q5 + 12q6 + 9q7 + 8q8 + 5q9

+3q10 + q11 + q12.

The total number of nonisomorphic graphs on four vertices with edge multi-
plicities at most two is

∑
i hi(4) = 66.

It should now be clear that if we restrict the edge multiplicity to be r,
then the corresponding generating function is Z

S
(2)
4

(1+q+q2 + · · ·+qr−1, 1+

q2 + q4 + · · ·+ q2r−2, . . . ). In particular, to obtain the total number N(r, 4)
of nonisomorphic graphs on four vertices with edge multiplicity at most r,
we simply set each zi = r, obtaining

N(r, 4) = Z
S

(2)
4

(r, r, r, r, r, r)

=
1

24
(r6 + 9r4 + 14r2).

This is the same as number of inequivalent r-colorings of the set X =
(

M
2

)

(where #M = 4) [why?].
Of course the same sort of reasoning can be applied to any number of ver-

tices. For five vertices our table becomes the following (using such notation
as 15 to denote a sequence of five 1’s).

CYCLE INDUCED CYCLE
LENGTHS PERMUTATION LENGTHS

OF π NO. π π′ OF π′

15 1 (1)(2)(3)(4)(5) (12)(13) · · · (45) 110

2, 13 10 (1, 2)(3)(4)(5) (12)(13, 23)(14, 25)(15, 25)(34)(35)(45) 23, 14

3, 12 20 (1, 2, 3)(4)(5) (12, 23, 13)(14, 24, 34)(15, 25, 35)(45) 33, 1
22, 1 15 (1, 2)(3, 4)(5) (12)(13, 24)(14, 23)(15, 25)(34)(35, 45) 24, 12

4, 1 30 (1, 2, 3, 4)(5) (12, 23, 34, 14)(13, 24)(15, 25, 35, 45) 42, 2
3, 2 20 (1, 2, 3)(4, 5) (12, 23, 13)(14, 25, 34, 15, 24, 35)(45) 6, 3, 1
5 24 (1, 2, 3, 4, 5) (12, 23, 34, 45, 15)(13, 24, 35, 14, 25) 52
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Thus

Z
S

(2)
5

(z1, . . . , z10) =
1

120
(z10

1 +10z4
1z

3
2+20z1z

3
3+15z2

1z
4
2+30z2z

2
4+20z1z3z6+24z2

5),

from which we compute

10∑

i=0

gi(5)qi = Z
S

(2)
5

(1 + q, 1 + q2, . . . , 1 + q10)

= 1 + q + 2q2 + 4q3 + 6q4 + 6q5 + 6q6 + 4q7 + 2q8 + q9 + q10.

For an arbitrary number m = #M of vertices there exist explicit formulas
for the cycle indicator of the induced action of π ∈ SM on

(
M
2

)
, thereby

obviating the need to compute π′ explicitly as we did in the above tables,
but the overall expression for Z

S
(2)
m

cannot be simplified significantly or put
into a simple generating function as we did in Theorem 7.13. For reference
we record

Z
S

(2)
6

=
1

6!
(z15

1 + 15z7
1z

4
2 + 40z3

1z
4
3 + 45z3

1z
6
2 + 90z1z2z

3
4 + 120z1z2z

2
3z6

+144z3
5 + 15z3

1z
6
2 + 90z1z2z

3
4 + 40z5

3 + 120z3z
2
6)

(g0(6), g1(6), . . . , g15(6)) = (1, 1, 2, 5, 9, 15, 21, 24, 24, 21, 15, 9, 5, 2, 1, 1).

Moreover if u(n) denotes the number of nonisomorphic simple graphs with n
vertices, then

(u(0), u(1), . . . , u(11))

= (1, 1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 12005168, 1018997864).

A table of u(n) for n ≤ 75 is given at

http://oeis.org/A000088/b000088.txt
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In particular,

u(75) = 91965776790545918117055311393231179873443957239

0555232344598910500368551136102062542965342147

8723210428876893185920222186100317580740213865

7140377683043095632048495393006440764501648363

4760490012493552274952950606265577383468983364

6883724923654397496226869104105041619919159586

8518775275216748149124234654756641508154401414

8480274454866344981385848105320672784068407907

1134767688676890584660201791139593590722767979

8617445756819562952590259920801220117529208077

0705444809177422214784902579514964768094933848

3173060596932480677345855848701061537676603425

1254842843718829212212327337499413913712750831

0550986833980707875560051306072520155744624852

0263616216031346723897074759199703968653839368

77636080643275926566803872596099072,

a number of 726 digits! Compare

2(75
2 )

75!
= .9196577679054591809× 10726,

which agrees with u(75) to 17 significant digits [why?].

Notes for Chapter 7

Burnside’s lemma (Lemma 7.2) was actually first stated and proved by
Frobenius [41, end of §4]. Frobenius in turn credits Cauchy [22, p. 286] for
proving the lemma in the transitive case. Burnside, in the first edition of his
book [18, §118–119], attributes the lemma to Frobenius, but in the second
edition [19] this citation is absent. For more on the history of Burnside’s
lemma, see [81] and [121]. Many authors now call this result the Cauchy-
Frobenius lemma. The cycle indicator ZG(z1, z2, . . . ) (where G is a subgroup
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of Sn) was first considered by J.H. Redfield [93], who called it the group
reduction function, denoted Grf(G). G. Pólya [86] independently defined the
cycle indicator, proved the fundamental Theorem 7.7, and gave numerous
applications. For an English translation of Pólya’s paper, see [87]. Much
of Pólya’s work was anticipated by Redfield. For interesting historical in-
formation about the work of Redfield and its relation to Pólya theory, see
[50][52][71][94] (all in the same issue of Journal of Graph Theory). The
Wikipedia article “John Howard Redfield” also gives information and refer-
ences on the interesting story of the rediscovery and significance of Redfield’s
work.

The application of Pólya’s theorem to the enumeration of nonisomorphic
graphs appears in Pólya’s original paper [86]. For much additional work on
graphical enumeration, see the text of Harary and Palmer [51].

Subsequent to Pólya’s work there have been a huge number of expositions,
applications, and generalizations of Pólya theory. An example of such a
generalization appears in Exercise 7.11. We mention here only the nice survey
[16] by N.G. de Bruijn.

Theorem 7.13 (the generating function for the cycle indicator ZSℓ
of the

symmetric group Sℓ) goes back to Frobenius (see [42, bottom of p. 152 of
GA]) and Hurwitz [61, §4]. It is clear that they were aware of Theorem 7.13,
even if they did not state it explicitly. For a more conceptual approach and
further aspects see R. Stanley [110, §§5.1–5.2].



Chapter 8

A glimpse of Young tableaux

We defined in Chapter 6 Young’s lattice Y , the poset of all partitions of all
nonnegative integers, ordered by containment of their Young diagrams.

21

φ

1

2

3

4

5

11

111

1111

11111 2111 221 311 32 41

22 31211

Here we will be concerned with the counting of certain walks in the Hasse
diagram (considered as a graph) of Y . Note that since Y is infinite, we cannot
talk about its eigenvalues and eigenvectors. We need different techniques for
counting walks. It will be convenient to denote the length of a walk by n,
rather than by ℓ as in previous chapters.

Note that Y is a graded poset (of infinite rank), with Yi consisting of all
partitions of i. In other words, we have Y = Y0 ·∪Y1 ·∪ · · · (disjoint union),

131
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where every maximal chain intersects each level Yi exactly once. We call Yi

the ith level of Y , just as we did for finite graded posets.
Since the Hasse diagram of Y is a simple graph (no loops or multiple

edges), a walk of length n is specified by a sequence λ0, λ1, . . . , λn of vertices
of Y . We will call a walk in the Hasse diagram of a poset a Hasse walk.
Each λi is a partition of some integer, and we have either (a) λi < λi+1 and
|λi| = |λi+1| − 1, or (b) λi > λi+1 and |λi| = |λi+1| + 1. (Recall that for
a partition λ, we write |λ| for the sum of the parts of λ.) A step of type
(a) is denoted by U (for “up,” since we move up in the Hasse diagram),
while a step of type (b) is denoted by D (for “down”). If the walk W has
steps of types A1, A2, . . . , An, respectively, where each Ai is either U or D,
then we say that W is of type AnAn−1 · · ·A2A1. Note that the type of a
walk is written in the opposite order to that of the walk. This is because
we will soon regard U and D as linear transformations, and we multiply
linear transformations right-to-left (opposite to the usual left-to-right reading
order). For instance (abbreviating a partition (λ1, . . . , λm) as λ1 · · ·λm), the
walk ∅, 1, 2, 1, 11, 111, 211, 221, 22, 21, 31, 41 is of type UUDDUUUUDUU =
U2D2U4DU2.

There is a nice combinatorial interpretation of walks of type Un which
begin at ∅. Such walks are of course just saturated chains ∅ = λ0 ⋖λ1 ⋖ · · ·⋖
λn. In other words, they may be regarded as sequences of Young diagrams,
beginning with the empty diagram and adding one new square at each step.
An example of a walk of type U5 is given by

φ

.

We can specify this walk by taking the final diagram and inserting an i into
square s if s was added at the ith step. Thus the above walk is encoded by
the “tableau”

21
3 5
4 .
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Such an object τ is called a standard Young tableaux (or SYT). It consists
of the Young diagram D of some partition λ of an integer n, together with
the numbers 1, 2, . . . , n inserted into the squares of D, so that each number
appears exactly once, and every row and column is increasing. We call λ the
shape of the SYT τ , denoted λ = sh(τ). For instance, there are five SYT of
shape (2, 2, 1), given by

1 1 1 1 12
3 5

5
2
4 3

4
5

2
3 4
5 4

2 5 2

.

4
3 3

Let fλ denote the number of SYT of shape λ, so for instance f (2,2,1) = 5.
The numbers fλ have many interesting properties; for instance, there is a
famous explicit formula for them known as the Frame–Robinson–Thrall hook
length formula. For the sake of completeness we state this formula without
proof, though it is not needed in what follows.

Let u be a square of the Young diagram of the partition λ. Define the
hook H(u) of u (or at u) to be the set of all squares directly to the right of u
or directly below u, including u itself. The size (number of squares) of H(u)
is called the hook length of u (or at u), denoted h(u). In the diagram of the
partition (4, 2, 2) below, we have inserted the hook length h(u) inside each
square u.

5
3
2

6 2 1
2
1

8.1 Theorem (hook length formula). Let λ ⊢ n. Then

fλ =
n!∏

u∈λ h(u)
.

Here the notation u ∈ λ means that u ranges over all squares of the Young
diagram of λ.
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For instance, the diagram of the hook lengths of λ = (4, 2, 2) above gives

f (4,2,2) =
8!

6 · 5 · 2 · 1 · 3 · 2 · 2 · 1 = 56.

In this chapter we will be concerned with the connection between SYT
and counting walks in Young’s lattice. If w = AnAn−1 · · ·A1 is some word
in U and D and λ ⊢ n, then let us write α(w, λ) for the number of Hasse
walks in Y of type w which start at the empty partition ∅ and end at λ. For
instance, α(UDUU, 11) = 2, the corresponding walks being ∅, 1, 2, 1, 11 and
∅, 1, 11, 1, 11. Thus in particular α(Un, λ) = fλ [why?]. In a similar fashion,
since the number of Hasse walks of type DnUn which begin at ∅, go up to a
partition λ ⊢ n, and then back down to ∅ is given by (fλ)2, we have

α(DnUn, ∅) =
∑

λ⊢n

(fλ)2. (8.1)

Our object is to find an explicit formula for α(w, λ) of the form fλcw,
where cw does not depend on λ. (It is by no means a priori obvious that
such a formula should exist.) In particular, since f ∅ = 1, we will obtain by
setting λ = ∅ a simple formula for the number of (closed) Hasse walks of
type w from ∅ to ∅ (thus including a simple formula for (8.1)).

There is an easy condition for the existence of any Hasse walk of type w
from ∅ to λ, given by the next lemma.

8.2 Lemma. Suppose w = DskU rk · · ·Ds2U r2Ds1U r1, where ri ≥ 0 and si ≥
0. Let λ ⊢ n. Then there exists a Hasse walk of type w from ∅ to λ if and
only if:

k∑

i=1

(ri − si) = n

j∑

i=1

(ri − si) ≥ 0 for 1 ≤ j ≤ k.

Proof. Since each U moves up one level and each D moves down one level,
we see that

∑k
i=1(ri− si) is the level at which a walk of type w beginning at

∅ ends. Hence
∑k

i=1(ri − si) = |λ| = n.

After
∑j

i=1(ri+si) steps we will be at level
∑j

i=1(ri−si). Since the lowest

level is level 0, we must have
∑j

i=1(ri − si) ≥ 0 for 1 ≤ j ≤ k.
The easy proof that the two conditions of the lemma are sufficient for

the existence of a Hasse walk of type w from ∅ to λ is left to the reader.
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If w is a word in U and D satisfying the conditions of Lemma 8.2, then
we say that w is a valid λ-word. Note that the condition of being a valid
λ-word depends only on |λ|.

The proof of our formula for α(w, λ) will be based on linear transforma-
tions analogous to those defined by equation (4.2) and (4.3). As in Chapter 4
let RYj be the real vector space with basis Yj. Define two linear transforma-
tions Ui : RYi → RYi+1 and Di : RYi → RYi−1 by

Ui(λ) =
∑

µ⊢i+1
λ<µ

µ

Di(λ) =
∑

ν⊢i−1
ν<λ

ν,

for all λ ⊢ i. For instance (using abbreviated notation for partitions)

U21(54422211) = 64422211 + 55422211 + 54432211 + 54422221 + 544222111

D21(54422211) = 44422211 + 54322211 + 54422111 + 5442221.

It is clear [why?] that if r is the number of distinct (i.e., unequal) parts of λ,
then Ui(λ) is a sum of r + 1 terms and Di(λ) is a sum of r terms. The next
lemma is an analogue for Y of the corresponding result for Bn (Lemma 4.6).

8.3 Lemma. For any i ≥ 0 we have

Di+1Ui − Ui−1Di = Ii, (8.2)

the identity linear transformation on RYi.

Proof. Apply the left-hand side of (8.2) to a partition λ of i, expand in terms
of the basis Yi, and consider the coefficient of a partition µ. If µ 6= λ and µ
can be obtained from λ by adding one square s to (the Young diagram of)
λ and then removing a (necessarily different) square t, then there is exactly
one choice of s and t. Hence the coefficient of µ in Di+1Ui(λ) is equal to 1.
But then there is exactly one way to remove a square from λ and then add
a square to get µ, namely, remove t and add s. Hence the coefficient of µ in
Ui−1Di(λ) is also 1, so the coefficient of µ when the left-hand side of (8.2) is
applied to λ is 0.
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If now µ 6= λ and we cannot obtain µ by adding a square and then deleting
a square from λ (i.e., µ and λ differ in more than two rows), then clearly
when we apply the left-hand side of (8.2) to λ, the coefficient of µ will be 0.

Finally consider the case λ = µ. Let r be the number of distinct (unequal)
parts of λ. Then the coefficient of λ in Di+1Ui(λ) is r+1, while the coefficient
of λ in Ui−1Di(λ) is r, since there are r + 1 ways to add a square to λ and
then remove it, while there are r ways to remove a square and then add it
back in. Hence when we apply the left-hand side of (8.2) to λ, the coefficient
of λ is equal to 1.

Combining the conclusions of the three cases just considered shows that
the left-hand side of (8.2) is just Ii, as was to be proved.

We come to one of the main results of this chapter.

8.4 Theorem. Let λ be a partition and w = AnAn−1 · · ·A1 a valid λ-word.
Let Sw = {i : Ai = D}. For each i ∈ Sw, let ai be the number of D’s in w to
the right of Ai, and let bi be the number of U ’s in w to the right of Ai. Thus
ai − bi is the level we occupy in Y before taking the step Ai = D. Then

α(w, λ) = fλ
∏

i∈Sw

(bi − ai).

Before proving Theorem 8.4, let us give an example. Suppose w =
U3D2U2DU3 = UUUDDUUDUUU and λ = (2, 2, 1). Then Sw = {4, 7, 8}
and a4 = 0, b4 = 3, a7 = 1, b7 = 5, a8 = 2, b8 = 5. We have also seen earlier
that f 221 = 5. Thus

α(w, λ) = 5(3− 0)(5− 1)(5− 2) = 180.

Proof. Proof of Theorem 8.4. For notational simplicity we will omit the
subscripts from the linear transformations Ui and Di. This should cause no
confusion since the subscripts will be uniquely determined by the elements
on which U and D act. For instance, the expression UDUU(λ) where λ ⊢ i
must mean Ui+1Di+2Ui+1Ui(λ); otherwise it would be undefined since Uj and
Dj can only act on elements of RYj, and moreover Uj raises the level by one
while Dj lowers it by one.

By (8.2) we can replace DU in any word y in the letters U and D by
UD + I. This replaces y by a sum of two words, one with one fewer D and
the other with one D moved one space to the right. For instance, replacing
the first DU in UUDUDDU by UD + I yields UUUDDDU + UUDDU . If



137

we begin with the word w and iterate this procedure, replacing a DU in any
word with UD+I, eventually there will be no U ’s to the right of any D’s and
the procedure will come to an end. At this point we will have expressed w
as a linear combination (with integer coefficients) of words of the form U iDj.
Since the operation of replacing DU with UD + I preserves the difference
between the number of U ’s and D’s in each word, all the words U iDj which
appear will have i− j equal to some constant n (namely, the number of U ’s
minus the number of D’s in w). Specifically, say we have

w =
∑

i−j=n

rij(w)U iDj, (8.3)

where each rij(w) ∈ Z. (We also define rij(w) = 0 if i < 0 or j < 0.) We
claim that the rij(w)’s are uniquely determined by w. Equivalently [why?],
if we have ∑

i−j=n

dijU
iDj = 0 (8.4)

(as an identity of linear transformations acting on the space RYk for any k),
where each dij ∈ Z (or dij ∈ R, if you prefer), then each dij = 0. Let j′ be
the least integer for which dj′+n,j′ 6= 0. Let µ ⊢ j′, and apply both sides of
equation (8.4) to µ. The left-hand side has exactly one nonzero term, namely,
the term with j = j′ [why?]. The right-hand side, on the other hand1, is 0,
a contradiction. Thus the rij(w)’s are unique.

Now apply U on the left to equation (8.3). We get

Uw =
∑

i,j

rij(w)U i+1Dj.

Hence (using uniqueness of the rij’s) there follows [why?]

rij(Uw) = ri−1,j(w). (8.5)

We next want to apply D on the left to (8.3). It is easily proved by
induction on i (left as an exercise) that

DU i = U iD + iU i−1. (8.6)

1The phrase “the right-hand side, on the other hand” does not mean the left-hand side!
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(We interpret U−1 as being 0, so that equation (8.6) is true for i = 0.) Hence

Dw =
∑

i,j

rij(w)DU iDj

=
∑

i,j

rij(w)(U iD + iU i−1)Dj,

from which it follows [why?] that

rij(Dw) = ri,j−1(w) + (i+ 1)ri+1,j(w). (8.7)

Setting j = 0 in (8.5) and (8.7) yields

ri0(Uw) = ri−1,0(w) (8.8)

ri0(Dw) = (i+ 1)ri+1,0(w). (8.9)

Now let (8.3) operate on ∅. Since Dj(∅) = 0 for all j > 0, we get w(∅) =
rn0(w)Un(∅). Thus the coefficient of λ in w(∅) is given by

α(w, λ) = rn0(w)α(Un, λ) = rn0f
λ,

where as usual λ ⊢ n. It is clear from (8.8) and (8.9) that

rn0(w) =
∏

j∈Sw

(bj − aj),

and the proof follows.

Note. It is possible to give a simpler proof of Theorem 8.4, but the proof
we have given is useful for generalizations not appearing here.

An interesting special case of the previous theorem allows us to evaluate
equation (8.1).

8.5 Corollary. We have

α(DnUn, ∅) =
∑

λ⊢n

(fλ)2 = n!.
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Proof. When w = DnUn in Theorem 8.4 we have Sw = {n + 1, n +
2, . . . , 2n}, ai = n− i+ 1, and bi = n, from which the proof is immediate. �

Note (for those familiar with the representation theory of finite groups).
It can be shown that the numbers fλ, for λ ⊢ n, are the degrees of the
irreducible representations of the symmetric group Sn. Given this, Corol-
lary 8.5 is a special case of the result that the sum of the squares of the
degrees of the irreducible representations of a finite group G is equal to the
order #G of G. There are many other intimate connections between the rep-
resentation theory of Sn, on the one hand, and the combinatorics of Young’s
lattice and Young tableaux, on the other. There is also an elegant combina-
torial proof of Corollary 8.5, based on the RSK algorithm (after Gilbert de
Beauregard Robinson, Craige Schensted, and Donald Knuth) or Robinson–
Schensted correspondence, with many fascinating properties and with deep
connections to representation theory. In the first Appendix at the end of this
chapter we give a description of the RSK algorithm and the combinatorial
proof of Corollary 8.5.

We now consider a variation of Theorem 8.4 in which we are not concerned
with the type w of a Hasse walk from ∅ to w, but only with the number of
steps. For instance, there are three Hasse walks of length three from ∅ to the
partition 1, given by ∅, 1, ∅, 1; ∅, 1, 2, 1; and ∅, 1, 11, 1. Let β(ℓ, λ) denote the
number of Hasse walks of length ℓ from ∅ to λ. Note the two following easy
facts:

(F1) β(ℓ, λ) = 0 unless ℓ ≡ |λ| (mod2).
(F2) β(ℓ, λ) is the coefficient of λ in the expansion of (D + U)ℓ(∅) as a

linear combination of partitions.
Because of (F2) it is important to write (D+U)ℓ as a linear combination

of terms U iDj, just as in the proof of Theorem 8.4 we wrote a word w in U
and D in this form. Thus define integers bij(ℓ) by

(D + U)ℓ =
∑

i,j

bij(ℓ)U
iDj. (8.10)

Just as in the proof of Theorem 8.4, the numbers bij(ℓ) exist and are well-
defined.

8.6 Lemma. We have bij(ℓ) = 0 if ℓ− i− j is odd. If ℓ− i− j = 2m then

bij(ℓ) =
ℓ!

2m i! j!m!
. (8.11)
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Proof. The assertion for ℓ − i − j odd is equivalent to (F1) above, so
assume ℓ− i − j is even. The proof is by induction on ℓ. It’s easy to check
that (8.11) holds for ℓ = 1. Now assume true for some fixed ℓ ≥ 1. Using
(8.10) we obtain

∑

i,j

bij(ℓ+ 1)U iDj = (D + U)ℓ+1

= (D + U)
∑

i,j

bij(ℓ)U
iDj

=
∑

i,j

bij(ℓ)(DU
iDj + U i+1Dj).

In the proof of Theorem 8.4 we saw that DU i = U iD + iU i−1 (see equation
(8.6)). Hence we get

∑

i,j

bij(ℓ + 1)U iDj =
∑

i,j

bij(ℓ)(U
iDj+1 + iU i−1Dj + U i+1Dj). (8.12)

As mentioned after (8.10), the expansion of (D + U)ℓ+1 in terms of U iDj is
unique. Hence equating coefficients of U iDj on both sides of (8.12) yields
the recurrence

bij(ℓ+ 1) = bi,j−1(ℓ) + (i+ 1)bi+1,j(ℓ) + bi−1,j(ℓ). (8.13)

It is a routine matter to check that the function ℓ!/2mi!j!m! satisfies the same
recurrence (8.13) as bij(ℓ), with the same intial condition b00(0) = 1. From
this the proof follows by induction. �

From Lemma 8.6 it is easy to prove the following result.

8.7 Theorem. Let ℓ ≥ n and λ ⊢ n, with ℓ− n even. Then

β(ℓ, λ) =

(
ℓ

n

)
(1 · 3 · 5 · · · (ℓ− n− 1))fλ.

Proof. Apply both sides of (8.10) to ∅. Since U iDj(∅) = 0 unless j = 0,
we get

(D + U)ℓ(∅) =
∑

i

bi0(ℓ)U
i(∅)

=
∑

i

bi0(ℓ)
∑

λ⊢i

fλλ.
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Since by Lemma 8.6 we have bi0(ℓ) =
(

ℓ
i

)
(1 · 3 · 5 · · · (ℓ− i− 1)) when ℓ− i is

even, the proof follows from (F2). �

Note. The proof of Theorem 8.7 only required knowing the value of
bi0(ℓ). However, in Lemma 8.6 we computed bij(ℓ) for all j. We could have
carried out the proof so as only to compute bi0(ℓ), but the general value of
bij(ℓ) is so simple that we have included it too.

8.8 Corollary. The total number of Hasse walks in Y of length 2m from ∅
to ∅ is given by

β(2m, ∅) = 1 · 3 · 5 · · · (2m− 1).

Proof. Simply substitute λ = ∅ (so n = 0) and ℓ = 2m in Theorem 8.7.
�

The fact that we can count various kinds of Hasse walks in Y suggests
that there may be some finite graphs related to Y whose eigenvalues we
can also compute. This is indeed the case, and we will discuss the simplest
case here. (See Exercise 8.21 for a generalization.) Let Yj−1,j denote the
restriction of Young’s lattice Y to ranks j − 1 and j. Identify Yj−1,j with its
Hasse diagram, regarded as a (bipartite) graph. Let p(i) = #Yi, the number
of partitions of i.

8.9 Theorem. The eigenvalues of Yj−1,j are given as follows: 0 is an eigen-
value of multiplicity p(j) − p(j − 1); and for 1 ≤ s ≤ j, the numbers ±√s
are eigenvalues of multiplicity p(j − s)− p(j − s− 1).

Proof. Let A denote the adjacency matrix of Yj−1,j. Since RYj−1,j =
RYj−1⊕RYj (vector space direct sum), any vector v ∈ RYj−1,j can be written
uniquely as v = vj−1 + vj, where vi ∈ RYi. The matrix A acts on the vector
space RYj−1,j as follows [why?]:

A(v) = D(vj) + U(vj−1). (8.14)

Just as Theorem 4.7 followed from Lemma 4.6, we deduce from Lemma 8.3
that for any i we have that Ui : RYi → RYi+1 is one-to-one and Di : RYi →
RYi−1 is onto. It follows in particular that

dim ker(Di) = dim RYi − dim RYi−1

= p(i)− p(i− 1),

where ker denotes kernel.
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Case 1. Let v ∈ ker(Dj), so v = vj. Then Av = Dv = 0. Thus ker(Dj) is
an eigenspace of A for the eigenvalue 0, so 0 is an eigenvalue of multiplicity
at least p(j)− p(j − 1).

Case 2. Let v ∈ ker(Ds) for some 0 ≤ s ≤ j − 1. Let

v∗ = ±
√
j − sU j−1−s(v) + U j−s(v).

Note that v∗ ∈ RYj−1,j, with v∗j−1 = ±√j − sU j−1−s(v) and v∗j = U j−s(v).
Using equation (8.6), we compute

A(v∗) = U(v∗j−1) +D(v∗j )

= ±
√
j − s U j−s(v) +DU j−s(v)

= ±
√
j − s U j−s(v) + U j−sD(v) + (j − s)U j−s−1(v)

= ±
√
j − s U j−s(v) + (j − s)U j−s−1(v)

= ±
√
j − s v∗. (8.15)

It’s easy to verify (using the fact that U is one-to-one) that if v(1), . . . , v(t)
is a basis for ker(Ds), then v(1)∗, . . . , v(t)∗ are linearly independent. Hence
by (8.15) we have that ±√j − s is an eigenvalue of A of multiplicity at least
t = dim ker(Ds) = p(s)− p(s− 1).

We have found a total of

p(j)− p(j − 1) + 2

j−1∑

s=0

(p(s)− p(s− 1)) = p(j − 1) + p(j)

eigenvalues of A. (The factor 2 above arises from the fact that both +
√
j − s

and −√j − s are eigenvalues.) Since the graph Yj−1,j has p(j − 1) + p(j)
vertices, we have found all its eigenvalues. �

An elegant combinatorial consequence of Theorem 8.9 is the following.

8.10 Corollary. Fix j ≥ 1. The number of ways to choose a partition λ of
j, then delete a square from λ (keeping it a partition), then insert a square,
then delete a square, etc., for a total of m insertions and m deletions, ending
back at λ, is given by

j∑

s=1

[p(j − s)− p(j − s− 1)]sm, m > 0. (8.16)
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Proof. Exactly half the closed walks in Yj−1,j of length 2m begin at
an element of Yj [why?]. Hence if Yj−1,j has eigenvalues θ1, . . . , θr, then by
Corollary 1.3 the desired number of walks is given by 1

2
(θ2m

1 + · · · + θ2m
r ).

Using the values of θ1, . . . , θr given by Theorem 8.9 yields (8.16). �

For instance, when j = 7, equation (8.16) becomes 4 + 2 · 2m + 2 · 3m +
4m +5m +7m. When m = 1 we get 30, the number of edges of the graph Y6,7

[why?].
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APPENDIX 1: THE RSK ALGORITHM

We will describe a bijection between permutations π ∈ Sn and pairs
(P,Q) of SYT of the same shape λ ⊢ n. Define a near Young tableau (NYT)
to be the same as an SYT, except that the entries can be any distinct integers,
not necessarily the integers 1, 2, . . . , n. Let Pij denote the entry in row i and
column j of P . The basic operation of the RSK algorithm consists of the
row insertion P ← k of a positive integer k into an NYT P = (Pij). The
operation P ← k is defined as follows: let r be the least integer such that
P1r > k. If no such r exists (i.e., all elements of the first row of P are
less than k), then simply place k at the end of the first row. The insertion
process stops, and the resulting NYT is P ← k. If, on the other hand, r does
exist then replace P1r by k. The element k then “bumps” P1r := k′ into the
second row, i.e., insert k′ into the second row of P by the insertion rule just
described. Either k′ is inserted at the end of the second row, or else it bumps
an element k′′ to the third row. Continue until an element is inserted at the
end of a row (possibly as the first element of a new row). The resulting array
is P ← k.

8.11 Example. Let

P =

3 7 9 14
6 11 12
10 16
13
15

Then P ← 8 is shown below, with the elements inserted into each row (either
by bumping or by the final insertion in the fourth row) in boldface. Thus
the 8 bumps the 9, the 9 bumps the 11, the 11 bumps the 16, and the 16 is
inserted at the end of a row. Hence

(P ← 8) =

3 7 8 14
6 9 12
10 11
13 16
15

.

We omit the proof, which is fairly straightforward, that if P is an NYT,
then so is P ← k. We can now describe the RSK algorithm. Let π =
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a1a2 · · ·an ∈ Sn. We will inductively construct a sequence (P0, Q0), (P1, Q1),
. . . , (Pn, Qn) of pairs (Pi, Qi) of NYT of the same shape, where Pi and Qi

each have i squares. First, define (P0, Q0) = (∅, ∅). If (Pi−1, Qi−1) have been
defined, then set Pi = Pi−1 ← ai. In other words, Pi is obtained from Pi−1

by row inserting ai. Now define Qi to be the NYT obtained from Qi−1 by
inserting i so that Qi and Pi have the same shape. (The entries of Qi−1

don’t change; we are simply placing i into a certain new square and not row-

inserting it into Qi−1.) Finally let (P,Q) = (Pn, Qn). We write π
RSK−→ (P,Q).

8.12 Example. Let π = 4273615 ∈ S7. The pairs (P1, Q1), . . . , (P7, Q7) =
(P,Q) are as follows:

Pi Qi

4 1

2 1
4 2

2 7 1 3
4 2

2 3 1 3
4 7 2 4

2 3 6 1 3 5
4 7 2 4

1 3 6 1 3 5
2 7 2 4
4 6

1 3 5 1 3 5
2 6 2 4
4 7 6 7

8.13 Theorem. The RSK algorithm defines a bijection between the symmet-
ric group Sn and the set of all pairs (P,Q) of SYT of the same shape, where
the shape λ is a partition of n.

Proof (sketch). The key step is to define the inverse of RSK. In other
words, if π 7→ (P,Q), then how can we recover π uniquely from (P,Q)? More-
over, we need to find π for any (P,Q). Observe that the position occupied by
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n in Q is the last position to be occupied in the insertion process. Suppose
that k occupies this position in P . It was bumped into this position by some
element j in the row above k that is currently the largest element of its row
less than k. Hence we can “inverse bump” k into the position occupied by j,
and now inverse bump j into the row above it by the same procedure. Even-
tually an element will be placed in the first row, inverse bumping another
element t out of the tableau altogether. Thus t was the last element of π
to be inserted, i.e., if π = a1a2 · · ·an then an = t. Now locate the position
occupied by n−1 in Q and repeat the procedure, obtaining an−1. Continuing
in this way, we uniquely construct π one element at a time from right-to-left,
such that π 7→ (P,Q). �

The RSK-algorithm provides a bijective proof of Corollary 8.5, that is,

∑

λ⊢n

(fλ)2 = n!.
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APPENDIX 2: PLANE PARTITIONS

In this appendix we show how a generalization of the RSK algorithm leads
to an elegant generating function for a two-dimensional generalization of
integer partitions. A plane partition of an integer n ≥ 0 is a two-dimensional
array π = (πij)i,j≥1 of integers πij ≥ 0 that is weakly decreasing in rows and
columns, i.e.,

πij ≥ πi+1,j , πij ≥ πi,j+1,

such that
∑

i,j πij = n. It follows that all but finitely many πij are 0, and
these 0’s are omitted in writing a particular plane partition π. Given a plane
partition π, we write |π| = n to denote that π is a plane partition of n. More
generally, if L is any array of nonnegative integers we write |L| for the sum
of the parts (entries) of L.

There is one plane partition of 0, namely, all πij = 0, denoted ∅. The
plane partitions of the integers 0 ≤ n ≤ 3 are given by

∅ 1 2 11 1 3 21 111 11 2 1
1 1 1 1

1
.

If pp(n) denotes the number of plane partitions of n, then pp(0) = 1, pp(1) =
1, pp(2) = 3, and pp(3) = 6.

Our object is to give a formula for the generating function

F (x) =
∑

n≥0

pp(n)xn = 1 + x+ 3x2 + 6x3 + 13x4 + 24x5 + · · · .

More generally, we will consider plane partitons with at most r rows and at
most s columns, i.e., πij = 0 for i > r or j > s. As a simple warmup, let us
first consider the case of ordinary partitions λ = (λ1, λ2, . . . ) of n.

8.14 Proposition. Let ps(n) denote the number of partitions of n with at
most s parts. Equivalently, ps(n) is the number of plane partitions of n with
at most one row and at most s columns [why?].Then

∑

n≥0

ps(n)xn =
s∏

k=1

(1− xk)−1.
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Proof. First note that the partition λ has at most s parts if and only if the
conjugate partition λ′ defined in Chapter 6 has largest part at most s. Thus
it suffices to find the generating function

∑
n≥0 p

′
s(n)xn, where p′s(n) denotes

the number of partitions of n whose largest part is at most s. Now expanding
each factor (1− xk)−1 as a geometric series gives

s∏

k=1

1

1− xk
=

s∏

k=1

(
∑

mk≥1

xmkk

)

.

How do we get a coefficient of xn? We must choose a term xmkk from each
factor of the product, 1 ≤ k ≤ s, so that

n =

s∑

k=1

mkk.

But such a choice is the same as choosing the partition λ of n such that the
part k occurs mk times. For instance, if s = 4 and we choose m1 = 5, m2 = 0,
m3 = 1, m4 = 2, then we have chosen the partition λ = (4, 4, 3, 1, 1, 1, 1, 1)
of 16. Hence the coefficient of xn is the number of partitions λ of n whose
largest part is at most s, as was to be proved.

Note that Proposition 8.14 is “trivial” in the sense that it can be seen
by inspection. There is an obvious correspondence between (a) the choice of
terms contributing to the coefficient of xn and (b) partitions of n with largest
part at most r. Although the generating function we will obtain for plane
partitions is equally simple, it will be far less obvious why it is correct.

Plane partitions have a certain similarity with standard Young tableaux,
so perhaps it is not surprising that a variant of RSK will be applicable. In-
stead of NYT we will be dealing with column-strict plane partitions (CSPP).
These are plane partitions for which the nonzero elements strictly decrease
in each column. An example of a CSPP is given by

7 7 4 3 3 3 1
4 3 3 1
3 2
2 1
1

. (8.17)

We say that this CSPP has shape λ = (7, 4, 2, 2, 1), the shape of the Young
diagram which the numbers occupy, and that it has five rows, seven columns,
and 16 parts (so λ ⊢ 16).
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If P = (Pij) is a CSPP and k ≥ 1, then we define the row insertion P ← k
as follows: let r be the least integer such that P1,r < k. If no such r exists
(i.e., all elements of the first row of P are greater than or equal to k), then
simply place k at the end of the first row. The insertion process stops, and
the resulting CSPP is P ← k. If, on the other hand, r does exist, then replace
P1r by k. The element k then “bumps” P1r := k′ into the second row, i.e.,
insert k′ into the second row of P by the insertion rule just described, possibly
bumping a new element k′′ into the third row. Continue until an element is
inserted at the end of a row (possibly as the first element of a new row). The
resulting array is P ← k. Note that this rule is completely analogous to row
insertion for NYT: for NYT an element bumps the leftmost element greater
than it, while for CSPP an element bumps the leftmost element smaller than
it.

8.15 Example. Let P be the CSPP of equation (8.17). Let us row insert 6
into P . The set of elements which get bumped are shown in bold:

7 7 4 3 3 3 1
4 3 3 1
3 2
2 1
1

.

The final 1 that was bumped is inserted at the end of the fifth row. Thus we
obtain

(P ← 6) =

7 7 6 3 3 3 1
4 4 3 1
3 3
2 2
1 1

.

We are now ready to describe the analogue of RSK needed to count plane
partitions. Instead of beginning with a permutation π ∈ Sn, we begin with
an r × s matrix A = (aij) of nonnegative integers, called for short an r × s
N-matrix. We convert A into a two-line array

wA =

(
u1 u2 · · · uN

v1 v2 · · · vN

)
,

where
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• u1 ≥ u2 ≥ · · · ≥ uN

• If i < j and ui = uj, then vi ≥ vj.

• The number of columns of wA equal to i
j

is aij . (It follows that N =∑
aij .)

It is easy to see that wA is uniquely determined by A, and conversely. As an
example, suppose that

A =




0 1 0 2
1 1 1 0
2 1 0 0



 . (8.18)

Then

wA =

(
3 3 3 2 2 2 1 1 1
2 1 1 3 2 1 4 4 2

)
.

We now insert the numbers v1, v2, . . . , vN successively into a CSPP. That
is, we start with P0 = ∅ and define inductively Pi = Pi−1 ← vi. We also start
with Q0 = ∅, and at the ith step insert ui into Qi−1 (without any bumping
or other altering of the elements of Qi−1) so that Pi and Qi have the same

shape. Finally let (P,Q) = (PN , QN ) and write A
RSK

′

−→ (P,Q).

8.16 Example. Let A be given by equation (8.18). The pairs (P1, Q1), . . . ,
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(P9, Q9) = (P,Q) are as follows:

Pi Qi

2 3

2 1 3 3

2 1 1 3 3 3

3 1 1 3 3 3
2 2

3 2 1 3 3 3
2 1 2 2

3 2 1 1 3 3 3 2
2 1 2 2

4 2 1 1 3 3 3 2
3 1 2 2
2 1

4 4 1 1 3 3 3 2
3 2 2 2
2 1 1 1

4 4 2 1 3 3 3 2
3 2 1 2 2 1
2 1 1 1

It is straightforward to show that if A
RSK

′

−→ (P,Q), then P and Q are
CSPP of the same shape. We omit the proof of the following key lemma,
which is analogous to the proof of Theorem 8.13. Let us just note a crucial

property (which is easy to prove) of the correspondence A
RSK

′

−→ (P,Q) which
allows us to recover A from (P,Q), namely, equal entries of Q are inserted
from left-to-right. Thus the last number placed into Q is the rightmost
occurrence of the least entry. Hence we can can inverse bump the number in
this position in P to back up one step in the algorithm, just as for the usual

RSK correspondence π
RSK−→ (P,Q).
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8.17 Lemma. The correspondence A
RSK

′

−→ (P,Q) is a bijection from the set
of r × s matrices of nonnegative integers to the set of pairs (P,Q) of CSPP
of the same shape, such that the largest part of P is at most s and the largest
part of Q is at most r.

The next step is to convert the pair (P,Q) of CSPP of the same shape
into a single plane partition π. We do this by “merging” the ith column
of P with the ith column of Q, producing the ith column of π. Thus we
first describe how to merge two partitions λ and µ with distinct parts and
with the same number of parts into a single partition ρ = ρ(λ, µ). Draw the
Ferrers diagram of λ but with each row indented one space to the right of the
beginning of the previous row. Such a diagram is called the shifted Ferrers
diagram of λ. For instance, if λ = (5, 3, 2) then we get the shifted diagram

Do the same for µ, and then transpose the diagram. For instance, if
µ = (6, 3, 1) then we get the transposed shifted diagram

Now merge the two diagrams into a single diagram by identifying their main
diagonals. For λ and µ as above, we get the diagram (with the main diagonal
drawn for clarity):

Define ρ(λ, µ) to be the partition for which this merged diagram is the Ferrers
diagram. The above example shows that

ρ(532, 631) = 544211.
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The map (λ, µ) 7→ ρ(λ, µ) is clearly a bijection between pairs of partitions
(λ, µ) with k distinct parts, and partitions ρ whose main diagonal (of the
Ferrers diagram) has k dots. Equivalently, k is the largest integer j for which
ρj ≥ j. Note that

|ρ| = |λ|+ |µ| − ℓ(λ). (8.19)

We now extend the above bijection to pairs (P,Q) of reverse SSYT of the
same shape. If λi denotes the ith column of P and µi the ith column of Q,
then let π(P,Q) be the array whose ith column is ρ(λi, µi). For instance, if

P =
4 4 2 1
3 1 1
2

and Q =
5 3 2 2
4 2 1
1

,

then

π(P,Q) =

4 4 2 1
4 2 2 1
4 2
2
2

.

It is easy to see that π(P,Q) is a plane partition. Replace each row of π(P,Q)
by its conjugate to obtain another plane partition π′(P,Q). With π(P,Q) as
above we obtain

π′(P,Q) =

4 3 2 2
4 3 1 1
2 2 1 1
1 1
1 1

.

Write |P | for the sum of the elements of P , and write max(P ) for the largest
element of P , and similarly for Q. When we merge P and Q into π(P,Q),
max(P ) becomes the largest part of π(P,Q). Thus when we conjugate each
row, max(P ) becomes the number col(π′(P,Q)) of columns of π′(P,Q) [why?].
Similarly, max(Q) becomes the number row(π′(P,Q)) of rows of π(P,Q) and
of π′(P,Q). In symbols,

maxP = col(π′(P,Q))

maxQ = row(π′(P,Q)).
(8.20)

Moreover, it follows from equation (8.19) that

|π′(P,Q)| = |π(P,Q)| = |P |+ |Q| − ν(P ), (8.21)
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where ν(P ) denotes the number of parts of P (or of Q).

We now have all the ingredients necessary to prove the main result of this
appendix.

8.18 Theorem. Let pprs(n) denote the number of plane partitions of n with
at most r rows and at most s columns. Then

∑

n≥0

pprs(n)xn =

r∏

i=1

s∏

j=1

(1− xi+j−1)−1.

Proof. Let A = (aij) be an r × s N-matrix. We can combine the bijections
discussed above to obtain a plane partition π(A) associated with A. Namely,

first apply RSK to obtain A
RSK

′

−→ (P,Q), and then apply the merging process
and row conjugation to obtain π(A) = π′(P,Q). Since a column i

j
of the

two-line array wA occurs aij times and results in an insertion of j into P and
i into Q, it follows that

|P | =
∑

i,j

jaij

|Q| =
∑

i,j

iaij

max(P ) = max{j : aij 6= 0}
max(Q) = max{i : aij 6= 0}

Hence from equations (8.20) and (8.21), we see that the map A 7→ π(A) is
a bijection from r × s N-matrices A to plane partitions with at most r rows
and at most s columns. Moreover,

|π(A)| = |P |+ |Q| − ν(P )

=
∑

i,j

(i+ j − 1)aij.

Thus the enumeration of plane partitions is reduced to the much easier enu-
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meration of N-matrices. Specifically, we have

∑

n≥0

pprs(n)xn =
∑

π
row(π)≤r
col(π)≤s

x|π|

=
∑

r×s N−matrices A

x
P

(i+j−1)aij

=
r∏

i=1

s∏

j=1




∑

aij≥0

x
P

(i+j−1)aij





=

r∏

i=1

s∏

j=1

(1− xi+j−1)−1.

Write ppr(n) for the number of plane partitions of n with at most r rows.
Letting s → ∞ and then r → ∞ in Theorem 8.18 produces the elegant
generating functions of the next corollary.

8.19 Corollary. We have

∑

n≥0

ppr(n)xn =
∏

i≥1

(1− xi)−min(i,r) (8.22)

∑

n≥0

pp(n)xn =
∏

i≥1

(1− xi)−i. (8.23)

Note. Once one has seen the generating function

1

(1− x)(1− x2)(1− x3) · · ·

for one-dimensional (ordinary) partitions and the generating function

1

(1− x)(1− x2)2(1− x3)3 . . .

for two-dimensional (plane) partitions, it is quite natural to ask about higher-
dimensional partitions. In particular, a solid partition of n is a three-dimensional
array π = (πijk)i,j,k≥1 of nonnegative integers, weakly decreasing in each of
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the three coordinate directions, and with elements summing to n. Let sol(n)
denote the number of solid partitions of n. It is easy to see that for any
integer sequence a0 = 1, a1, a2, . . . , there are unique integers b1, b2, . . . for
which ∑

n≥0

anx
n =

∏

i≥1

(1− xi)−bi .

For the case an = sol(n), we have

b1 = 1, b2 = 3, b3 = 6, b4 = 10, b5 = 15,

which looks quite promising. Alas, the sequence of exponents continues

20, 26, 34, 46, 68, 97, 120, 112, 23,−186,−496,−735,−531, 779, . . . .

The problem of enumerating solid partitions remains open and is considered
most likely to be hopeless.

Notes for Chapter 8

Standard Young tableaux (SYT) were first enumerated by P.A. MacMa-
hon [76, p. 175] (see also [77, §103]). MacMahon formulated his result in
terms of “generalized ballot sequences” or “lattice permutations” rather than
SYT, but they are easily seen to be equivalent. He stated the result not in
terms of the products of hook lengths as in Theorem 8.1, but as a more com-
plicated product formula. The formulation in terms of hook lengths is due to
J. S. Frame and appears first in the paper [39, Thm. 1] of Frame, Robinson,
and R.M. Thrall; hence it is sometimes called the “Frame-Robinson-Thrall
hook-length formula.” (The actual definition of standard Young tableaux is
due to A. Young [122, p. 258].)

Independently of MacMahon, F.G. Frobenius [42, eqn. (6)] obtained the
same formula for the degree of the irreducible character χλ of Sn as MacMa-
hon obtained for the number of lattice permutations of type λ. Frobenius was
apparently unaware of the combinatorial significance of deg χλ, but Young
showed in [122, pp. 260–261] that degχλ was the number of SYT of shape
λ, thereby giving an independent proof of MacMahon’s result. (Young also
provided his own proof of MacMahon’s result in [122, Thm. II].)

A number of other proofs of the hook-length formula were subsequently
found. C. Greene, A. Nijenhuis, and H. S. Wilf [49] gave an elegant proba-
bilistic proof. A proof of A. Hillman and R. Grassl [58] shows very clearly the
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role of hook lengths, though the proof is not completely bijective. A bijec-
tive version was later given by C.F. Krattenthaler [65]. Completely bijective
proofs of the hook-length formula were first given by D. S. Franzblau and D.
Zeilberger [40] and by J.B. Remmel [95]. An exceptionally elegant bijective
proof was later found by J.-C. Novelli, I.M. Pak, and A.V. Stoyanovskii [82].

The use of the operators U and D to count walks in the Hasse diagram of
Young’s lattice was developed independently, in a more general context, by
S. Fomin [37][38] and R. Stanley [106][108]. See also [109, §3.21] for a short
exposition.

The RSK algorithm (known by a variety of other names, either “cor-
respondence” or “algorithm” in connection with some subset of the names
Robinson, Schensted, and Knuth) was first described, in a rather vague form,
by G. de B. Robinson [96, §5], as a tool in an attempted proof of a result
now known as the “Littlewood–Richardson Rule.” The RSK algorithm was
later rediscovered by C.E. Schensted (see below), but no one actually ana-
lyzed Robinson’s work until this was done by M. van Leeuwen [69, §7]. It
is interesting to note that Robinson says in a footnote on page 754 that “I
am indebted for this association I to Mr. D.E. Littlewood.” Van Leeuwen’s
analysis makes it clear that “association I” gives the recording tableau Q of

the RSK algorithm π
RSK−→ (P,Q). Thus it might be correct to say that if

π ∈ Sn and π
RSK−→ (P,Q), then the definition of P is due to Robinson, while

the definition of Q is due to Littlewood.
No further work related to Robinson’s construction was done until Schen-

sted published his seminal paper [99] in 1961. (For some information about
the unusual life of Schensted, see [6].) Schensted’s purpose was the enumera-
tion of permutations in Sn according to the length of their longest increasing
and decreasing subsequences. According to Knuth [66, p. 726], the connec-
tion between the work of Robinson and that of Schensted was first pointed
out by M.-P. Schützenberger, though as mentioned above the first person to
describe this connection precisely was van Leeuwen.

Plane partitions were discovered by MacMahon in a series of papers which
were not appreciated until much later. (See MacMahon’s book [77, Sections
IX and X] for an exposition of his results.) MacMahon’s first paper dealing
with plane partitions was [75]. In Article 43 of this paper he gives the defini-
tion of a plane partition (though not yet with that name). In Article 51 he
conjectures that the generating function for plane partitions is the product

(1− x)−1 (1− x2)−2 (1− x3)−3 (1− x4)−4 · · ·
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(our equation (8.23)). In Article 52 he conjectures our equation (8.22) and
Theorem 8.18, finally culminating in a conjectured generating function for
plane partitions of n with at most r rows, at most s columns, and with largest
part at most t. (See Exercise 8.34.) MacMahon goes on in Articles 56–62
to prove his conjecture in the case of plane partitions with at most 2 rows
and s columns (the case r = 2 of our Theorem 8.18), mentioning on page
662 that an independent solution was obtained by A.R. Forsyth. (Though a
publication reference is given to Forsyth’s paper, apparently it never actually
appeared.)

We will not attempt to describe MacMahon’s subsequent work on plane
partitions, except to say that the culmination of his work appears in [77,
Art. 495], in which he proves his main conjecture from his first paper [75] on
plane partitions, viz., our Exercise 8.34. MacMahon’s proof is quite lengthy
and indirect.

In 1972 E.A. Bender and D.E. Knuth [7] showed the connection between
the theory of symmetric functions and the enumeration of plane partitions.
They gave simple proofs based on the RSK algorithm of many results involv-
ing plane partitions, including the first bijective proof (the same proof that
we give) of our Theorem 8.18.

For further aspects of Young tableaux and the related topics of sym-
metric functions, representation theory of the symmetric group, Grassmann
varieties, etc., see the expositions of W.E. Fulton [43], B.E. Sagan [98], and
R. Stanley [110, Ch. 7].



Chapter 9

The Matrix-Tree Theorem

The Matrix-Tree Theorem is a formula for the number of spanning trees of
a graph in terms of the determinant of a certain matrix. We begin with the
necessary graph-theoretical background. Let G be a finite graph, allowing
multiple edges but not loops. (Loops could be allowed, but they turn out to
be completely irrelevant.) We say that G is connected if there exists a walk
between any two vertices of G. A cycle is a closed walk with no repeated
vertices or edges, except for the the first and last vertex. A tree is a connected
graph with no cycles. In particular, a tree cannot have multiple edges, since
a double edge is equivalent to a cycle of length two. The three nonisomorphic
trees with five vertices are shown in Figure 9.1.

A basic theorem of graph theory (whose easy proof we leave as an exercise)
is the following.

9.1 Proposition. Let G be a graph with p vertices. The following conditions
are equivalent.

(a) G is a tree.

(b) G is connected and has p− 1 edges.

(c) G has no cycles and has p− 1 edges.

Figure 9.1: The three trees with five vertices

169
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(d) There is a unique path (= walk with no repeated vertices) between any
two vertices.

A spanning subgraph of a graph G is a graph H with the same vertex set
asG, and such that every edge ofH is an edge of G. If G has q edges, then the
number of spanning subgraphs of G is equal to 2q, since we can choose any
subset of the edges of G to be the set of edges of H . (Note that multiple edges
between the same two vertices are regarded as distinguishable, in accordance
with the definition of a graph in Chapter 1.) A spanning subgraph which is
a tree is called a spanning tree. Clearly G has a spanning tree if and only if
it is connected [why?]. An important invariant of a graph G is its number of
spanning trees, called the complexity of G and denoted κ(G).

9.2 Example. Let G be the graph illustrated below, with edges a, b, c, d,
e.

d

a c

b

e

Then G has eight spanning trees, namely, abc, abd, acd, bcd, abe, ace, bde, and
cde (where, e.g., abc denotes the spanning subgraph with edge set {a, b, c}).

9.3 Example. Let G = K5, the complete graph on five vertices. A simple
counting argument shows that K5 has 60 spanning trees isomorphic to the
first tree in Figure 9.1, 60 isomorphic to the second tree, and 5 isomorphic to
the third tree. Hence κ(K5) = 125. It is even easier to verify that κ(K1) = 1,
κ(K2) = 1, κ(K3) = 3, and κ(K4) = 16. Can the reader make a conjecture
about the value of κ(Kp) for any p ≥ 1?

Our object is to obtain a “determinantal formula” for κ(G). For this we
need an important result from matrix theory, known as the Binet-Cauchy
theorem or Cauchy-Binet theorem and which is often omitted from a be-
ginning linear algebra course. Later (Theorem 10.4) we will prove a more
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general determinantal formula without the use of the Binet-Cauchy theorem.
However, the use of the Binet-Cauchy theorem does afford some additional
algebraic insight. The Binet-Cauchy theorem is a generalization of the famil-
iar fact that if A and B are n × n matrices, then detAB = (detA)(detB),
where det denotes determinant. We want to extend this formula to the case
where A and B are rectangular matrices whose product is a square matrix
(so that detAB is defined). In other words, A will be an m× n matrix and
B an n×m matrix, for some m,n ≥ 1.

We will use the following notation involving submatrices. Suppose A =
(aij) is an m× n matrix, with 1 ≤ i ≤ m, 1 ≤ j ≤ n, and m ≤ n. Given an
m-element subset S of {1, 2, . . . , n}, let A[S] denote them×m submatrix of A
obtained by taking the columns indexed by the elements of S. In other words,
if the elements of S are given by j1 < j2 < · · · < jm, then A[S] = (ai,jk

),
where 1 ≤ i ≤ m and 1 ≤ k ≤ m. For instance, if

A =




1 2 3 4 5
6 7 8 9 10

11 12 13 14 15





and S = {2, 3, 5}, then

A[S] =




2 3 5
7 8 10

12 13 15



 .

Similarly, let B = (bij) be an n×m matrix with 1 ≤ i ≤ n, 1 ≤ j ≤ m and
m ≤ n. Let S be an m-element subset of {1, 2, . . . , n} as above. Then B[S]
denotes the m×m matrix obtained by taking the rows of B indexed by S.
Note that At[S] = A[S]t, where t denotes transpose.

9.4 Theorem (the Binet-Cauchy Theorem). Let A = (aij) be an m × n
matrix, with 1 ≤ i ≤ m and 1 ≤ j ≤ n. Let B = (bij) be an n ×m matrix
with 1 ≤ i ≤ n and 1 ≤ j ≤ m. (Thus AB is an m×m matrix.) If m > n,
then det(AB) = 0. If m ≤ n, then

det(AB) =
∑

S

(detA[S])(detB[S]),

where S ranges over all m-element subsets of {1, 2, . . . , n}.
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Before proceeding to the proof, let us give an example. We write |aij| for
the determinant of the matrix (aij). Suppose

A =

[
a1 a2 a3

b1 b2 b3

]
, B =




c1 d1

c2 d2

c3 d3



 .

Then

detAB =

∣∣∣∣
a1 a2

b1 b2

∣∣∣∣·
∣∣∣∣
c1 d1

c2 d2

∣∣∣∣+
∣∣∣∣
a1 a3

b1 b3

∣∣∣∣·
∣∣∣∣
c1 d1

c3 d3

∣∣∣∣+
∣∣∣∣
a2 a3

b2 b3

∣∣∣∣·
∣∣∣∣
c2 d2

c3 d3

∣∣∣∣ .

Proof of Theorem 9.4 (sketch). First suppose m > n. Since from
linear algebra we know that rankAB ≤ rankA and that the rank of an
m× n matrix cannot exceed n (or m), we have that rankAB ≤ n < m. But
AB is an m×m matrix, so detAB = 0, as claimed.

Now assume m ≤ n. We use notation such as Mrs to denote an r × s
matrix M . It is an immediate consequence of the definition of matrix multi-
plication (which the reader should check) that

[
Rmm Smn

Tnm Unn

] [
Vmn Wmm

Xnn Ynm

]
=

[
RV + SX RW + SY
TV + UX TW + UY

]
. (9.1)

In other words, we can multiply “block” matrices of suitable dimensions as
if their entries were numbers. Note that the entries of the right-hand side
of (9.1) all have well-defined dimensions (sizes), e.g., RV + SX is an m× n
matrix since both RV and SX are m× n matrices.

Now in equation (9.1) let R = Im (the m ×m identity matrix), S = A,
T = Onm (the n ×m matrix of 0’s), U = In, V = A, W = Omm, X = −In,
and Y = B. We get

[
Im A
Onm In

] [
A Omm

−In B

]
=

[
Omn AB
−In B

]
. (9.2)

Take the determinant of both sides of (9.2). The first matrix on the left-hand
side is upper triangular with 1’s on the main diagonal. Hence its determinant
is one. Since the determinant of a product of square matrices is the product
of the determinants of the factors, we get

∣∣∣∣
A Omm

−In B

∣∣∣∣ =

∣∣∣∣
Omn AB
−In B

∣∣∣∣ . (9.3)
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It is easy to see [why?] that the determinant on the right-hand side of
(9.3) is equal to ± detAB. So consider the left-hand side. A nonzero term in
the expansion of the determinant on the left-hand side is obtained by taking
the product (with a certain sign) of m + n nonzero entries, no two in the
same row and column (so one in each row and each column). In particular,
we must choose m entries from the last m columns. These entries belong to
m of the bottom n rows [why?], say rows m + s1, m + s2, . . . , m + sm. Let
S = {s1, s2, . . . , sm} ⊆ {1, 2, . . . , n}. We must choose n −m further entries
from the last n rows, and we have no choice but to choose the −1’s in those
rows m+i for which i 6∈ S. Thus every term in the expansion of the left-hand
side of (9.3) uses exactly n−m of the −1’s in the bottom left block −In.

What is the contribution to the expansion of the left-hand side of (9.3)
from those terms which use exactly the −1’s from rows m + i where i 6∈ S?
We obtain this contribution by deleting all rows and columns to which these
−1’s belong (in other words, delete row m + i and column i whenever i ∈
{1, 2, . . . , n} − S), taking the determinant of the 2m × 2m matrix MS that
remains, and multiplying by an appropriate sign [why?]. But the matrix MS

is in block-diagonal form, with the first block just the matrix A[S] and the
second block just B[S]. Hence detMS = (detA[S])(detB[S]) [why?]. Taking
all possible subsets S gives

detAB =
∑

S⊆{1,2,...,n}
|S|=m

±(detA[S])(detB[S]).

It is straightforward but somewhat tedious to verify that all the signs are +;
we omit the details. This completes the proof. �

In Chapter 1 we defined the adjacency matrix A(G) of a graph G with
vertex set V = {v1, . . . , vp} and edge set E = {e1, . . . , eq}. We now define two
related matrices. Continue to assume that G has no loops. (This assumption
is harmless since loops have no effect on κ(G).)

9.5 Definition. Let G be as above. Give G an orientation o, i.e, for every
edge e with vertices u, v, choose one of the ordered pairs (u, v) or (v, u). If
we choose (u, v), say, then we think of putting an arrow on e pointing from
u to v; and we say that e is directed from u to v, that u is the initial vertex
and v the final vertex of e, etc.

(a) The incidence matrix M(G) of G (with respect to the orientation o)
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2

d

c 3

a b

1

e

f

4

Figure 9.2: A graph G with an orientation o

is the p× q matrix whose (i, j)-entry M ij is given by

M ij =






−1, if the edge ej has initial vertex vi

1, if the edge ej has final vertex vi

0, otherwise.

(b) The laplacian matrix L(G) of G is the p×p matrix whose (i, j)-entry
Lij is given by

Lij =

{
−mij , if i 6= j and there are mij edges between vi and vj

deg(vi), if i = j,

where deg(vi) is the number of edges incident to vi. Note that L(G) is
symmetric and does not depend on the orientation o.

As an example, let (G, o) be the oriented graph of Figure 9.2. Then

M(G) =





1 −1 0 −1 −1 −1
−1 1 −1 0 0 0

0 0 1 1 0 0
0 0 0 0 1 1





L(G) =





4 −2 −1 −2
−2 3 −1 0
−1 −1 2 0
−2 0 0 2



 .

For any graph G, every column of M(G) contains one 1, one −1, and
q − 2 0’s; and hence the sum of the entries in each column is 0. Thus all
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the rows sum to the 0 vector, a linear dependence relation which shows that
rank(M (G)) < p. Two further properties of M(G) and L(G) are given by
the following lemma.

9.6 Lemma. (a) We have MM t = L.
(b) If G is regular of degree d, then L(G) = dI − A(G), where A(G)

denotes the adjacency matrix of G. Hence if G (or A(G)) has eigenvalues
λ1, . . . , λp, then L(G) has eigenvalues d− λ1, . . . , d− λp.

Proof. (a) This is immediate from the definition of matrix multiplication.
Specifically, for vi, vj ∈ V (G) we have

(MM t)ij =
∑

ek∈E(G)

M ikM jk.

If i 6= j, then in order for M ikM jk 6= 0, we must have that the edge ek

connects the vertices vi and vj . If this is the case, then one of M ik and M jk

will be 1 and the other −1 [why?], so their product is always −1. Hence
(MM t)ij = −mij , as claimed.

There remains the case i = j. Then M ikM ik will be 1 if ek is an edge
with vi as one of its vertices and will be 0 otherwise [why?]. So now we get
(MM t)ii = deg(vi), as claimed. This proves (a).

(b) Clear by (a), since the diagonal elements of MM t are all equal to
d.

Now assume that G is connected, and let M 0(G) be M(G) with its last
row removed. Thus M 0(G) has p − 1 rows and q columns. Note that the
number of rows is equal to the number of edges in a spanning tree of G. We
call M 0(G) the reduced incidence matrix of G. The next result tells us the
determinants (up to sign) of all (p−1)× (p−1) submatrices N of M 0. Such
submatrices are obtained by choosing a set X = {ei1, . . . , eip−1} of p−1 edges
of G, and taking all columns of M 0 indexed by the set S = {i1, . . . , ip−1}.
Thus this submatrix is just M 0[S]. For convenience we will not bother to
distinguish between the set S of indices with the corresponding set X of
edges.

9.7 Lemma. Let S be a set of p− 1 edges of G. If S does not form the set
of edges of a spanning tree, then det M 0[S] = 0. If, on the other hand, S is
the set of edges of a spanning tree of G, then det M 0[S] = ±1.
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Proof. If S is not the set of edges of a spanning tree, then some subset R of
S forms the edges of a cycle C in G. Suppose that the cycle C defined by
R has edges f1, . . . , fs in that order. Multiply the column of M 0[S] indexed
by fj by 1 if in going around C we traverse fi in the direction of its arrow;
otherwise multiply the column by −1. Then add these modified columns.
It is easy to see (check a few small examples to convince yourself) that we
get the 0 column. Hence the columns of M 0[S] are linearly dependent, so
det M 0[S] = 0, as claimed.

Now suppose that S is the set of edges of a spanning tree T . Let e be an
edge of T which is connected to vp (the vertex which indexed the bottom row
of M , i.e., the row removed to get M 0). The column of M 0[S] indexed by e
contains exactly one nonzero entry [why?], which is ±1. Remove from M 0[S]
the row and column containing the nonzero entry of column e, obtaining a
(p− 2)× (p− 2) matrix M ′

0. Note that det M 0[S] = ± det M ′
0 [why?]. Let

T ′ be the tree obtained from T by contracting the edge e to a single vertex
(so that vp and the remaining vertex of e are merged into a single vertex u).
Then M ′

0 is just the matrix obtained from the incidence matrix M(T ′) by
removing the row indexed by u [why?]. Hence by induction on the number
p of vertices (the case p = 1 being trivial), we have det M ′

0 = ±1. Thus
det M 0[S] = ±1, and the proof follows.

Note. An alternative way of seeing that det M 0[S] = ±1 when S is the
set of edges of a spanning tree T is as follows. Let u1, u2, . . . , up−1 be an
ordering of the vertices v1, . . . , vp−1 such that ui is an endpoint of the tree
obtained from T by removing vertices u1, . . . , ui−1. (It is easy to see that
such an ordering is possible.) Permute the rows of M 0[S] so that the ith row
is indexed by ui. Then permute the columns in the order e1, . . . , ep−1 so that
ei is the unique edge adjacent to ui after u1, . . . , ui−1 have been removed.
Then we obtain a lower triangular matrix with ±1’s on the main diagonal,
so the determinant is ±1.

We have now assembled all the ingredients for the main result of this
chapter. Recall that κ(G) denotes the number of spanning trees of G.

9.8 Theorem (the Matrix-Tree Theorem). Let G be a finite connected graph
without loops, with laplacian matrix L = L(G). Let L0 denote L with the
last row and column removed (or with the ith row and column removed for
any i). Then

det L0 = κ(G).
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Proof. Since L = MM t (Lemma 9.6(a)), it follows immediately that L0 =
M 0M

t
0. Hence by the Binet-Cauchy theorem (Theorem 9.4), we have

det L0 =
∑

S

(det M 0[S])(det M t
0[S]), (9.4)

where S ranges over all (p−1)-element subsets of {1, 2, . . . , q} (or equivalently,
over all (p − 1)-element subsets of the set of edges of G). Since in general
At[S] = A[S]t, equation (9.4) becomes

det L0 =
∑

S

(det M 0[S])2. (9.5)

According to Lemma 9.7, det M 0[S] is ±1 if S forms the set of edges of a
spanning tree of G, and is 0 otherwise. Therefore the term indexed by S in
the sum on the right-hand side of (9.5) is 1 if S forms the set of edges of a
spanning tree of G, and is 0 otherwise. Hence the sum is equal to κ(G), as
desired.

The operation of removing a row and column from L(G) may seem some-
what contrived. We would prefer a description of κ(G) directly in terms of
L(G). Such a description will follow from the next lemma.

9.9 Lemma. Let M be a p × p matrix (with entries in a field) such that
the sum of the entries in every row and column is 0. Let M0 be the matrix
obtained from M by removing the last row and last column (or more generally,
any row and any column). Then the coefficient of x in the characteristic
polynomial det(M − xI) of M is equal to −p · det(M0). (Moreover, the
constant term of det(M − xI) is 0.)

Proof. The constant term of det(M −xI) is detM , which is 0 since the rows
of M sum to 0.

For simplicity we prove the rest of the lemma only for removing the last
row and column, though the proof works just as well for any row and column.
Add all the rows of M −xI except the last row to the last row. This doesn’t
affect the determinant, and will change the entries of the last row all to −x
(since the rows of M sum to 0). Factor out −x from the last row, yielding a
matrix N(x) satisfying det(M − xI) = −x detN(x). Hence the coefficient of
x in det(M − xI) is given by − detN(0). Now add all the columns of N(0)
except the last column to the last column. This does not affect detN(0).
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Because the columns of M sum to 0, the last column of N(0) becomes the
column vector [0, 0, . . . , 0, p]t. Expanding the determinant by the last column
shows that detN(0) = p · detM0, and the proof follows.

9.10 Corollary. (a) Let G be a connected (loopless) graph with p vertices.
Suppose that the eigenvalues of L(G) are µ1, . . . , µp−1, µp, with µp = 0.
Then

κ(G) =
1

p
µ1µ2 · · ·µp−1.

(b) Suppose that G is also regular of degree d, and that the eigenvalues of
A(G) are λ1, . . . , λp−1, λp, with λp = d. Then

κ(G) =
1

p
(d− λ1)(d− λ2) · · · (d− λp−1).

Proof. (a) We have

det(L− xI) = (µ1 − x) · · · (µp−1 − x)(µp − x)
= −(µ1 − x)(µ2 − x) · · · (µp−1 − x)x.

Hence the coefficient of x is−µ1µ2 · · ·µp−1. By Lemma 9.9, we get−µ1µ2 · · ·µp−1 =
p · det(L0). By Theorem 9.8 we have det(L0) = κ(G), and the proof follows.

(b) Immediate from (a) and Lemma 9.6(b).

Let us look at a couple of examples of the use of the Matrix-Tree Theorem.

9.11 Example. Let G = Kp, the complete graph on p vertices. Now Kp is
regular of degree d = p − 1, and by Proposition 1.5 its eigenvalues are −1
(p− 1 times) and p− 1 = d. Hence from Corollary 9.10 there follows

κ(Kp) =
1

p
((p− 1)− (−1))p−1 = pp−2.

Naturally a combinatorial proof of such an elegant result is desirable. In the
Appendix to this chapter we give three such proofs.

9.12 Example. Let G = Cn, the n-cube discussed in Chapter 2. Now Cn

is regular of degree n, and by Corollary 2.4 its eigenvalues are n − 2i with
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multiplicity
(

n
i

)
for 0 ≤ i ≤ n. Hence from Corollary 9.10 there follows the

amazing result

κ(Cn) =
1

2n

n∏

i=1

(2i)(
n
i)

= 22n−n−1

n∏

i=1

i(
n
i).

A direct combinatorial proof (though not an explicit bijection) was found by
O. Bernardi in 2012.
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APPENDIX: THREE ELEGANT COMBINATORIAL
PROOFS

In this appendix we give three elegant combinatorial proofs that the num-
ber of spanning trees of the complete graph Kp is pp−2 (Example 9.11). The
proofs are given in chronological order of their discovery.

First proof (Prüfer). Given a spanning tree T of Kp, i.e., a tree on the
vertex set [p], remove the largest endpoint (leaf) v and write down the vertex
a1 adjacent to v. Continue this procedure until only two vertices remain,
obtaining a sequence (a1, . . . , ap−2) ∈ [p]p−2, called the Prüfer sequence of T .
For the tree below, we first remove 11 and then record 8. Next remove 10
and record 1. Then remove 8 and record 4, etc., ending with the sequence
(8, 1, 4, 4, 1, 4, 9, 1, 9) and leaving the two vertices 1 and 9.

6

3

1

27

94
5 10

8
11

We claim that the map just defined from trees T on [p] to sequences
(a1, . . . , ap−2) ∈ [p]p−2 is a bijection, thereby completing the proof since
clearly [p]p−2 has pp−2 elements. The crucial observation is that the first
vertex to be removed from T is the largest vertex of T missing from the se-
quence [why? — this takes a little thought]. This vertex is adjacent to a1. For
our example, we get that 11 was the first vertex removed, and that 11 is ad-
jacent to 8. We can now proceed recursively. If T1 denotes T with the largest
missing vertex removed, then the Prüfer sequence of T1 is (a2, . . . , ap−2). The
first vertex to be removed from T1 is the largest vertex of T2 missing from
(a2, . . . , ap−2). This missing vertex is adjacent to a2. For our example, this
missing vertex is 10 (since 11 is not a vertex of T2), which is adjacent to 1.
Continuing in this way, we determine one new edge of T at each step. At the
end we have found p − 2 edges, and the remaining two unremoved vertices
form the (p− 1)st edge.

Second proof (Joyal). A doubly-rooted tree is a tree T with one vertex
u labelled S (for “start”) and one vertex v (which may equal u) labelled E
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(“end”). Let t(p) be the number of trees T on the vertex set [p], and let d(p)
be the number of doubly-rooted trees on [p]. Thus

d(p) = p2t(p), (9.6)

since once we have chosen T there are p choices for u and p choices for v.

Let T be a doubly-rooted tree. There is a unique path from S to E, say
with vertices S = b1, b2, . . . , bk = E (in that order). The following diagram
shows such a doubly-rooted tree.

14

E
11 10 15 7 5 2 3

6 9
1 16

813

4 12 17

S

Let a1 < a2 < · · · < ak be the increasing rearrangement of the num-
bers b1, b2, . . . , bk. Let π be the permutation of the set {a1, . . . , ak} given
by π(ai) = bi. Let Dπ be the digraph of π, that is, the vertex set of Dπ is
{a1, . . . , ak}, with a directed edge ai → bi for 1 ≤ i ≤ k. Since any permu-
tation π of a finite set is a disjoint product of cycles, it follows that Dπ is
a disjoint union of directed cycles (all edges of each cycle point in the same
direction as we traverse the cycle). For the example above, we have k = 7,
(b1, . . . , b7) = (11, 10, 15, 7, 5, 2, 3) and (a1, . . . , a7) = (2, 3, 5, 7, 10, 11, 15).
The digraph Dπ is shown below.

7

2

11 15 5

3 10

Now attach to each vertex v ofDπ the same subgraph Tv that was attached
“below” v in T , and direct the edges of Tv toward v, obtaining a digraph DT .
For our example we get
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11 15 5

6

14 13 8

16
1

2

7

4 12 17

3 10

9

The graph DT has the crucial property that every vertex has outdegree
one, that is, one arrow pointing out. In other words, DT is the graph of a
function f : [p] → [p], with vertex set [p] and edges i → f(i). Conversely,
given a function f : [p] → [p], all the above steps can be reversed to ob-
tain a unique doubly-rooted tree T for which DT is the graph of f . We
have therefore found a bijection from doubly-rooted trees on [p] to functions
f : [p] → [p]. Since the number of such functions f is pp, it follows that
d(p) = pp. Then from equation (9.6) we get t(p) = pp−2.

Third proof (Pitman). A forest is a graph without cycles; thus every
connected component is a tree. A planted forest is a forest F for which every
component T has a distinguished vertex rT (called the root of T ). Thus if a
component T has k vertices, then there are k ways to choose the root of T .

Let Pp be the set of all planted forests on [p]. Let uv be an edge of a
forest F ∈ Pp such that u is closer than v to the root r of its component.
Define F to cover the rooted forest F ′ if F ′ is obtained by removing the edge
uv from F , and rooting the new tree containing v at v. This definition of
cover defines the covering relation of a partial order on Pp. Under this partial
order Pp is graded of rank p− 1. The rank of a forest F in Pp is its number
of edges. The following diagram shows the poset P3, with the root of each
tree being its top vertex.
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It is an easy exercise to see that an element F of Pp of rank i covers i
elements and is covered by (p− i− 1)p elements. We now count in two ways
the number Mp of maximal chains of Pp. On the one hand, we can start at
the top. The number of maximal elements of Pp is p · t(p), where t(p) as
above is the number of trees on the vertex set [p], since there are p ways to
choose the root of such a tree. Once a maximal element F is chosen, then
there are p−1 elements F ′ that it covers, then p−2 elements that F ′ covers,
etc., giving

Mp = p · t(p)(p− 1)! = p! t(p). (9.7)

On the other hand, we can start at the bottom. There is a unique element
F of rank one (the planted forest with no edges), then (p− 1)p elements F ′

that cover F , then (p− 2)p elements that cover F ′, etc., giving

Mp = pp−1(p− 1)!. (9.8)

Comparing equations (9.7) and (9.8) gives t(p) = pp−2.
Our third proof isn’t an explicit bijection like the first two proofs. On the

other hand, it has the virtue of not depending on the names of the vertices.
Note that in the first two proofs it is necessary to know when one vertex is
larger than another.

Notes for Chapter 9
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The concept of tree as a formal mathematical object goes back to G.
Kirchhoff and K.G.C. von Staudt. Trees were first extensively investigated
by A. Cayley, to whom the term “tree” is due. In particular, in [24] Cayley
states the formula κ(Kp) = pp−2 for the number of spanning trees of Kp, and
he gives a vague idea of a combinatorial proof. Because of this paper, Cayley
is often credited with the enumeration of labelled trees. Cayley pointed
out, however, that an equivalent result had been proved earlier by C.W.
Borchardt [11]. Moreover, this result appeared even earlier in a paper of
J. J. Sylvester [113]. Undoubtedly Cayley and Sylvester could have furnished
a complete, rigorous proof had they the inclination to do so. The elegant
combinatorial proofs given in the appendix are due to E.P.H. Prüfer [91], A.
Joyal [62, Exam. 12, pp. 15–16] and J.W. Pitman [85].

The Matrix-Tree Theorem (Theorem 9.8) was first proved by C.W. Bor-
chardt [11] in 1860, though a similar result had earlier been published by
J. J. Sylvester [113] in 1857. Cayley [23, p. 279] in fact in 1856 referred to
the not-yet-published work of Sylvester. For further historical information
on the Matrix-Tree theorem, see Moon [79, p. 42].



Chapter 10

Eulerian digraphs and oriented
trees

A famous problem which goes back to Euler asks for what graphs G is there
a closed walk which uses every edge exactly once. (There is also a version for
non-closed walks.) Such a walk is called an Eulerian tour (also known as an
Eulerian cycle). A graph which has an Eulerian tour is called an Eulerian
graph. Euler’s famous theorem (the first real theorem of graph theory) states
that a graph G without isolated vertices (which clearly would be irrelevant) is
Eulerian if and only if it is connected and every vertex has even degree. Here
we will be concerned with the analogous theorem for directed graphs. We
want to know not just whether an Eulerian tour exists, but how many there
are. We will prove an elegant determinantal formula for this number closely
related to the Matrix-Tree Theorem. For the case of undirected graphs no
analogous formula is known, explaining why we consider only the directed
case.

A (finite) directed graph or digraph D consists of a vertex set V =
{v1, . . . , vp} and edge set E = {e1, . . . , eq}, together with a function ϕ : E →
V × V (the set of ordered pairs (u, v) of elements of V ). If ϕ(e) = (u, v),
then we think of e as an arrow from u to v. We then call u the initial ver-
tex and v the final vertex of e. (These concepts arose in the definition of
an orientation in Definition 8.5.) A tour in D is a sequence e1, e2, . . . , er of
distinct edges such that the final vertex of ei is the initial vertex of ei+1 for
all 1 ≤ i ≤ r− 1, and the final vertex of er is the initial vertex of e1. A tour
is Eulerian if every edge of D occurs at least once (and hence exactly once).
A digraph which has no isolated vertices and contains an Eulerian tour is

189
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called an Eulerian digraph. Clearly an Eulerian digraph is connected. The
outdegree of a vertex v, denoted outdeg(v), is the number of edges of D with
initial vertex v. Similarly the indegree of v, denoted indeg(v), is the number
of edges of D with final vertex v. A loop (edge e for which ϕ(e) = (v, v))
contributes one to both the indegree and outdegree. A digraph is balanced if
indeg(v) = outdeg(v) for all vertices v.

10.1 Theorem. A digraph D without isolated vertices is Eulerian if and
only if it is connected and balanced.

Proof. Assume D is Eulerian, and let e1, . . . , eq be an Eulerian tour. As we
move along the tour, whenever we enter a vertex v we must exit it, except
at the very end we enter the final vertex v of eq without exiting it. However,
at the beginning we exited v without having entered it. Hence every vertex
is entered as often as it is exited and so must have the same outdegree as
indegree. ThereforeD is balanced, and as noted aboveD is clearly connected.

Now assume that D is balanced and connected. We may assume that D
has at least one edge. We first claim that for any edge e of D, D has a tour
for which e = e1. If e1 is a loop we are done. Otherwise we have entered
the vertex fin(e1) for the first time, so since D is balanced there is some exit
edge e2. Either fin(e2) = init(e1) and we are done, or else we have entered
the vertex fin(e2) once more than we have exited it. Since D is balanced
there is new edge e3 with fin(e2) = init(e3). Continuing in this way, either
we complete a tour or else we have entered the current vertex once more than
we have exited it, in which case we can exit along a new edge. Since D has
finitely many edges, eventually we must complete a tour. Thus D does have
a tour which uses e1.

Now let e1, . . . , er be a tour C of maximum length. We must show that
r = q, the number of edges of D. Assume to the contrary that r < q. Since in
moving along C every vertex is entered as often as it is exited (with init(e1)
exited at the beginning and entered at the end), when we remove the edges
of C from D we obtain a digraph H which is still balanced, though it need
not be connected. However, since D is connected, at least one connected
component H1 of H contains at least one edge and has a vertex v in common
with C [why?]. Since H1 is balanced, there is an edge e of H1 with initial
vertex v. The argument of the previous paragraph shows that H1 has a tour
C ′ of positive length beginning with the edge e. But then when moving along
C, when we reach v we can take the “detour” C ′ before continuing with C.
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This gives a tour of length longer than r, a contradiction. Hence r = q, and
the theorem is proved.

Our primary goal is to count the number of Eulerian tours of a connected
balanced digraph. A key concept in doing so is that of an oriented tree.
An oriented tree with root v is a (finite) digraph T with v as one of its
vertices, such that there is a unique directed path from any vertex u to v.
In other words, there is a unique sequence of edges e1, . . . , er such that (a)
init(e1) = u, (b) fin(er) = v, and (c) fin(ei) = init(ei+1) for 1 ≤ i ≤ r − 1.
It’s easy to see that this means that the underlying undirected graph (i.e.,
“erase” all the arrows from the edges of T ) is a tree, and that all arrows in T
“point toward” v. There is a surprising connection between Eulerian tours
and oriented trees, given by the next result.

10.2 Theorem. Let D be a connected balanced digraph with vertex set V .
Fix an edge e of D, and let v = init(e). Let τ(D, v) denote the number
of oriented (spanning) subtrees of D with root v, and let ǫ(D, e) denote the
number of Eulerian tours of D starting with the edge e. Then

ǫ(D, e) = τ(D, v)
∏

u∈V

(outdeg(u)− 1)!. (10.1)

Proof. Let e = e1, e2, . . . , eq be an Eulerian tour E in D. For each vertex
u 6= v, let e(u) be the “last exit” from u in the tour, i.e., let e(u) = ej where
init(e(u)) = u and init(ek) 6= u for any k > j.

Claim #1. The vertices of D, together with the edges e(u) for all vertices
u 6= v, form an oriented subtree of D with root v.

Proof of Claim #1. This is a straightforward verification. Let T be the
spanning subgraph of D with edges e(u), u 6= v. Thus if #V = p, then T has
p vertices and p − 1 edges [why?]. There are three items to check to insure
that T is an oriented tree with root v:

(a) T does not have two edges f and f ′ satisfying init(f) = init(f ′). This
is clear since both f and f ′ can’t be last exits from the same vertex.

(b) T does not have an edge f with init(f) = v. This is clear since by
definition the edges of T consist only of last exits from vertices other
than v, so no edge of T can exit from v.
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(c) T does not have a (directed) cycle C. For suppose C were such a cycle.
Let f be that edge of C which occurs after all the other edges of C in
the Eulerian tour E . Let f ′ be the edge of C satisfying fin(f) = init(f ′)
(= u, say). We can’t have u = v by (b). Thus when we enter u via
f , we must exit u. We can’t exit u via f ′ since f occurs after f ′ in E .
Hence f ′ is not the last exit from u, contradicting the definition of T .

It’s easy to see that conditions (a)–(c) imply that T is an oriented tree with
root v, proving the claim.

Claim #2. We claim that the following converse to Claim #1 is true.
Given a connected balanced digraph D and a vertex v, let T be an oriented
(spanning) subtree of D with root v. Then we can construct an Eulerian tour
E as follows. Choose an edge e1 with init(e1) = v. Then continue to choose
any edge possible to continue the tour, except we never choose an edge f
of T unless we have to, i.e., unless it’s the only remaining edge exiting the
vertex at which we stand. Then we never get stuck until all edges are used,
so we have constructed an Eulerian tour E . Moreover, the set of last exits
of E from vertices u 6= v of D coincides with the set of edges of the oriented
tree T .

Proof of Claim #2. Since D is balanced, the only way to get stuck is to
end up at v with no further exits available, but with an edge still unused.
Suppose this is the case. At least one unused edge must be a last exit edge,
i.e., an edge of T [why?]. Let u be a vertex of T closest to v in T such that
the unique edge f of T with init(f) = u is not in the tour. Let y = fin(f).
Suppose y 6= v. Since we enter y as often as we leave it, we don’t use the
last exit from y. Thus y = v. But then we can leave v, a contradiction. This
proves Claim #2.

We have shown that every Eulerian tour E beginning with the edge e
has associated with it a “last exit” oriented subtree T = T (E) with root
v = init(e). Conversely, given an oriented subtree T with root v, we can
obtain all Eulerian tours E beginning with e and satisfying T = T (E) by
choosing for each vertex u 6= v the order in which the edges from u, except
the edge of T , appear in E ; as well as choosing the order in which all the
edges from v except for e appear in E . Thus for each vertex u we have
(outdeg(u)− 1)! choices, so for each T we have

∏
u(outdeg(u)− 1)! choices.

Since there are τ(D, v) choices for T , the proof is complete.
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10.3 Corollary. Let D be a connected balanced digraph, and let v be a vertex
of D. Then the number τ(D, v) of oriented subtrees with root v is independent
of v.

Proof. Let e be an edge with initial vertex v. By equation (10.1), we need to
show that the number ǫ(D, e) of Eulerian tours beginning with e is indepen-
dent of e. But e1e2 · · · eq is an Eulerian tour if and only if eiei+1 · · · eqe1e2 · · · ei−1

is also an Eulerian tour, and the proof follows [why?].

What we obviously need to do next is find a formula for τ(D, v). This
result turns out to be very similar to the Matrix-Tree Theorem, and indeed we
will show (Example 10.6) that the Matrix-Tree Theorem is a simple corollary
to Theorem 10.4.

10.4 Theorem. Let D be a connected digraph with vertex set V = {v1, . . . , vp}
and with li loops at vertex vi. Let L(D) be the p× p matrix defined by

Lij =






−mij , if i 6= j and there are mij edges with
initial vertex vi and final vertex vj

outdeg(vi)− li, if i = j.

(Thus L is the directed analogue of the laplacian matrix of an undirected
graph.) Let L0 denote L with the last row and column deleted. Then

det L0 = τ(D, vp). (10.2)

Note. If we remove the ith row and column from L instead of the last row
and column, then equation (10.2) still holds with vp replaced with vi.

Proof (sketch). Induction on q, the number of edges of D. The fewest
number of edges which D can have is p− 1 (since D is connected). Suppose
then that D has p− 1 edges, so that as an undirected graph D is a tree. If
D is not an oriented tree with root vp, then some vertex vi 6= vp of D has
outdegree 0 [why?]. Then L0 has a zero row, so det L0 = 0 = τ(D, vp). If
on the other hand D is an oriented tree with root vp, then an argument like
that used to prove Lemma 9.7 (in the case when S is the set of edges of a
spanning tree) shows that det L0 = 1 = τ(D, vp).

Now assume that D has q > p − 1 edges, and assume the theorem for
digraphs with at most q − 1 edges. We may assume that no edge f of D
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has initial vertex vp, since such an edge belongs to no oriented tree with root
vp and also makes no contribution to L0. It then follows, since D has at
least p edges, that there exists a vertex u 6= vp of D of outdegree at least
two. Let e be an edge with init(e) = u. Let D1 be D with the edge e
removed. Let D2 be D with all edges e′ removed such that init(e) = init(e′)
and e′ 6= e. (Note that D2 is strictly smaller than D since outdeg(u) ≥ 2.)
By induction, we have det L0(D1) = τ(D1, vp) and det L0(D2) = τ(D2, vp).
Clearly τ(D, vp) = τ(D1, vp) + τ(D2, vp), since in an oriented tree T with
root vp, there is exactly one edge whose initial vertex coincides with that of
e. On the other hand, it follows immediately from the multilinearity of the
determinant [why?] that

det L0(D) = det L0(D1) + det L0(D2).

From this the proof follows by induction. �

10.5 Corollary. Let D be a connected balanced digraph with vertex set V =
{v1, . . . , vp}. Let e be an edge of D. Then the number ǫ(D, e) of Eulerian
tours of D with first edge e is given by

ǫ(D, e) = (det L0(D))
∏

u∈V

(outdeg(u)− 1)!.

Equivalently (since D is balanced, so Lemma 9.9 applies), if L(D) has eigen-
values µ1, . . . , µp with µp = 0, then

ǫ(D, e) =
1

p
µ1 · · ·µp−1

∏

u∈V

(outdeg(u)− 1)!.

Proof. Combine Theorems 10.2 and 10.4.

10.6 Example (the Matrix-Tree Theorem revisited). Let G = (V,E, ϕ) be

a connected loopless undirected graph. Let Ĝ = (V, Ê, ϕ̂) be the digraph
obtained from G by replacing each edge e of G, where ϕ(e) = {u, v}, with a
pair e′ and e′′ of directed edges satisfying ϕ̂(e′) = (u, v) and ϕ̂(e′′) = (v, u).

Clearly Ĝ is balanced and connected. Choose a vertex v of G. There is
an obvious one-to-one correspondence between spanning trees T of G and
oriented spanning trees T̂ of Ĝ with root v, namely, direct each edge of T
toward v. Moreover, L(G) = L(Ĝ) [why?]. Hence the Matrix-Tree Theorem
is an immediate consequence of Theorem 10.4.
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10.7 Example (the efficient mail carrier). A mail carrier has an itinerary of
city blocks to which he (or she) must deliver mail. He wants to accomplish
this by walking along each block twice, once in each direction, thus passing
along houses on each side of the street. He also wants to end up where he
started, which is where his car is parked. The blocks form the edges of a
graph G, whose vertices are the intersections. The mail carrier wants simply
to walk along an Eulerian tour in the digraph Ĝ of the previous example.
Making the plausible assumption that the graph is connected, not only does
an Eulerian tour always exist, but we can tell the mail carrier how many
there are. Thus he will know how many different routes he can take to avoid
boredom. For instance, suppose G is the 3× 3 grid illustrated below.
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r

r

r

r

r

r

r

This graph has 192 spanning trees. Hence the number of mail carrier
routes beginning with a fixed edge (in a given direction) is 192 · 1!4 2!4 3! =
18432. The total number of routes is thus 18432 times twice the number of
edges [why?], viz., 18432×24 = 442368. Assuming the mail carrier delivered
mail 250 days a year, it would be 1769 years before he would have to repeat
a route!

10.8 Example (binary de Bruijn sequences). A binary sequence is just a
sequence of 0’s and 1’s. A binary de Bruijn sequence of degree n is a bi-
nary sequence A = a1a2 · · ·a2n such that every binary sequence b1 · · · bn of
length n occurs exactly once as a “circular factor” of A, i.e., as a sequence
aiai+1 · · ·ai+n−1, where the subscripts are taken modulo 2n if necessary. For
instance, some circular factors of the sequence abcdefg are a, bcde, fgab, and
defga. Note that there are exactly 2n binary sequences of length n, so the
only possible length of a binary de Bruijn sequence of degree n is 2n [why?].
Clearly any cyclic shift aiai+1 · · ·a2na1a2 · · ·ai−1 of a binary de Bruijn se-
quence a1a2 · · ·a2n is also a binary de Bruijn sequence, and we call two such
sequences equivalent. This relation of equivalence is obviously an equivalence
relation, and every equivalence class contains exactly one sequence beginning
with n 0’s [why?]. Up to equivalence, there is one binary de Bruijn sequence
of degree two, namely, 0011. It’s easy to check that there are two inequivalent
binary de Bruijn sequences of degree three, namely, 00010111 and 00011101.
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However, it’s not clear at this point whether binary de Bruijn sequences exist
for all n. By a clever application of Theorems 10.2 and 10.4, we will not only
show that such sequences exist for all positive integers n, but we will also
count the number of them. It turns out that there are lots of them. For
instance, the number of inequivalent binary de Bruijn sequences of degree
eight is equal to

1329227995784915872903807060280344576,

as the reader can easily check by writing down all these sequences. De Bruijn
sequences have a number of interesting applications to the design of switching
networks and related topics.

Our method of enumerating binary de Bruijn sequences will be to set
up a correspondence between them and Eulerian tours in a certain directed
graph Dn, the de Bruijn graph of degree n. The graph Dn has 2n−1 vertices,
which we will take to consist of the 2n−1 binary sequences of length n− 1. A
pair (a1a2 · · ·an−1, b1b2 · · · bn−1) of vertices forms an edge of Dn if and only if
a2a3 · · ·an−1 = b1b2 · · · bn−2, i.e., e is an edge if the last n− 2 terms of init(e)
agree with the first n−2 terms of fin(e). Thus every vertex has indegree two
and outdegree two [why?], so Dn is balanced. The number of edges of Dn is
2n. Moreover, it’s easy to see that Dn is connected (see Lemma 10.9). The
graphs D3 and D4 look as follows:

01

00100

10

11

111

110

100

000

011

010 101

Suppose that E = e1e2 · · · e2n is an Eulerian tour in Dn. If fin(ei) is the
binary sequence ai,1ai,2 · · ·ai,n−1, then replace ei in E by the last bit ai,n−1.
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For instance, the Eulerian tour (where we simply write the vertices)

000, 000, 001, 010, 101, 011, 111, 111, 110, 101, 010, 100, 001, 011, 110, 100, 000

corresponds to the de Bruijn sequence 0101111010011000 (the last bits of
the vertices above, excluding the first vertex 000). It is easy to see that the
resulting sequence β(E) = a1,n−1a2,n−1 · · ·a2n,n−1 is a binary de Bruijn se-
quence, and conversely every binary de Bruijn sequence arises in this way. In
particular, since Dn is balanced and connected there exists at least one binary
de Bruijn sequence. In order to count the total number of such sequences,
we need to compute det L(Dn). One way to do this is by a clever but messy
sequence of elementary row and column operations which transforms the de-
terminant into triangular form. We will give instead an elegant computation
of the eigenvalues of L(Dn) based on the following simple lemma.

10.9 Lemma. Let u and v be any two vertices of Dn. Then there is a unique
(directed) walk from u to v of length n− 1.

Proof. Suppose u = a1a2 · · ·an−1 and v = b1b2 · · · bn−1. Then the unique
path of length n− 1 from u to v has vertices

a1a2 · · ·an−1, a2a3 · · ·an−1b1, a3a4 · · ·an−1b1b2, . . . ,

an−1b1 · · · bn−2, b1b2 · · · bn−1.

10.10 Theorem. The eigenvalues of L(Dn) are 0 (with multiplicity one)
and 2 (with multiplicity 2n−1 − 1).

Proof. Let A(Dn) denote the directed adjacency matrix of Dn, i.e., the rows
and columns are indexed by the vertices, with

Auv =

{
1, if (u, v) is an edge
0, otherwise.

Now Lemma 10.9 is equivalent to the assertion that An−1 = J , the 2n−1×2n−1

matrix of all 1’s [why?]. If the eigenvalues of A are λ1, . . . λ2n−1 , then the
eigenvalues of J = An−1 are λn−1

1 , . . . , λn−1
2n−1 . By Lemma 1.4, the eigenvalues

of J are 2n−1 (once) and 0 (2n−1 − 1 times). Hence the eigenvalues of A are
2ζ (once, where ζ is an (n − 1)-st root of unity to be determined), and 0
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(2n−1−1 times). Since the trace of A is 2, it follows that ζ = 1, and we have
found all the eigenvalues of A.

Now L(Dn) = 2I −A(Dn) [why?]. Hence the eigenvalues of L are 2 −
λ1, . . . , 2 − λ2n−1 , and the proof follows from the above determination of
λ1, . . . , λ2n−1 .

10.11 Corollary. The number B0(n) of binary de Bruijn sequences of degree
n beginning with n 0’s is equal to 22n−1−n. The total number B(n) of binary
de Bruijn sequences of degree n is equal to 22n−1

.

Proof. By the above discussion, B0(n) is the number of Eulerian tours in Dn

whose first edge is the loop at vertex 00 · · ·0. Moreover, the outdegree of
every vertex of Dn is two. Hence by Corollary 10.5 and Theorem 10.10 we
have

B0(n) =
1

2n−1
22n−1−1 = 22n−1−n.

Finally, B(n) is obtained from B0(n) by multiplying by the number 2n of
edges, and the proof follows.

Note that the total number of binary sequences of length 2n is N = 22n
.

By the previous corollary, the number of these which are de Bruijn sequences
is just

√
N . This suggests the following problem, which remained open until

2009. Let An be the set of all binary sequences of length 2n. Let Bn be the
set of binary de Bruijn sequences of degree n. Find an explicit bijection

ψ : Bn × Bn → An, (10.3)

thereby giving a combinatorial proof of Corollary 10.11.

Notes for Chapter 10

The characterization of Eulerian digraphs given by Theorem 10.1 is a
result of I. J. Good [46], while the fundamental connection between oriented
subtrees and Eulerian tours in a balanced digraph that was used to prove
Theorem 10.2 was shown by T. van Aardenne-Ehrenfest and N.G. de Bruijn
[1, Thm. 5a]. This result is sometimes called the BEST Theorem, after
de Bruijn, van Aardenne-Ehrenfest, Smith, and Tutte. However, Smith
and Tutte were not involved in the original discovery. (In [101] Smith and
Tutte give a determinantal formula for the number of Eulerian tours in a
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special class of balanced digraphs. Van Aardenne-Ehrenfest and de Bruijn
refer to the paper of Smith and Tutte in a footnote added in proof.) The
determinantal formula for the number of oriented subtrees of a directed graph
(Theorem 10.4) is due to Tutte [118, Thm. 3.6].

De Bruijn sequences are named from the paper [15] of de Bruijn, where
they are enumerated in the binary case. However, it was discovered by R.
Stanley in 1975 that this work had been done earlier by C. Flye Sainte-
Marie [36] in 1894, as reported by de Bruijn [17]. The generalization to d-ary
de Bruijn sequences (Exercise 10.2) is to T. van Ardenne-Ehrenfest and de
Bruijn [1]. Some recent work in this area appears in a special issue [111] of
Discrete Mathematics. Some entertaining applications to magic are given by
P. Diaconis and R. Graham [30, Chs. 2–4]. The bijection ψ of equation (10.3)
is due to H. Bidkhori and S. Kishore. [9].



Chapter 11

Cycles, bonds, and electrical
networks

11.1 The cycle space and bond space

In this chapter we will deal with some interesting linear algebra related to
the structure of a directed graph. Let D = (V,E) be a digraph. A function
f : E → R is called a circulation if for every vertex v ∈ V , we have

∑

e∈E
init(e)=v

f(e) =
∑

e∈E
fin(e)=v

f(e). (11.1)

Thus if we think of the edges as pipes and f as measuring the flow (quantity
per unit of time) of some commodity (such as oil) through the pipes in the
specified direction (so that a negative value of f(e) means a flow of |f(e)|
in the direction opposite the direction of e), then equation (11.1) simply
says that the amount flowing into each vertex equals the amount flowing
out. In other words, the flow is conservative. The figure below illustrates a
circulation in a digraph D.
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Let C = CD denote the set of all circulations on D. Clearly if f, g ∈ C and
α, β ∈ R then αf + βg ∈ C. Hence C is a (real) vector space, called the cycle
space of D. Thus if q = #E, then CD is a subspace of the q-dimensional
vector space RE of all functions f : E → R.

What do circulations have do with something “circulating,” and what
does the cycle space have to do with actual cycles? To see this, define a
circuit or elementary cycle in D to be a set of edges of a closed walk, ignoring
the direction of the arrows, with no repeated vertices except the first and
last. Suppose that C has been assigned an orientation (direction of travel)
o. (Note that this meaning of orientation is not the same as that appearing
in Definition 9.5.)

Define a function fC : E → R (which also depends on the orientation o,
though we suppress it from the notation) by

fC(e) =






1, if e ∈ C and e agrees with o

−1, if e ∈ C and e is opposite to o

0, otherwise.

It is easy to see that fC is a circulation. Later we will see that the circu-
lations fC span the cycle space C, explaining the terminology “circulation”
and “cycle space.” The figure below shows a circuit C with an orientation o,
and the corresponding circulation fC .

1

−1−1

−1

1
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Given a function ϕ : V → R, called a potential onD, define a new function
δϕ : E → R, called the coboundary1 of ϕ, by

δϕ(e) = ϕ(v)− ϕ(u), if u = init(e) and v = fin(e).

Figure 11.1 shows a digraph D with the value ϕ(v) of some function ϕ : V →
R indicated at each vertex v, and the corresponding values δϕ(e) shown at
each edge e.

One should regard δ as an operator which takes an element ϕ of the vector
space RV of all functions V → R and produces an element of the vector space
RE of all functions E → R. It is immediate from the definition of δ that δ is
linear, i.e.,

δ(aϕ1 + bϕ2) = a · δϕ1 + b · δϕ2,

for all ϕ1, ϕ2 ∈ RV and a, b ∈ R. Thus δ is simply a linear transformation
δ : RV → RE between two finite-dimensional vector spaces.

A function g : E → R is called a potential difference on D if g = δϕ for
some ϕ : V → R. (Later we will see the connection with electrical networks
that accounts for the terminology “potential difference.”) Let B = BD be the
set of all potential differences on D. Thus B is just the image of the linear
transformation δ and is hence a real vector space, called the bond space of
D.

Let us explain the reason behind the terminology “bond space.” A bond in
a digraph D is a set B of edges such that (a) removing B from D disconnects

1The term “coboundary” arises from algebraic topology, but we will not explain the
connection here.
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Figure 11.1: A function (potential) and its coboundary
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some (undirected) component of D (that is, removing B creates a digraph
which has more connected components, as an undirected graph, than D), and
(b) no proper subset of B has this property. A subset of edges satisfying (a)
is called a cutset, so a bond is just a minimal cutset. Suppose, for example,
that D is given as follows (with no arrows drawn since they are irrelevant to
the definition of bond):

b c d

a

e

Then the bonds are the six subsets ab, de, acd, bce, ace, bcd.
Let B be a bond. Suppose B disconnects the component (V ′, E ′) into two

pieces (a bond always disconnects some component into exactly two pieces
[why?]) with vertex set S in one piece and S̄ in the other. Thus S ∪ S̄ = V ′

and S ∩ S̄ = ∅. Define

[S, S̄] = {e ∈ E : exactly one vertex of e lies in S and one lies in S̄}.
Clearly B = [S, S̄]. It is often convenient to use the notation [S, S̄] for a
bond.

Given a bond B = [S, S̄] of D, define a function gB : E → R by

gB(e) =






1, if init(e) ∈ S̄, fin(e) ∈ S
−1, if init(e) ∈ S, fin(e) ∈ S̄

0, otherwise.

Note that gB really depends not just on B, but on whether we write B as
[S, S̄] or [S̄, S]. Writing B in the reverse way simply changes the sign of gB.
Whenever we deal with gB we will assume that some choice B = [S, S̄] has
been made.

Now note that gB = δϕ, where

ϕ(v) =

{
1, if v ∈ S
0, if v 6∈ S.

Hence gB ∈ B, the bond space of D. We will later see that B is in fact
spanned by the functions gB, explaining the terminology “bond space.”
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11.1 Example. In the digraph below, open (white) vertices indicate an
element of S and closed (black) vertices an element of S̄ for a certain bond
B = [S, S̄]. The elements of B are drawn with solid lines. The edges are
labelled by the values of gB, and the vertices by the function ϕ for which
gB = δϕ.

0

0

0 1 −1

−1

0

1
1 1

0

01

Recall that in Definition 9.5 we defined the incidence matrix M(G) of a
loopless undirected graph G with respect to an orientation o. We may just
as well think of G together with its orientation o as a directed graph. We
also will allow loops. Thus if D = (V,E) is any (finite) digraph, define the
incidence matrix M = M(D) to be the p×q matrix whose rows are indexed
by V and columns by E, as follows. The entry in row v ∈ V and column
e ∈ E is denoted mv(e) and is given by

mv(e) =






−1, if v = init(e) and e is not a loop
1, if v = fin(e) and e is not a loop
0, otherwise.

For instance, if D is given by

1 2
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2
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then

M(D) =




1 1 −1 0 0
−1 −1 0 1 0

0 0 1 −1 0



 .

11.2 Theorem. The row space of M(D) is the bond space BD. Equivalently,
the functions mv : E → R, where v ranges over all vertices of D, span BD.

Proof. Let g = δϕ be a potential difference on D, so

g(e) = ϕ(fin(e))− ϕ(init(e))

=
∑

v∈V

ϕ(v)mv(e).

Thus g =
∑

v∈V ϕ(v)mv, so g belongs to the row space of M .
Conversely, if g =

∑
v∈V ψ(v)mv is in the row space of M , where ψ : V →

R, then g = δψ ∈ B.

We now define a scalar product (or inner product) on the space RE by

〈f, g〉 =
∑

e∈E

f(e)g(e),

for any f, g ∈ RE. If we think of the numbers f(e) and g(e) as the coordinates
of f and g with respect to the basis E, then 〈f, g〉 is just the usual dot product
of f and g. Because we have a scalar product, we have a notion of what it
means for f and g to be orthogonal, viz., 〈f, g〉 = 0. If V is any subspace of
RE, then define the orthogonal complement V⊥ of V by

V⊥ = {f ∈ RE : 〈f, g〉 = 0 for all g ∈ V}.

Recall from linear algebra that

dimV + dimV⊥ = dim RE = #E. (11.2)

Furthermore,
(
V⊥)⊥ = V. Let us also note that since we are working over

R, we have V ∩ V⊥ = {0}. Thus RE = V ⊕ V⊥ (direct sum).
Intuitively there is a kind of “duality” between elementary cycles and

bonds. Cycles “hold vertices together,” while bonds “tear them apart.” The
precise statement of this duality is given by the next result.
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11.3 Theorem. The cycle and bond spaces of D are related by C = B⊥.
(Equivalently, B = C⊥.)

Proof. Let f : E → R. Then f is a circulation if and only if
∑

e∈E

mv(e)f(e) = 0

for all v ∈ V [why?]. But this is exactly the condition that f ∈ B⊥.

11.2 Bases for the cycle space and bond space

We want to examine the incidence matrix M(D) in more detail. In particu-
lar, we would like to determine which rows and columns of M(D) are linearly
independent, and which span the row and column spaces. As a corollary, we
will determine the dimension of the spaces B and C. We begin by defining
the support ‖f‖ of f : E → R to be the set of edges e ∈ E for which f(e) 6= 0.

11.4 Lemma. If 0 6= f ∈ C, then ‖f‖ contains an undirected circuit.

Proof. If not, then ‖f‖ has a vertex of degree one [why?], which is clearly
impossible.

11.5 Lemma. If 0 6= g ∈ B, then ‖g‖ contains a bond.

Proof. Let 0 6= g ∈ B, so g = δϕ for some ϕ : V → R. Choose a vertex v
which is incident to an edge of ‖g‖, and set

U = {u ∈ V : ϕ(u) = ϕ(v)}.
Let Ū = V − U . Note that Ū 6= ∅, since otherwise ϕ is constant so g = 0.
Since g(e) 6= 0 for all e ∈ [U, Ū ] [why?], we have that ‖g‖ contains the cutset
[U, Ū ]. Since a bond is by definition a minimal cutset, it follows that ‖g‖
contains a bond.

A matrix B is called a basis matrix of B if the rows of B form a basis
for B. Similary define a basis matrix C of C.

Recall the notation of Theorem 9.4: let A be a matrix with at least as
many columns as rows, whose columns are indexed by the elements of a set
T . If S ⊆ T , then A[S] denotes the submatrix of A consisting of the columns
indexed by the elements of S. In particular, A[e] (short for A[{e}]) denotes
the column of A indexed by e. We come to our first significant result about
bases for the vector spaces B and C.



210 CHAPTER 11. CYCLES AND BONDS

11.6 Theorem. Let B be a basis matrix of B, and C a basis matrix of C.
(Thus the columns of B and C are indexed by the edges e ∈ E of D.) Let
S ⊆ E, Then:

(i) The columns of B[S] are linearly independent if and only if S is acyclic
(i.e., contains no circuit as an undirected graph).

(ii) The columns of C[S] are linearly independent if and only if S contains
no bond.

Proof. The columns of B[S] are linearly dependent if and only if there exists
a function f : E → R such that

f(e) 6= 0 for some e ∈ S

f(e) = 0 for all e 6∈ S
∑

e∈E

f(e)B[e] = 0, the column vector of 0’s. (11.3)

The last condition is equivalent to 〈f,mv〉 = 0 for all v ∈ V , i.e., f is a
circulation. Thus the columns of B[S] are linearly dependent if and only if
there exists a nonzero circulation f such that ‖f‖ ⊆ S. By Lemma 11.4,
‖f‖ (and therefore S) contains a circuit. Conversely, if S contains a circuit
C then 0 6= fC ∈ C and ‖fC‖ = C ⊆ S, so fC defines a linear dependence
relation (11.3) among the columns. Hence the columns of B[S] are linearly
independent if and only if S is acyclic, proving (i). (Part (i) can also be
deduced from Lemma 9.7.)

The proof of (ii) is similar and is left as an exercise.

11.7 Corollary. Let D = (V,E) be a digraph with p vertices, q edges, and
k connected components (as an undirected graph). Then

dimB = p− k
dim C = q − p+ k.

Proof. For any matrix X, the rank of X is equal to the maximum number of
linearly independent columns. Now let B be a basis matrix of B. By Theo-
rem 11.6(i), the rank of B is then the maximum size (number of elements)
of an acyclic subset of E. In each connected component Di of D, the largest
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acyclic subsets are the spanning trees, whose number of edges is p(Di) − 1,
where p(Di) is the number of vertices of Di. Hence

rank B =
k∑

i=1

(p(Di)− 1)

= p− k.

Since dimB+dim C = dim RE = q by equation (11.2) and Theorem 11.3, we
have

dim C = q − (p− k) = q − p+ k.

(It is also possible to determine dim C by a direct argument similar to our
determination of dimB.)

The number q − p + k (which should be thought of as the number of
independent cycles in D) is called the cyclomatic number of D (or of its
undirected version G, since the direction of the edges have no effect).

Our next goal is to describe explicit bases of C and B. Recall that a forest
is an undirected graph without circuits, or equivalently, a disjoint union of
trees. We extend the definition of forest to directed graphs by ignoring the
arrows, i.e., a directed graph is a forest if it has no circuits as an undirected
graph. Equivalently [why?], dim C = 0.

Pick a maximal forest T of D = (V,E). Thus T restricted to each com-
ponent of D is a spanning tree. If e is an edge of D not in T , then it is easy
to see that T ∪ e contains a unique circuit Ce.

11.8 Theorem. Let T be as above. Then the set S of circulations fCe, as e
ranges over all edges of D not in T , is a basis for the cycle space C.

Proof. The circulations fCe are linearly independent, since for each e ∈
E(D)− E(T ) only fCe doesn’t vanish on e. Moreover,

#S = #E(D)−#E(T ) = q − p+ k = dim C,

so S is a basis.

11.9 Example. Let D be the digraph shown below, with the edges a, b, c of
T shown by dotted lines.
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e

d
c

b

fa

Orient each circuit Ct in the direction of the added edge, i.e., fCt(t) = 1.
Then the basis matrix C of C corresponding to the basis fCd

, fCe, fCf
is

given by

C =




0 −1 −1 1 0 0
−1 −1 −1 0 1 0

0 0 −1 0 0 1



 . (11.4)

We next want to find a basis for the bond space B analogous to that of
Theorem 11.8.

11.10 Lemma. Let T be a maximal forest of D = (V,E). Let T ∗ = D−E(T )
(the digraph obtained from D by removing the edges of T ), called a cotree if
D is connected. Let e be an edge of T . Then E(T ∗) ∪ e contains a unique
bond.

Proof. Removing E(T ∗) from D leaves a maximal forest T , so removing one
further edge e disconnects some component of D. Hence E(T ∗) ∪ e contains
a bond B. It remains to show that B is unique. Removing e from T breaks
some component of T into two connected graphs T1 and T2 with vertex sets
S and S̄. It follows [why?] that we must have B = [S, S̄], so B is unique.

Let T be a maximal forest of the digraph D, and let e be an edge of T .
By the previous lemma, E(T ∗)∪e contains a unique bond Be. Let gBe be the
corresponding element of the bond space B, chosen for definiteness so that
gBe(e) = 1.

11.11 Theorem. The set of functions gBe, as e ranges over all edges of T ,
is a basis for the bond space B.

Proof. The functions gBe are linearly independent, since only gBe is nonzero
on e ∈ E(T ). Since

#E(T ) = p− k = dimB,
it follows that the gBe ’s are a basis for B.



11.2. BASES FOR THE CYCLE SPACE AND BOND SPACE 213

11.12 Example. Let D and T be as in the previous diagram. Thus a basis
for B is given by the functions gBa , gBb

, gBc . The corresponding basis matrix
is given by

B =




1 0 0 0 1 0
0 1 0 1 1 0
0 0 1 1 1 1



 .

Note that the rows of B are orthogonal to the rows of the matrix C of
equation (11.4), in accordance with Theorem 11.3. Equivalently, BCt = 0,
the 3× 3 zero matrix. (In general, BCt will have q − p + k rows and p− k
columns. Here it is just a coincidence that these two numbers are equal.)

The basis matrices CT and BT of C and B obtained from a maximal
forest T have an important property. A real matrix m × n matrix A with
m ≤ n is said to be unimodular if every m ×m submatrix has determinant
0, 1, or −1. For instance, the adjacency matrix M(D) of a digraph D is
unimodular, as proved in Lemma 9.7 (by showing that the expansion of the
determinant of a full submatrix has at most one nonzero term).

11.13 Theorem. Let T be a maximal forest of D. Then the basis matrices
CT of C and BT of B are unimodular.

Proof. First consider the case CT . Let P be a full submatrix of C (so
P has q − p + k rows and columns). Assume det P 6= 0. We need to
show det P = ±1. Since det P 6= 0, it follows from Theorem 11.6(ii) that
P = CT [T ∗

1 ] for the complement T ∗
1 of some maximal forest T1. Note that

the rows of the matrix CT [T ∗
1 ] are indexed by T ∗ and the columns by T ∗

1 .
Similarly the rows of the basis matrix CT1 are indexed by T ∗

1 and the columns
by E (the set of all edges of D). Hence it makes sense to define the matrix
product

Z = CT [T ∗
1 ]CT1 ,

a matrix whose rows are indexed by T ∗ and columns by E.
Note that the matrix Z is a basis matrix for the cycle space C since its

rows are linear combinations of the rows of the basis matrix C∗
T1

, and it has
full rank since the matrix CT [T ∗

1 ] is invertible. Now CT1[T
∗
1 ] = IT ∗

1
(the

identity matrix indexed by T ∗
1 ), so Z[T ∗

1 ] = CT [T ∗
1 ]. Thus Z agrees with the

basis matrix CT in columns T ∗
1 . Hence the rows of Z −CT are circulations

supported on a subset of T1. Since T1 is acyclic, it follows from Lemma 11.4
that the only such circulation is identically 0, so Z = CT .
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We have just shown that

CT [T ∗
1 ]CT1 = CT .

Restricting both sides to T ∗, we obtain

CT [T ∗
1 ]CT1 [T

∗] = CT [T ∗] = IT ∗ .

Taking determinants yields

det(CT [T ∗
1 ]) det(CT1 [T

∗]) = 1.

Since all the matrices we have been considering have integer entries, the
above determinants are integers. Hence

det CT [T ∗
1 ] = ±1,

as was to be proved.
A similar proof works for BT .

11.3 Electrical networks

We will give a brief indication of the connection between the above discus-
sion and the theory of electrical networks. Let D be a digraph, which for
convenience we assume is connected and loopless. Suppose that at each edge
e there is a voltage (potential difference) Ve from init e to fin e, and a current
Ie in the direction of e (so a negative current Ie indicates a current of |Ie|
in the direction opposite to e). Think of V and I as functions on the edges,
i.e., as elements of the vector space RE . There are three fundamental laws
relating the quantities Ve and Ie.

Kirchhoff’s First Law. I ∈ CD. In other words, the current flowing
into a vertex equals the current flowing out. In symbols,

∑

e
init e=v

Ie =
∑

e
fin e=v

Ie,

for all vertices v ∈ V .

Kirchhoff’s Second Law. V ∈ C⊥D = B. In other words, the sum of the
voltages around any circuit (called loops by electrical engineers), taking into
account orientations, is 0.
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Ohm’s Law. If edge e has resistance Re > 0, then Ve = IeRe.

The central problem of electrical network theory dealing with the above
three laws2 is the following: which of the 3q quantities Ve, Ie, Re need to
be specified to uniquely determine all the others, and how can we find or
stipulate the solution in a fast and elegant way? We will be concerned here
only with a special case, perhaps the most important special case in practical
applications. Namely, suppose we apply a voltage Vq at edge eq, with resis-
tances R1, . . . , Rq−1 at the other edges e1, . . . , eq−1. Let Vi, Ii be the voltage
and current at edge ei. We would like to express each Vi and Ii in terms
of Vq and R1, . . . , Rq−1. By “physical intuition” there should be a unique
solution, since we can actually build a network meeting the specifications of
the problem. Note that if we have quantities Vi, Ii, Ri satisfying the three
network laws above, then for any scalar α the quantities αVi, αIi, Ri are also
a solution. This means that we might as well assume that Vq = 1, since we
can always multiply all voltages and currents afterwards by whatever value
we want Vq to be.

As an illustration of a simple method of computing the total resistance of
a network, the following diagram illustrates the notion of a series connection
D1 +D2 and a parallel connection D1 ‖ D2 of two networks D1 and D2 with
a distinguished edge e at which a voltage is applied.

BA

A

ee

B

e eA B

D1

D  + D1

D2

2

D  || D1 2

When we apply a voltage Vq > 0 the current will flow along eq from the
higher potential to the lower. Thus Vq/Iq < 0, so we should define the total
resistance R(D) of the network D, together with the distinquished edge e, by
R(D) = −Vq/Iq. It is well-known and easy to deduce from the three network

2Of course the situation becomes much more complicated when one introduces dynamic

network elements like capacitors, alternating current, etc.
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Laws that

R(D1 +D2) = R(D1) +R(D2)

1

R(D1 ‖ D2)
=

1

R(D1)
+

1

R(D2)
.

A network that is built up from a single edge by a sequence of series and
parallel connections is called a series-parallel network. An example is the
following, with the distinguished edge e shown by a broken line from bottom
to top.

e

The simplest network which is not a series-parallel network is called the
Wheatstone bridge and is illustrated below. (The direction of the arrows has
been chosen arbitrarily.) We will use this network as our main example in
the discussion that follows.

3
1 2

5

6

4

We now return to an arbitrary connected loopless digraph D, with cur-
rents Ii, voltages Vi, and resistances Ri at the edges ei. Recall that we are
fixing Vq = 1 and R1, . . . , Rq−1. Let T be a spanning tree of D. Since I is a
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current if and only if it is orthogonal to the bond space B (Theorem 11.3 and
Kirchhoff’s First Law), it follows that any basis for B defines a complete and
minimal set of linear relations satisfied by the Ii’s (namely, the relation that
I is orthogonal to the basis elements). In particular, the basis matrix CT

defines such a set of relations. For example, if D is the Wheatstone bridge
shown above and if T = {e1, e2, e5}, then we obtain the following relations
by adding the edges e1, e2, e5 of T in turn to T ∗:

rclI1 − I3 − I4 = 0

I2 + I3 + I4 + I6 = 0 (11.5)

I4 + I5 + I6 = 0.

These three (= p − 1) equations give all the relations satisfied by the Ii’s
alone, and the equations are linearly independent.

Similarly if V is a voltage then it is orthogonal to the cycle space C. Thus
any basis for C defines a complete and minimal set of linear relations satisfied
by the Vi’s (namely, the relation that V is orthogonal to the basis elements).
In particular, the basis matrix CT defines such a set of relations. Continuing
our example, we obtain the following relations by adding the edges e3, e4, e6
of T ∗ in turn to T .

V1 − V2 + V3 = 0

V1 − V2 + V4 − V5 = 0 (11.6)

V2 + V5 = 1,

These three (= q−p+k) equations give all the relations satisfied by the Vi’s
alone, and the equations are linearly independent.

In addition, Ohm’s Law gives the q−1 equations Vi = RiIi, 1 ≤ i ≤ q−1.
We have a total of (p− k) + (q − p+ k) + (q − 1) = 2q − 1 equations in the
2q−1 unknowns Ii (1 ≤ i ≤ q) and Vi (1 ≤ i ≤ q−1). Moreover, it is easy to
see that these 2q − 1 equations are linearly independent, using the fact that
we already know that just the equations involving the Ii’s alone are linearly
independent, and similarly the Vi’s. Hence this system of 2q−1 equations in
2q − 1 unknowns has a unique solution. We have now reduced the problem
to straightforward linear algebra. However, it is possible to describe the
solution explicitly. We will be content here with giving a formula just for the
total resistance R(D) = −Vq/Iq = −1/Iq.

Write the 2q− 1 equations in the form of a (2q− 1)× 2q matrix K. The
columns of the matrix are indexed by I1, I2, . . . , Iq, V1, V2 . . . , Vq. The last
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column Vq of the matrix keeps track of the constant terms of the equations.
The rows of K are given first by the equations among the Ii’s, then the
Vi’s, and finally Ohm’s Law. For our example of the Wheatstone bridge, we
obtain the matrix

K =

I1 I2 I3 I4 I5 I6 V1 V2 V3 V4 V5 V6

1 0 −1 −1 0 0 0 0 0 0 0 0
0 1 1 1 0 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 1 0 0 0
0 0 0 0 0 0 1 −1 0 1 −1 0
0 0 0 0 0 0 0 −1 0 0 −1 1

R1 0 0 0 0 0 −1 0 0 0 0 0
0 R2 0 0 0 0 0 −1 0 0 0 0
0 0 R3 0 0 0 0 0 −1 0 0 0
0 0 0 R4 0 0 0 0 0 −1 0 0
0 0 0 0 R5 0 0 0 0 0 −1 0

We want to solve for Iq by Cramer’s rule. Call the submatrix consisting of
all but the last column X. Let Y be the result of replacing the Iq column of
X by the last column of K. Cramer’s rule then asserts that

Iq =
det Y

detX
.

We evaluate detX by taking a Laplace expansion along the first p− 1 rows.
In other words,

detX =
∑

S

± det(X[[p− 1], S]) · det(X[[p− 1]c, S̄]), (11.7)

where (a) S indexes all (p−1)-element subsets of the columns, (b)X[[p−1], S]
denotes the submatrix of X consisting of entries in the first p − 1 rows and
in the columns S, (c) X[[p − 1]c, S̄] denotes the submatrix of X consisting
of entries in the last 2q − p rows and in the columns other than S. In
order for det(X[[p − 1], S]) 6= 0, we must choose S = {Ii1 , . . . , Iip−1}, where
{ei1 , . . . , eip−1} is a spanning tree T1 (by Theorem 11.6(i)). In this case,
det(X[[p− 1], S]) = ±1 by Theorem 11.13. If Iq 6∈ S, then the Iq column of
X[[p − 1]c, S̄] will be zero. Hence to get a nonzero term in (11.7), we must
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have eq ∈ S. The matrix X[[p − 1]c, S̄] will have one nonzero entry in each
of the first q − p + 1 columns, namely, the resistances Rj where ej is not
an edge of T1. This accounts for q − p + 1 entries from the last q − 1 rows
of X[[p − 1]c, S̄]. The remaining p − 2 of the last q − 1 rows have available
only one nonzero entry each, namely, a −1 in the columns indexed by Vj

where ej is an edge of T1 other than eq. Hence we need to choose q − p + 1
remaining entries from rows p through q and columns indexed by Vj for ej

not an edge of T1. By Theorems 11.6(ii) and 11.13, this remaining submatrix
has determinant ±1. It follows that

det(X[[p− 1], S]) · det(X[[p− 1]c, S̄]) = ±
∏

ej 6∈E(T1)

Rj .

Hence by (11.7), we get

detX =
∑

T1

±




∏

ej 6∈E(T1)

Rj



 , (11.8)

where T1 ranges over all spanning trees of D containing eq. A careful analysis
of the signs (omitted here) shows that all signs in (11.8) are negative, so we
finally arrive at the remarkable formula

detX = −
∑

spanning trees T1
containing eq

∏

ej 6∈E(T1)

Rj .

For example, if D is the Wheatstone bridge as above, and if we abbreviate
R1 = a, R2 = b, R3 = c, R4 = d, R5 = e, then

− detX = abc+ abd + abe + ace + ade+ bcd+ bde + cde.

Now suppose we replace column Iq in X by column Vq in the matrix K,
obtaining the matrix Y . There is a unique nonzero entry in the new column,
so it must be chosen in any nonzero term in the expansion of detY . The
argument now goes just as it did for detX, except we have to choose S to
correspond to a spanning tree T1 that doesn’t contain eq. We therefore obtain

det Y =
∑

spanning trees T1
not containing eq

∏

ej 6∈E(T1)

ej 6=eq

Rj .
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For example, for the Wheatstone bridge we get

det Y = ac+ ad+ ae+ bc + bd+ be + cd+ ce.

Recall that Iq = det(Y )/ det(X) and that the total resistance of the
network is −1/Iq. Putting everything together gives our main result on
electrical networks.

11.14 Theorem. In the situation described above, the total resistance of the
network is given by

R(D) = − 1

Iq
= −

∑

spanning trees T1
containing eq

∏

ej 6∈E(T1)

Rj

∑

spanning trees T1
not containing eq

∏

ej 6∈E(T1)

ej 6=eq

Rj

.

11.15 Corollary. If the resistances R1, . . . , Rq−1 are all equal to one, then
the total resistance of the network is given by

R(D) = − 1

Iq
=

number of spanning trees containing eq

number of spanning trees not containing eq
.

In particular, if R1 = · · · = Rq−1 = 1, then the total resistance, when
reduced to lowest terms a/b, has the curious property that the number κ(D)
of spanning trees of D is divisible by a + b.

11.4 Planar graphs (sketch)

A graph G is planar if it can be drawn in the plane R2 without crossing
edges. A drawing of G in this way is called a planar embedding. An example
of a planar embedding is shown in Figure 11.2. In this section we state the
basic results on the bond and cycle spaces of a planar graph. The proofs are
relatively straightforward and are omitted.

If the vertices and edges of a planar embedding of G are removed from
R2, then we obtain a disjoint union of open sets, called the faces (or regions)
of G. (More precisely, these open sets are the faces of the planar embedding
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Figure 11.2: A planar embedding

of G. Often we will not bother to distinguish between a planar graph and a
planar embedding if no confusion should result.) Let R = R(G) be the set of
faces of G, and as usual V (G) and E(G) denote the set of vertices and edges
of G, respectively.

Note. If G is a simple (no loops or multiple edges) planar embedding,
then it can be shown that there exists a planar embedding of the same graph
with edges as straight lines and with faces (regarding as the sequence of
vertices and edges obtained by walking around the boundaries of the faces)
preserved.

The dual G∗ of the planar embedded graph G has vertex set R(G) and
edge set E∗(G) = {e∗ : e ∈ E(G)}. If e is an edge of G, then let r and r′

be the faces on its two sides. (Possibly r = r′; there are five such edges in
Figure 11.2.) Then define e∗ to connect r and r′. We can always draw G∗ to
be planar, letting e and e∗ intersect once. If G is connected then every face
of G∗ contains exactly one (nonisolated) vertex of G and G∗∗ ∼= G. For any
planar embedded graph G, the dual G∗ is connected. Then G ∼= G∗∗ if and
only if G is connected. In general, we always have G∗ ∼= G∗∗∗. Figure 11.3
shows the dual G∗ to the graph G of Figure 11.2, with the vertices of G∗

drawn as open circles and the edges as broken lines.

11.16 Example. Let G consist of two disjoint edges. Then G∗ has one
vertex and two loops, while G∗∗ is a three-vertex path. The unbounded face
of G∗ contains two vertices of G, and G∗∗ 6∼= G.

Orient the edges of the planar graph G in any way to get a digraph D.
Let r be an interior (i.e., bounded) face of D. An outside edge of r is an edge
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Figure 11.3: A planar embedding and its dual

e such that r lies on one side of the edge, and a different face lies on the other
side. The outside edges of any interior face r define a circulation (shown as
solid edges in the diagram below), and these circulations (as r ranges over
all interior faces of D) form a basis for the cycle space CG of G.

r

Given the orientation D of G, orient the edges of G∗ as follows: as we
walk along e in the direction of its orientation, e∗ points to our right.
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11.17 Theorem. Let f : E(G) → R. Define f ∗ : E(G∗) → R by f ∗(e∗) =
f(e). Then

f ∈ BG ⇔ f ∗ ∈ CG∗

f ∈ CG ⇔ f ∗ ∈ BG∗ .

11.18 Proposition. The set S is the set of edges of a spanning tree T of G
if and only if S∗ = {e∗ : e ∈ S} is the set of edges of a cotree T ∗ of G∗.

11.19 Corollary. κ(G) = κ(G∗)

For nonplanar graphs there is still a notion of a “dual” object, but it is
no longer a graph but rather something called a matroid. Matroid theory is
a flourishing subject which may be regarded as a combinatorial abstraction
of linear algebra.

11.5 Squaring the square

A squared rectangle is a rectangle partitioned into finitely many (but more
than one) squares. A squared rectangle is perfect if all the squares are of
different sizes. The earliest perfect squared rectangle was found in 1936; its
size is 33× 32 and consists of nine squares:
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4

8 9

7

10

14
18

15 1

The question then arose: does there exist a perfect squared square? A
single example was found by Sprague in 1939; it has 55 squares. Then Brooks,
Smith, Stone, and Tutte developed a network theory approach which we now
explain.

The Smith diagram D of a squared rectangle is a directed graph whose
vertices are the horizontal line segments of the squared rectangle and whose
squares are the edges, directed from top to bottom. The top vertex (cor-
responding to the top edge of the rectangle being squared) and the bottom
vertex (corresponding to the bottom edge) are called poles. Label each edge
by the side length of the square to which it corresponds. Figure 11.4 shows
the Smith diagram of the (perfect) squared rectangle above.

The following result concerning Smith diagrams is straightforward to ver-
ify.

11.20 Theorem. (a) If we set Ie and Ve equal to the label of edge e, then
Kirchhoff’s two laws hold (so Re = 1) except at the poles.

(b) The Smith diagram is planar and can be drawn without separation of
poles. Joining the poles by an edge from the bottom to the top gives a
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pole

pole

Figure 11.4: A Smith diagram
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3-connected graph, i.e., a connected graph that remains connected when
one or two vertices are removed.

Call the 3-connected graph of Theorem 11.20 the extended Smith diagram
of the a × b squared rectangle. If we impose a current Ie1 = b on the new
edge e1 (directed from bottom to top) between poles, and a voltage Ve1 = −a,
then Kirchhoff’s two laws hold at all vertices. The diagram below shows the
extended Smith diagram corresponding to Figure 11.4, with the new edge e1
labelled by the current Ie1 .

7

18

15
8

1
9

10

14

4

pole

pole

32

We therefore have a recipe for searching for perfect squared rectangles
and squares: start listing all 3-connected planar graphs. Then choose an
edge e1 to apply a voltage V1. Put a resistance Re = 1 at the remaining
edges e. Solve for Ie (= Ve) to get a squared rectangle, and hope that one of
these will be a square. One example Γ found by Brooks et al. was a 112× 75
rectangle with 14 squares. It was given to Brooks’ mother as a jigsaw puzzle,
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and she found a different solution ∆! We therefore have found a squared
square (though not perfect):

112 x 112 Γ

75 x 75∆

Building on this idea, Brooks et al. finally found two 422 × 593 per-
fect rectangles with thirteen squares, all 26 squares being of different sizes.
Putting them together as above gives a perfect squared square. This example
has two defects: (a) it contains a smaller perfect squared rectangle (and is
therefore not simple), and (b) it contains a “cross” (four squares meeting
a point). They eventually found a perfect squared square with 69 squares
without either of these defects. It is now known (thanks to computers) that
the smallest order (number of squares) of a perfect squared square is 21. It
is unique and happens to be simple and crossfree. See the figure below. It is
known that the number (up to symmetry) of simple perfect squared squares
of order n for n ≥ 21 is 1, 8, 12, 26, 160, 441, 1152, . . . .
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Notes for Chapter 11

The theory of cycle spaces and bond spaces developed here had its origins
with the pioneering work of G. Kirchhoff [64] in 1847. The proof given here
of Theorem 11.13 is due to W.T. Tutte [119] in 1965. A nice account of the
history of squaring the square due to Tutte appears in a Scientific American
column by Martin Gardner [45]. See also [120] for another article by Tutte.
A further survey article on this topic is by Kazarinoff and Weitzenkamp [63].



Chapter 12

Miscellaneous gems of algebraic
combinatorics

12.1 The 100 prisoners

An evil warden is in charge of 100 prisoners (all with different names). He
puts a row of 100 boxes in a room. Inside each box is the name of a different
prisoner. The prisoners enter the room one at a time. Each prisoner must
open 50 of the boxes, one at a time. If any of the prisoners does not see
his or her own name, then they are all killed. The prisoners may have a
discussion before the first prisoner enters the room with the boxes, but after
that there is no further communication. A prisoner may not leave a message
of any kind for another prisoner. In particular, all the boxes are shut once
a prisoner leaves the room. If all the prisoners choose 50 boxes at random,
then each has a success probability of 1/2, so the probability that they are
not killed is 2−100, not such good odds. Is there a strategy that will increase
the chances of success? What is the best strategy?

It’s not hard to see that the prisoners can achieve a success probability
of greater than 2−100. For instance, suppose that the first prisoner opens
the first 50 boxes and the second prisoner opens the last 50. If the first
prisoner succeeds (with probability 1/2), then the first prisoner’s name is
guaranteed not to be in one of the boxes opened by the second prisoner, so
the second prisoner’s probability of success is 50/99. Each pair of prisoners
can do this strategy, increasing the overall success probability to (25/99)50,
still an extremely low number. Can they do significantly better? The key to

231
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understanding this problem is the realization that the prisoners do not have
to decide in advance on which boxes they will open. A prisoner can decide
which box to open next based on what he has seen in the boxes previously
opened.

12.1 Theorem. There exists a strategy with a success probability of

1−
100∑

j=51

1

j
= 0.3118278207 · · · .

Proof. The prisoners assign themselves the numbers 1, 2, . . . , 100 by whatever
method they prefer. Each prisoner is assigned a different number. The
prisoners memorize everyone’s number. They regard the boxes, which are
lined up in a row, as being numbered 1, 2, . . . , 100 from left-to-right. A
prisoner with number k first goes to box k. If the prisoner sees his name,
then he breathes a temporary sigh of relief, and the next prisoner enters.
Otherwise the first prisoner will see the name of some other prisoner, say with
number n1. He then opens box n1 and repeats the procedure, so whenever
he opens a box B that doesn’t contain his own name, the next box that he
opens has the number of the prisoner whose name appears in box B.

What is the probability of success of this strategy? Suppose that box i
contains the name of the prisoner numbered π(i). Thus π is a permutation of
1, 2, . . . , 100. The boxes opened by prisoner i are those containing the names
of prisoners with numbers π(i), π2(i), π3(i), etc. If k is the length of the cycle
of π containing i, then the prisoner will see his name after opening the kth
box. This will happen whenever k ≤ 50. Thus all prisoners see their names
if and only if every cycle of π has length at most 50. If π does not have this
property, then it has exactly one cycle of length r > 50. There are

(
100
r

)
ways

to choose the elements of the cycle and (r − 1)! ways to arrange them in a
cycle. There are then (100 − r)! ways to arrange the other elements of π.
Thus the number of permutations π ∈ S100 with a cycle of length r > 50 is

(
100

r

)
(r − 1)!(100− r)! =

100!

r
.

(There are more clever ways to see this.) Hence the probability of success,
i.e., the probability that π has no cycle of length more than 50, is

1− 1

100!

100∑

r=51

100!

r
= 1−

100∑

r=51

1

r
,
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as claimed.

If we apply the above argument to 2n prisoners rather than 100, then we
get a success probability of

1−
2n∑

r=n+1

1

r
= 1−

2n∑

r=1

1

r
+

n∑

r=1

1

r
.

From calculus we know that there is a constant γ = 0.577215665 · · · , known
as Euler’s constant, for which

lim
n→∞

(
n∑

r=1

1

r
− log n

)

= γ.

It follows that as n→∞, the success probability of the prisoners is

lim
n→∞

(1− log 2n+ log n) = 1− log 2 = 0.3068528194 · · · .

It seems quite amazing that no matter how many prisoners there are, they
can always achieve a success probability of over 30%!

Note. It can be shown that the above strategy is in fact optimal, i.e.,
no strategy achieves a higher probability of success. The proof, however, is
not so easy.

12.2 Oddtown

The village of Oddtown has a population of n people. Inhabitants of Oddtown
like to form clubs. Every club has an odd number of members, and every
pair of clubs share an even number of members (possibly none).

12.2 Theorem. There are at most n clubs.

Proof. Let k be the number of clubs. Define a matrix M = (Mij) over the
two-element field F2 as follows. The rows of M are indexed by the clubs Ci

and the columns by the inhabitants xj of Oddtown. Set

Mij =

{
1, xj ∈ Ci

0, otherwise.
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The matrix M is called the incidence matrix corresponding to the clubs and
their members.

In general, let S be a subset of [n], and let χS ∈ Zn be the characteristic
vector of S, i.e., χS = (a1, . . . , an) where

ai =

{
1, i ∈ S
0, i 6∈ S.

If T is another subset of [n], then the key observation is that the scalar (dot)
product of χS and χT is given by χS ·χT = #(S ∩ T ). Hence if we now work
over F2, then

χS · χT =

{
1, if #(S ∩ T ) is odd
0, if #(S ∩ T ) is even.

(12.1)

Let A = MM t, a k × k matrix. By equation (12.1) and the assumption
that every club has an odd number of members, we see that main diagonal
elements of A are 1. Similarly the off-diagonal elements of A are 0, so
A = Ik, the k × k identity matrix. Hence rank(A) = k.

Recall that if B is a k ×m matrix and C is an m× n matrix (over some
field), then rank(BC) ≤ rank(B) (as well as rank(BC) ≤ rank(C)), since for
any matrix D, rank(D) = dim image(D). Hence, since M has n columns,

n ≥ rank(M) ≥ rank(MM t) = rank(A) = k.

While Theorem 12.2 can be proved without linear algebra, the proof is
not easy.

12.3 Complete bipartite partitions of Kn

Figure 12.1 shows the six edges of the complete graph K4 partitioned (ac-
cording to the edge label) into the edge sets of the three complete bipartite
graphs K3,1, K2,1, and K1,1. Clearly we can extend this construction, achiev-
ing a partition of the edges E(Kn) of Kn into the edge sets of n−1 complete
bipartite graphs. Specifically, let E1 be the set of edges incident to a fixed
vertex v. Thus E1 is the edge set of a complete bipartite graph Kn−1,1.
Remove E1 from E(Kn) and proceed by induction, obtaining a partition of
E(Kn) into the edges of Kn−1,1, Kn−2,1, . . . , K1,1. The question thus arises
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1

21

1 2
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Figure 12.1: A decomposition of the edges ofK4 into three complete bipartite
graphs

as to whether E(Kn) can be partitioned into fewer than n − 1 edge sets of
complete bipartite graphs.

12.3 Theorem. If E(Kn) is the disjoint union of the edge sets of m complete
bipartite graphs, then m ≥ n− 1.

Proof. Let E(Kn) = E(B1) ·∪E(B1) ·∪ · · · ·∪E(Bm) (disjoint union), where Bk

is a complete bipartite graph with vertex bipartition (Xk, Yk) (soXk∩Yk = ∅).
For 1 ≤ i ≤ n, define an n× n matrix Ak by

(Ak)ij =

{
1, i ∈ Xk, j ∈ Yk

0, otherwise.

All nonzero rows of Ak are equal, so rankAk = 1. Let S =
∑m

k=1Ak. For
i 6= j, exactly one of the 2m numbers (Ak)ij and (Ak)ji, 1 ≤ k ≤ m, is equal
to 1, since every edge ij of Kn appears in one E(Bk) with either i ∈ Xk and
j ∈ Yk, or else j ∈ Xk and i ∈ Yk. Hence

S + St = J − I,

where as usual J is the n×n all 1’s matrix, and I is the n×n identity matrix.

Claim. If T is any real matrix satisfying T + T t = J − I, then rankT ≥
n− 1.
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Suppose to the contrary that rankT ≤ n− 2. Then T has (at least) two
linearly independent eigenvectors x, y such that Tx = Ty = 0 [why?]. Since
J has rank one, the space 〈x, y〉 spanned by x and y contains a nonzero vector
z satisfying Jz = 0 [why?]. Then from T + T t = J − I and Tz = 0 we get
−z = T tz. Take the dot product with zt on the left. We get

−|z|2 = ztT tz

= (ztT tz)t (since a 1× 1 matrix is symmetric)

= ztTz (since in general (AB)t = BtAt)

= 0 (since Tz = 0),

contradicting z 6= 0. Hence the claim is proved, so in particular rankX ≥
n−1. But in general rank(A+B) ≤ rankA+rankB [why?]. Therefore from
S =

∑m
k=1Ak and rankAk = 1 we get rankS ≤ m. It follows that m ≥ n−1,

completing the proof.

12.4 The nonuniform Fisher inequality

A balanced incomplete block design (BIBD) with parameters (v, k, λ, r, b) is
a v-element set X and a collection A of k-element subsets (blocks), with
#A = b, such that any two points x, y ∈ X lie in exactly λ blocks, and
each point is in exactly r blocks. We also assume that k < v, which is the
reason for the word “incomplete.” We can draw a BIBD as a bipartite graph
with vertex bipartition (X,A). There is an edge from x ∈ X to A ∈ A if
x ∈ A. Thus the degree of each vertex x ∈ X is r, and the degree of each
vertex A ∈ A is k. It follows that vr = kb (the total number of edges of the
graph). We can also count the number of two-element sets of edges that are
incident to the same vertex of A. On the one hand, since each vertex in A
has degree k this number is b

(
k
2

)
. On the other hand, each pair of points in

X are mutually adjacent to λ points in A, so we get λ
(

v
2

)
= b
(

k
2

)
. A little

manipulation shows that the two equalities vr = kb and λ
(

v
2

)
= b

(
k
2

)
are

equivalent to

vr = kb, λ(v − 1) = r(k − 1),

the usual form in which they are written.
R. A. Fisher showed in 1940 that b ≥ v. This inequality was generalized

by R. C. Bose in 1949. The most convenient way to state Bose’s inequalities,
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known as the nonuniform Fisher inequality, is to reverse the roles of points
and blocks. Thus consider the elements x of X to be sets whose elements are
the blocks A ∈ A that contain them. In other words, we have a collection
C1, . . . , Cv of r-element sets whose union contains b points x1, . . . , xb. Each
point is in exactly k of the sets. Finally, #(Ci ∩ Cj) = λ for all i 6= j.

12.4 Theorem. Let C1, . . . , Cv be distinct subsets of a b-element set X such
that for all i 6= j we have #(Ci ∩ Cj) = λ for some 1 ≤ λ < b (independent
of i and j). Then v ≤ b.

Proof. Case 1: some #Ci = λ. Then all other Cj’s contain Ci and are
disjoint otherwise, so

v ≤ 1︸︷︷︸
from Ci

+ b− λ︸ ︷︷ ︸
from all Cj 6=Ci

≤ b.

Case 2: all #Ci > λ. Let γi = #Ci − λ > 0. Let M be the incidence
matrix of the set system C1, . . . , Cv, i.e., the rows of M correspond to the
Ci’s and the columns to the elements x1, . . . , xb of X, with

M ij =

{
1, xj ∈ Ci

0, xj 6∈ Ci.

Let A = MM t. The hypotheses imply that A = λJ +G, where J as usual
is the all 1’s matrix (of size v), and G is the diagonal matrix diag(γ1, . . . , γv).

Claim: rank(A) = v (i.e., A is invertible). We would then have

v = rank(A) ≤ rank(M) ≤ b,

the last inequality because M has b columns.

As in the proof of Theorem 4.7, a real symmetric matrix B is positive
semidefinite if it has nonnegative eigenvalues. Equivalently, by basic linear
algebra, uBut ≥ 0 for all row vectors u of length v. Moreover B is positive
definite (and so has positive eigenvalues) if uBut > 0 for all u 6= 0.

Now we easily compute that

u(λJ +G)ut = λ(u1 + · · ·+ uv)
2 + γ1u

2
1 + · · ·+ γvu

2
v > 0

for all u 6= 0. Thus A = λJ + G is positive definite and hence of full rank
v.
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Figure 12.2: The 3× 4 grid graph

12.5 Odd neighborhood covers

Consider anm×n grid graph. The case m = 3, n = 4 is shown in Figure 12.2.
At each vertex is a turned on light bulb and also a switch that changes the
state of its bulb and those of its neighbors (adjacent vertices). Can all the
lights be turned off?

This problem was open for many years until in 1989 K. Sutner, then a
graduate student, showed using automata theory that the answer if yes for
any (finite) graph! More explicitly, let G be a finite graph with a turned on
light bulb at each vertex. At each vertex is a switch that changes the state
of that vertex and all its neighbors. Then it is possible to turn off all the
lights. We will give a modification of a simpler proof due to Y. Caro based
on linear algebra.

Without loss of generality we may assume that G is simple. If v ∈ V (G),
then the neighborhood N(v) of v is the set consisting of v and all vertices
adjacent to v. A little thought shows that we need to prove the following
result.

12.5 Theorem. There exists a subset S ⊆ V = V (G) such that #(S∩N(v))
is odd for all v ∈ V . (It follows that switching at the vertices v ∈ S turns all
the lights off.)

Proof. Let V (G) = {v1, . . . , vp}. Let A be the adjacency matrix ofG over the
field F2, and let y = (1, 1, . . . , 1) ∈ F

p
2. Write row(B) for the row space of a

matrix B. Given S ⊆ V , let χS = (a1, . . . , ap) ∈ F
p
2 denote the characteristic

(row) vector of S, i.e.,

ai =

{
1, vi ∈ S
0, vi 6∈ S.
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Note that switching at S turns all the lights off if and only if χS(A+ I) = y.
Hence we need to show that y ∈ row(A + I) [why?].

Let us recall from linear algebra some standard facts about orthogonal
subspaces. Let K be a field, and for u, v ∈ Kn let u · v be the usual dot
product (2.1) of u and v, so u · v ∈ K. If W is a subspace of Kn, then define
the orthogonal subspace W⊥ by

W⊥ = {u ∈ Kn : u · v = 0 for all v ∈ W}.

(In Chapter 11 we discussed the case K = R.) Let d = dimW . Since W⊥ is
the set of solutions to d linearly independent homogeneous linear equations
[why?], we have

dimW + dimW⊥ = n. (12.2)

Note that by definition of ⊥ we have W ⊆ (W⊥)⊥. By equation (12.2) and
the equation obtained from it by replacing W with W⊥, we get dimW =
dim (W⊥)⊥. Hence

(W⊥)⊥ = W. (12.3)

Note. Though irrelevant here, let us point out that ifK ⊆ R thenW∩W⊥ =
{0}, but that this fact need not hold in characteristic p 6= 0. Over C we should
define u · v = u1v̄1 + · · · + unv̄n, where ¯ denotes complex conjugation, in
order to get the most sensible theory.

Now by equation (12.3) the vector y = (1, 1, . . . , 1) (or any vector in Fn
2 )

lies in the row space of A + I if and only if it is orthogonal to every vector
in row(A + I)⊥ = ker(A + I). Thus we need to show that if (A + I)vt = 0,
then v · y = 0. Equivalently, if yvt 6= 0 then (A + I)vt 6= 0. Note that (a)
yvt 6= 0 means that v has an odd number of 1’s, and (b) (A+ I)vt is the sum
of the rows of A + I indexed by the positions of the 1’s in v. Thus we need
to show that A + I does not have an odd number of rows summing to 0.

Suppose that v1, . . . , vk are vertices indexing rows of A summing to 0.
Let H be the subgraph induced by v1, . . . , vk, i.e., H consists of the vertices
v1, . . . , vk and all edges of G between two of these vertices. Let bij be the

(i, j)-entry of A + I. Since
∑k

i=1 bij = 0 for 1 ≤ j ≤ n, and each bii = 1, it
follows that every vertex of H has odd degree. Since [why?]

∑

v∈V (H)

deg v = 2 ·#E(H),

we have that k = #V (H) is even, completing the proof.
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12.6 Circulant Hadamard matrices

For our next “gem of algebraic combinatorics,” we will provide some variety
by leaving the realm of linear algebra and looking at some simple algebraic
number theory.

An n × n matrix H is a Hadamard matrix if its entries are ±1 and its
rows are orthogonal. Equivalently, its entries are ±1 and HH t = nI. In
particular [why?],

detH = ±nn/2. (12.4)

It is easy to see that if H is an n×n Hadamard matrix then n = 1, n = 2, or
n = 4m for some integer m ≥ 1. (See Exercise 12.18.) It is conjectured that
the converse is true, i.e., for every such n there exists an n × n Hadamard
matrix.

An n× n matrix A = (bij) is a circulant or circulant matrix if it has the
form bij = ai−j for some a0, a1, . . . , an−1, where the subscript i − j is taken
modulo n. For instance,

A =





a b c d
d a b c
c d a b
b c d a





is a circulant. Let A = (ai−j) be an n × n circulant, and let ζ = e2πi/n,
a primitive nth root of unity. It is straightforward to compute that for
0 ≤ j < n the column vector [1, ζj, ζ2j, . . . , ζ (n−1)j]t is an eigenvector of A
with eigenvalue a0 + ζja1 + ζ2ja2 + · · ·+ ζ (n−1)jan−1. Hence

det A =
n−1∏

j=0

(a0 + ζja1 + ζ2ja2 + · · ·+ ζ (n−1)jan−1). (12.5)

Note that the matrix




−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1





is both a Hadamard matrix and a circulant.
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Conjecture. Let H be an n×n circulant Hadamard matrix. Then n = 1
or n = 4.

The first significant work on this conjecture is due to R. J. Turyn. He
showed that there does not exist a circulant Hadamard matrix of order 8m,
and he also excluded certain other orders of the form 4(2m + 1). Turyn’s
proofs use the machinery of algebraic number theory. Here we will give a
proof for the special case n = 2k, k ≥ 3, where the algebraic number theory
can be “dumbed down” to elementary commutative algebra and field theory.
(Only in Theorem 12.14 do we use a little Galois theory, which can be avoided
with a bit more work.) It would be interesting to find similar proofs for other
values of n.

12.6 Theorem. There does not exist a circulant Hadamard matrix H of
order 2k, k ≥ 3.

Note. It is curious that the numbers 2k (k ≥ 2) are the easiest multiples
of 4 to show are not the orders of circulant Hadamard matrices, while on
the other hand the numbers 2k (k ≥ 1) are the easiest numbers to show are
the orders of Hadamard matrices. To see that 2k is the order of a Hadamard
matrix H , first note that the case k = 1 is trivial. It is routine to show that
if H1 is a Hadamard matrix of order a and H2 is a Hadamard matrix of order
b, then the tensor (or Kronecker) product A ⊗ B is a Hadamard matrix of
order ab. It follows that there exists a Hadamard matrix of order 2k, k ≥ 1.

From now on we assume n = 2k and ζ = e2πi/2k
. Clearly ζ is a zero of

the polynomial pk(x) = x2k−1
+ 1. We will be working in the ring Z[ζ ], the

smallest subring of C containing Z and ζ . Write Q(ζ) for the quotient field
of Z[ζ ], i.e., the field obtained by adjoining ζ to Q.

12.7 Lemma. The polynomial pk(x) is irreducible over Q.

Proof. If pk(x) is reducible then so is pk(x + 1). A standard fact about
polynomial factorization is Gauss’ lemma, namely, an integral polynomial
that factors over Q also factors over Z. If p(x), q(x) ∈ Z[x], write p(x) ≡
q(x) (mod 2) to mean that the coefficients of p(x)−q(x) are even. Now [why?]

pk(x+ 1) ≡ (x+ 1)2k−1

+ 1 ≡ x2k−1

(mod 2).

Hence any factorization of pk(x+1) over Z into two factors of degree at least
one has the form pk(x+ 1) = (xr + 2a)(xs + 2b), where r + s = 2k−1 and a, b
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are polynomial of degrees less than r and s, respectively. Hence the constant
term of pk(x+ 1) is divisible by 4, a contradiction.

It follows by elementary field theory that every element u ∈ Z[ζ ] can be
uniquely written in the form

u = b0 + b1ζ + b2ζ
2 + · · ·+ bn/2−1ζ

n/2−1, bi ∈ Z.

The basis for our proof of Theorem 12.6 is the two different ways to
compute detH given by equations (12.4) and (12.5), yielding the formula

n−1∏

j=0

(a0 + ζja1 + ζ2ja2 + · · ·+ ζ (n−1)jan−1) = ±nn/2 = ±2k2k−1

. (12.6)

Thus we have a factorization in Z[ζ ] of 2k2k−1
. Algebraic number theory is

concerned with factorization of algebraic integers (and ideals) in algebraic
number fields, so we have a vast amount of machinery available to show that
no factorization (12.6) is possible (under the assumption that each aj = ±1).
Compare Kummer’s famous approach toward Fermat’s Last Theorem (which
led to his creation of algebraic number theory), in which he considered the
equation xn + yn = zn as

∏
τn=1(x+ τy) = zn.

We are continuing to assume that H = (aj−i) is an n × n circulant
Hadamard matrix. We will denote the eigenvalues of H by

γj = a0 + a1ζ
j + a2ζ

2j + · · ·+ an−1ζ
(n−1)j.

12.8 Lemma. For 0 ≤ j ≤ n− 1 we have

|γj| =
√
n.

Thus all the factors appearing on the left-hand side of (12.6) have absolute
value

√
n.

First proof (naive). Let Hi denote the ith row of H , let · denote the usual
dot product, and let ¯ denote complex conjugation. Then

γjγ̄j = (a0 + a1ζ
j + · · ·+ an−1ζ

(n−1)j)(a0 + a1ζ
−j + · · ·+ an−1ζ

−(n−1)j)

= H1 ·H1 + (H1 ·H2)ζ
j + (H1 ·H3)ζ

2j + · · ·+ (H1 ·Hn)ζ (n−1)j.

By the Hadamard property we have H1 · H1 = n, while H1 · Hk = 0 for
2 ≤ k ≤ n, and the proof follows. �
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Second proof (algebraic). The matrix 1√
n
H is a real orthogonal matrix.

By linear algebra, all its eigenvalues have absolute value 1. Hence all eigen-
values γj of H have absolute value

√
n. �

12.9 Lemma. We have
2 = (1− ζ)n/2u, (12.7)

where u is a unit in Z[ζ ].

Proof. Put x = 1 in

xn/2 + 1 =

n−1∏

j=0
j odd

(x− ζj)

to get 2 =
∏

j(1− ζj). Since

1− ζj = (1− ζ)(1 + ζ + · · ·+ ζj−1),

it suffices to show that 1 + ζ + · · · + ζj−1 is a unit when j is odd. Let
jj̄ ≡ 1 (modn). Then

(1 + ζ + · · ·+ ζj−1)−1 =
1− ζ
1− ζj

=
1− (ζj)j̄

1− ζj
∈ Z[ζ ],

as desired.

12.10 Lemma. We have Z[ζ ]/(1− ζ) ∼= F2.

Proof. Let R = Z[ζ ]/(1−ζ). The integer 2 is not a unit in Z[ζ ], e.g., because
1/2 is not an algebraic integer (the zero of a monic polynomial f(x) ∈ Z[x]).
Thus by Lemma 12.9, 1− ζ is also not a unit. Hence R 6= 0.

For all j we have ζj = 1 in R since ζ = 1 in R. Hence all elements of R
can be written as ordinary integers m. But 0 = 2 in R by Lemma 12.9, so
the only elements of R are 0 and 1.

12.11 Lemma. For all 0 ≤ j ≤ n− 1 there is an integer hj ≥ 0 such that

a0 + a1ζ
j + a2ζ

2j + · · ·+ an−1ζ
(n−1)j = vj(1− ζ)hj ,

where vj is a unit in Z[ζ ].
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Proof. Since 2 is a multiple of 1− ζ by Lemma 12.9, we have by (12.6) that

n−1∏

j=0

(a0 + a1ζ
j + a2ζ

2j + · · ·+ an−1ζ
(n−1)j) = 0

in Z[ζ ]/(1 − ζ). Since Z[ζ ]/(1 − ζ) is an integral domain by Lemma 12.10,
some factor a0 + a1ζ

j + · · · + an−1ζ
(n−1)j is divisible by 1 − ζ . Divide this

factor and the right-hand side of (12.6) by 1− ζ , and iterate the procedure.
We continue to divide a factor of the left-hand side and the right-hand side
by 1− ζ until the right-hand side becomes the unit u. Hence each factor of
the original product has the form v(1− ζ)h, where v is a unit.

12.12 Corollary. Either γ0/γ1 ∈ Z[ζ ] or γ1/γ0 ∈ Z[ζ ]. (In fact, both γ0/γ1 ∈
Z[ζ ] and γ1/γ0 ∈ Z[ζ ], as will soon become apparent, but we don’t need this
fact here.)

Proof. By the previous lemma, each γj has the form vj(1− ζ)hj . If h0 ≥ h1

then γ0/γ1 ∈ Z[ζ ]; otherwise γ1/γ0 ∈ Z[ζ ].

We now need to appeal to a result of Kronecker on elements of Z[ζ ]
of absolute value one. For completeness we include a proof of this result,
beginning with a lemma. Recall that if θ is an algebraic number (the zero of
an irreducible polynomial f(x) ∈ Q[x]), then a conjugate of θ is any zero of
f(x).

12.13 Lemma. Let θ be an algebraic integer such that θ and all its conjugates
have absolute value one. Then θ is a root of unity.

Proof. Suppose the contrary. Let deg θ = d, i.e., [Q(θ) : Q] := dimQ Q(θ) =
d. Now θ, θ2, θ3, . . . are all distinct and hence infinitely many of them
have the property that no two are conjugate. Each θj ∈ Z[θ] and so is the
root of a monic integral polynomial of degree at most d, since the set of
algebraic integers forms a ring. If θ1, θ2, . . . , θd are the conjugates of θ, then
all the conjugates of θj are among θj

1, θ
j
2, . . . , θ

j
d. Hence each θj satisfies

the hypothesis that all its conjugates have absolute value 1 (and θj is an
algebraic integer). Thus the rth elementary symmetric function er in θj and
its conjugates has at most

(
d
r

)
terms, each of absolute value 1, so |er| ≤

(
d
r

)
.

Moreover, er ∈ Z since θj is an algebraic integer. It follows that there are
only finitely many possible polynomials that can be an irreducible monic
polynomial with a zero equal to some θj , contradicting the fact that there
are infinitely many θj ’s for which no two are conjugate.
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12.14 Theorem (Kronecker). Let τ be any root of unity and α ∈ Z[τ ] with
|α| = 1. Then α is a root of unity.

Proof. Since α ∈ Z[τ ], we see that α is an algebraic integer. We use the basic
fact from Galois theory that the Galois group of the extension field Q(τ)/Q
is abelian. Let β be a conjugate of α, so β = w(α) for some automorphism
w of Q(τ). Apply w to the equation αᾱ = 1. Since complex conjugation is
an automorphism of Q(τ) it commutes with w, so we obtain ββ̄ = 1. Hence
all the conjugates of α have absolute value one, so α is a root of unity by the
previous lemma.

For our next result, we need the standard algebraic fact that if τ =
e2πi/m, a primitive mth root of unity, then [Q(τ) : Q] = φ(m) (the Euler
φ-function). Equivalently, the unique monic polynomial Φm(x) whose zeros
are the primitive mth roots of unity is irreducible. This polynomial is by
definition given by

Φm(x) =
∑

1≤j≤m
gcd(j,m)=1

(x− τ j)

and is called a cyclotomic polynomial. Lemma 12.7 is the case m = n (= 2k).

12.15 Lemma. If τ ∈ Z[ζ ] is a root of unity, then τ = ζr for some r ∈ Z.

Proof. Suppose not. It is easy to see that then either τ is a primitive 2mth
root of unity for some m > k, or else τ s is a primitive pth root of unity for
some odd prime p and some s ≥ 1. In the former case

[Q(τ) : Q] = φ(2m) = 2m−1 > 2k−1 = φ(2k) = [Q(ζ) : Q],

a contradiction. In the latter case, τ sζ is a primitive pn-th root of unity, so

[Q(τ sζ) : Q] = φ(pn) = (p− 1)φ(n) > φ(n) = [Q(ζ) : Q],

again a contradiction.

We now have all the ingredients to complete the proof of Theorem 12.6.
Note that we have yet to use the hypothesis that ai = ±1. By Lemma 12.8
we have

|γ1/γ0| = |γ0/γ1| = 1.



246 CHAPTER 12. MISCELLANEOUS GEMS

Hence by Corollary 12.12, Theorem 12.14 and Lemma 12.15 we have γ0 =
ζ−rγ1 for some r. Expand γ0 and ζ−rγ1 uniquely as integer linear combina-
tions of 1, ζ, ζ2, . . . , ζ

n
2
−1:

γ0 = a0 + a1 + · · ·+ an−1 = ±
√
n

ζ−rγ1 = ζ−r((a0 − an/2) + (a1 − an/2+1)ζ + · · · )
= (ar − an/2+r) + (ar+1 − an/2+r+1)ζ + · · · .

Equating coefficients of ζ0 yields ±√n = ar − an/2+r. Since each ai = ±1,
we must have n ≤ 4, completing the proof. �

12.7 P -recursive functions

A function f : N → C is called polynomially recursive, or P -recursive for
short, if there exist polynomials P0(n), . . . , Pd(n) ∈ C[n], with Pd(n) 6= 0,
such that

Pd(n)f(n+ d) + Pd−1(n)f(n+ d− 1) + · · ·+ P0(n)f(n) = 0 (12.8)

for all n ≥ 0.
For instance, the Fibonacci sequence Fn is P -recursive since Fn+2−Fn+1−

Fn = 0 for all n ≥ 0. Here d = 2 and P2(n) = 1, P1(n) = P0(n) = −1. This
situation is quite special since the polynomials Pi(n) are constants. Another
P -recursive function is f(n) = n!, since f(n + 1) − (n + 1)f(n) = 0 for all
n ≥ 0.

Let P denote the set of all P -recursive functions f : N→ C. Our goal in
this section is to prove that P is a C-algebra, that is, for any f, g ∈ P and
α, β ∈ C, we have

αf + βg ∈ P, fg ∈ P,
with obvious compatibility properties such as (αf)g = f(αg) = α(fg). There
is one technical problem that needs to be dealt with before proceeding to the
proof. We would like to conclude from equation (12.8) that

f(n+ d) = − 1

Pd(n)
(Pd−1(n)f(n+ d− 1) + · · ·+ P0(n)f(n)). (12.9)

This formula, however, is problematical when Pd(n) = 0. This can happen
only for finitely many n, so equation (12.9) is valid for n sufficiently large.
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Thus we want to deal with functions f(n) only for n sufficiently large. To
this end, define f ∼ g if f(n) = g(n) for all but finitely many n. Clearly ∼
is an equivalence relation; the equivalence classes are called germs at ∞ of
functions f : N→ C. The germ containing f is denoted [f ]. Write G for the
set of all germs.

12.16 Lemma. (a) If f is P -recursive and f ∼ g, then g is P -recursive.
In other words, the property of P -recursiveness is compatible with the
equivalence relation ∼.

(b) Write CN for the complex vector space of all functions f : N → C.
Let α, β ∈ C and f1, f2, g1, g2 ∈ CN. If f1 ∼ f2 and g1 ∼ g2, then
αf1 + βg1 ∼ αf2 + βg2 and f1g1 ∼ f2g2. In other words, linear combi-
nations and multiplication are compatible with the equivalence relation
∼. Thus the set G has the structure of an C-algebra, i.e., a complex
vector space and a ring (with obvious compatibility properties such as
(αf)g = f(αg) = α(fg)).

Proof. (a) Suppose that f(n) = g(n) for all n > n0. Let (12.8) be the
recurrence satisfied by f . Multiply both sides by

∏n0

j=0(n−j). We then
get a recurrence relation satisfied by g. Hence g is P -recursive.

(b) This is clear.

Let C[n] denote the ring of complex polynomials in n. Let C(n) denote
the quotient field of C[n], i.e., the field of all rational functions P (n)/Q(n),
where P,Q ∈ C[n]. Suppose that f ∈ CN and R ∈ C(n). Then f(n)R(n) is
defined for n sufficiently large (i.e., when the denominator ofR(n) is nonzero).
Thus we can define the germ [f(n)R(n)] ∈ G to be the germ of any function
that agrees with f(n)R(n) for n sufficiently large. It is easy to see that this
definition of scalar multiplication makes G into a vector space over the field
C(n). We now come to the key characterization of P -recursive functions (or
their germs).

12.17 Lemma. A function f ∈ CN is P -recursive if and only if the vector
space Vf over C(n) spanned by the germs [f(n)], [f(n+ 1)], [f(n+ 2)], . . . is
finite-dimensional.
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Proof. Suppose that f(n) satisfies equation (12.8). Let V ′
f be the vector

space over C(n) spanned by [f(n)], [f(n+ 1)], [f(n+ 2)], . . . , [f(n+ d− 1)],
so dimC(n) V ′

f ≤ d. Equation (12.9) shows that [f(n + d)] ∈ V ′
f . Substitute

n+1 for n in equation (12.9). We get that [f(n+ d+1)] is in the span (over
C(n)) of [f(n + 1)], [f(n + 2)], . . . , [f(n + d)]. Since these d germs are all
in V ′

f , we get that [f(n + d + 1)] ∈ V ′
f . Continuing in this way, we get by

induction on k that f(n+ d+ k) ∈ V ′
f for all k ≥ 0, so V ′

f = Vf . Thus Vf is
finite-dimensional.

Conversely, assume that dimC(n) Vf < ∞. Then for some d, the germs
[f(n)], [f(n+1)], . . . , [f(n+d)] are linearly dependent over C(n). Write down
this linear dependence relation and clear denominators to get a recurrence
(12.8) satisfied by f . Hence f is P -recursive.

We now have all the ingredients necessary for the main result of this
section.

12.18 Theorem. Let f, g ∈ P and α, β ∈ C. Then:

(a) αf + βg ∈ P

(b) fg ∈ P.

Proof. (a) By Lemma 12.17 it suffices to show that dimVαf+βg <∞. Now
by definition, the sum Vf +Vg is the vector space consisting of all linear
combinations γ[u] + δ[v], where [u] ∈ Vf and [v] ∈ Vg and γ, δ ∈ C(n).
In particular, Vf +Vg contains all the germs α[f(n+k)]+β[g(n+k)] =
[αf(n+ k)] + βg(n+ k)], k ≥ 0. Hence

Vαf+βg ⊆ Vf + Vg.

Now if V and W are subspaces of some vector space, then V + W is
spanned by the union of a basis for V and basis for W . In particular, if
V and W are finite-dimensional, then dim(V +W ) ≤ dimV + dimW .
Hence

dimVαf+βg ≤ dim(Vf + Vg) ≤ dimVf + dimVg <∞,

as was to be proved.
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(b) The proof is analogous to (a), except that instead of the sum V +W we
need the tensor product V ⊗K W over the field K. Recall from linear
algebra that V ⊗K W may be thought of (somewhat naively) as the
vector space spanned by all symbols v ⊗ w, where v ∈ V and w ∈ W ,
subject to the conditions

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w
v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2

αv ⊗ w = v ⊗ αw = α(v ⊗ w),

where α is a scalar. A standard and simple consequence is that if V has
the basis {v1, . . . , vm} and W has the basis {w1, . . . , wn}, then V ⊗KW
has the basis vi ⊗ wj, for 1 ≤ i ≤ m and 1 ≤ j ≤ n. In particular,

dim(V ⊗K W ) = (dimV )(dimW ).

Recall the basic “universality” property of the tensor product V ⊗W =
V ⊗K W : there is a bilinear map Ψ: V ×W → V ⊗W such that for
any vector space Y and bilinear map Φ: V ×W → Y , there is a unique
linear map ϕ : V ⊗W → Y for which Φ = ϕΨ. In particular, there is
a unique linear transformation ϕ : Vf ⊗C(n) Vg → G satisfying

[f(n+ i)]⊗ g[(n+ j)]
ϕ7→ [f(n+ i)g(n+ j)].

The image of ϕ contains all germs [f(n+i)g(n+i)], so Vfg ⊆ image(ϕ).
Thus

dimVfg ≤ dim(Vf ⊗C(n) Vg) = (dimVf)(dimVg) <∞,

and the proof follows.

Notes for Chapter 12

The 100 prisoners problem was first considered by P. B. Miltersen. It
appeared in a paper with A. Gál [44]. Further information on the history of
this problem, together with a proof of optimality of the prisoners’ strategy,
is given by E. Curtin and M. Warshauer [25].
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The Oddtown theorem is due to E.R. Berlekamp [8]. Theorem 12.3 on
decomposing Kn into complete bipartite subgraphs is due to R. L. Graham
and H.O. Pollak [47][48]. For Fisher’s original proof of the inequality v ≤ b
for BIBD’s and Bose’s nonuniform generalization, see [35] and [12]. Sutner’s
original proof of the odd neighborhood theorem (Theorem 12.5) appears in
[112], while the simpler proof of Y. Caro may be found in [20]. The odd
neighborhood problem is also known as the Lights Out Puzzle. For a host of
other applications of linear algebra along the lines of Sections 12.2–12.5, see
the unpublished manuscript [5] of L. Babai and P. Frankl, and the book [78]
of J. Matoušek.

The circulant Hadamard matrix conjecture was first mentioned in print
by H. J. Ryser [97, p. 134], though its precise origin is obscure. The work
of Turyn mentioned in the text appears in [116][117]. Some more recent
progress is due to K. H. Leung and B. Schmidt [70].

While P -recursive functions and their cousins the D-finite series of Ex-
ercise 12.25 were known to 19th century analysts, the first systematic treat-
ment of them did not appear until the paper of Stanley [104] in 1980, which
includes a statement and proof of Theorem 12.18. For an exposition, see
Stanley [110, §6.4].



Bibliography

[1] T. van Aardenne-Ehrenfest and N.G. de Bruijn, Circuits and trees in
oriented linear graphs, Simon Stevin (= Bull. Belgian Math. Soc.) 28
(1951), 203–217.

[2] I. Anderson, Combinatorics of Finite Sets, Oxford University Press,
Oxford-New York, 1987; corrected republication by Dover, New York,
2002.

[3] G.E. Andrews, The Theory of Partitions, Addison-Wesley, Reading,
Mass., 1976.

[4] G.E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univer-
sity Press, Cambridge, 2004.

[5] L. Babai and P. Frankl, Linear Algebra Methods in Combinatorics,
preliminary version 2 (September 1992), 216 pages.

[6] E.A. Beem, Craige and Irene Schensted don’t have a car in the world,
Maine Times, March 12, 1982, pp. 20–21.

[7] E.A. Bender and D.E. Knuth, Enumeration of plane partitions, J.
Combinatorial Theory 13 (1972), 40–54.

[8] E.R. Berlekamp, On subsets with intersections of even cardinality,
Canad. Math. Bull. 12 (1969), 363–366.

[9] H. Bidkhori and S. Kishore, Counting the spanning trees of a directed
line graph, preprint, arXiv:0910.3442.

[10] E.D. Bolker, The finite Radon transform, in Integral geometry
(Brunswick, Maine, 1984), Contemp. Math. 63, Amer. Math. Soc.,
Providence, RI, 1987, pp. 27–50.

261



262 BIBLIOGRAPHY

[11] C.W. Borchardt, Ueber eine der Interpolation entsprechende Darstel-
lung der Eliminations–Resultante, J. reine angew. Math. (= Crelle’s
Journal) 57 (1860), 111–121.

[12] R.C. Bose, A note on Fisher’s inequality for balanced incomplete block
designs, Ann. Math. Statis. (1949), 619–620.

[13] F. Brenti, Log-concave and unimodal sequences in algebra, combina-
torics, and geometry: an update, in Jerusalem Combinatorics ’93, Con-
temp. Math. 178, Amer. Math. Soc., Providence, RI, 1994.

[14] A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer, New
York, 2012.

[15] N.G. de Bruijn, A combinatorial problem, Proc. Koninklijke Neder-
landse Akademie v. Wetenschappen 49 (1946), 758–764, =Indagationes
Math. 8 (1946), 461–467.
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[41] F.G. Frobenius, Über die Congruenz nach einem aus zwei endlichen
Gruppen gebildeten Doppelmodul, J. reine angew. Math. (= Crelle’s
Journal) 101 (1887), 273–299; reprinted in Gesammelte Abhandlungen,
vol. 2, Springer-Verlag, Heidelberg, 1988, pp. 304–330.
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werte längs gewisser Mannigfaltigkeiten, Berichte über die Verhand-
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Erdős-Moser conjecture, 94

weak, 94
Eriksson, Kimmo, 95
Euler phi-function, 111
Euler’s constant, 233
Eulerian cycle (in a graph), 189
Eulerian digraph, 190
Eulerian graph, 189



274 INDEX

Eulerian tour
in a digraph, 189
in a graph, 189

extended Smith diagram, 226

face (of a planar embedding), 220
faithful action, 59
Fermat’s Last Theorem, 242
Ferrers diagram, 78
Fibonacci number, 165, 185, 246
final vertex (of an edge)

in a digraph, 189
in an orientation, 173

Fishburn, Peter, 55
Fisher, Ronald Aylmer, 236, 250
Flye Sainte-Marie, Camille, 199
Fomin, Sergey Vladimirovich, 157
forest, 182, 211
Forsyth, Andrew Russell, 158
Frame, James Sutherland, 156
Frame–Robinson–Thrall, 133
Frankl, Peter, 250
Franzblau, Deborah Sharon, 157
Frobenius, Ferdinand Georg, 28, 124,

125, 156
Fulton, William Edgar, 158
Fundamental Theorem of Algebra, 70

Gál, Anna, 249
Gardner, Martin, 228
Gauss’ lemma, 241
Gaussian coefficient, 82
generalized ballot sequence, 156
generating function, 15, 104
G-equivalent, 60

colorings, 101
germ, 247
Good, Irving John, 198

graded poset, 47
Graham, Ronald Lewis, 28, 199, 250
graph, 9
Grassl, Richard, 156
Greene, Curtis, 156
group determinant, 28
group reduction function, 125

Hadamard matrix, 240
Hamiltonian cycle, 30
Hamming weight, 25
Harary, Frank, 125
Hardy, Godfrey Harold, 71
Harper, Lawrence Hueston, 71
Hasse diagram, 46
Hasse walk, 132
Hawkins, Thomas W., 29
Hillman, Abraham, 156
hitting time, 35
hook length formula, 133, 156
Horn, Roger Alan, 40
Hughes, J. W. B., 95
Hurwitz, Adolf, 125

incidence matrix
Oddtown, 234
of a digraph, 207
of a graph, 173

incident, 9
indegree (of a vertex), 190
induced subgraph, 239
initial vertex (of an edge)

in a digraph, 189
in an orientation, 173

internal zero, 69
inverse bump (in RSK algorithm), 146
isolated vertex, 36
isomorphic



INDEX 275

graphs, 66
posets, 46

isomorphism class (of simple graphs),
66

Johnson, Charles Royal, 40
Joyal, André, 180, 184
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Prüfer, Ernst Paul Heinz, 180, 184

q-binomial coefficient, 57, 82
quantum order-matching, 51
quotient poset, 61

Radon transform, 23
Radon, Johann Karl August, 28
rank

of a boolean algebra, 45
of a graded poset, 47
of a poset element, 47

rank-generating function, 47
rank-symmetric, 47
rank-unimodal, 47
reciprocity theorem, 128
Redfield, John Howard, 99, 125
reduced incidence matrix, 175
reflexivity, 45
region (of a planar embedding), 220
regular graph, 34
Remmel, Jeffrey Brian, 157
Robinson, Gilbert de Beauregard, 139,

156, 157
Robinson–Schensted correspondence,

139
Roditty, Yehuda, 71
Rolle’s theorem, 70
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root (of a tree), 182
Rosenberg, Ivo G., 56, 71
row insertion, 144, 149
Rowlinson, Peter, 16
RSK algorithm, 139, 157
Ryser, Herbert John, 250

Sachs, Horst, 16
Sagan, Bruce, Eli, 158
Schensted, Craige Eugene, 139, 157
Schmid, Josef, 95
Schmidt, Bernard, 250
Schützenberger, Marcel-Paul, 157
semidefinite, 52, 237
series connection, 215
series-parallel network, 216
shape (of a CSPP), 148
shifted Ferrers diagram, 152
Simić, Slobodan, 16
simple (squared square), 227
simple graph, 10
simple group, 128
Sinogowitz, Ulrich, 16
Smith diagram, 224
Smith, Cedric Austen Bardell, 198
solid partition, 155
spanning subgraph, 66, 170
spectral graph theory, 16
Sperner poset, 48
Sperner property, 48
Sperner’s theorem, 48
Sperner, Emanuel, 56
squared rectangle, 223
stabilizer, 63
standard Young tableau, 133
Stanley, Richard Peter, 56, 71, 95,

125, 157, 158, 199, 250
stationary distribution, 41

von Staudt, Karl Georg Christian, 184
Stirling number, signless of the first

kind, 114
Stoyanovskii, Alexander V., 157
strongly log-concave, 69
sum (of vector spaces), 248
support (of a function), 209
Sutner, Klaus, 238, 250
switching (at a vertex), 74
switching reconstructible, 74
Sylvester, James Joseph, 87, 95, 184
symmetric chain decomposition, 55
symmetric function, 104
symmetric plane partition, 167
symmetric sequence, 47
SYT, 133

tensor product (of vector spaces), 249
Thrall, Robert McDowell, 156
total resistance, 215
totient function, 111
tour (in a digraph), 189
trace (of a plane partition), 167
transitive (group action), 74, 105
transitivity, 45
transport, 65
transposition, 128
tree, 169
Trotter, William Thomas, Jr., 56
Turyn, Richard Joseph, 241, 250
Tutte, William Thomas, 198, 199, 228
two-line array, 149
type

of a Hasse walk, 132
of a permutation, 108

unimodal sequence, 47
unimodular (matrix), 213
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universal cycle for Sn, 202
universality (of tensor products), 249
up (linear transformation), 50

valid λ-word, 135
Velasquez, Elinor Laura, 28
Venkataramana, Praveen, 185
vertex bipartition, 17
vertex reconstruction conjecture, 67
vertex set, 9

walk, 10
Warshauer, Max, 249
weakly switching-reconstructible, 74
weight

of a binary vector, 25
of a necklace, 72

Weitzenkamp, Roger, 228
Wheatstone bridge, 216
Wilf, Herbert Saul, 156
wreath product, 85

Young diagram, 78
Young, Alfred, 77, 156
Young’s lattice, 77

Zeilberger, Doron, 95, 157
Zyklus, 108


