Finding a Maximum Matching in Non-Bipartite Graphs

Alicia Thilani Singham Goodwin

18.304 • 3/22/2013
Our Goal

• Make an algorithm to find the largest cardinality matching (most sets of partners) in ANY graph.

• Method: Generalize the maximum matching algorithm for bipartite graphs
Review (1/2)

- **Matching**: a set of edges without common vertices

![Diagram of Matching](image1)

- **Maximum Cardinality Matching**: largest # of edges

![Diagram of Maximum Cardinality Matching](image2)
Review (2/2)

• An alternating path with respect to M alternates between edges in M and in $E-M$

• An augmenting path with respect to M is an alternating path with first and last vertices exposed
Bipartite Graph Algorithm

1 – Start with any matching M (let’s say $M = \{\}$)

2 – As long as there exists an augmenting path with respect to M:

3 – Find augmenting path P with respect to M

4 – Augment M along P: $M' = M \Delta P$

5 – Replace M with the new M'
Bipartite Graph Algorithm

1 – Start with any matching \(M \) (let’s say \(M = \{\} \))
2 – As long as there exists an **augmenting path** with respect to \(M \):
 3 – Find augmenting path \(P \) with respect to \(M \)
 4 – Augment \(M \) along \(P \): \(M' = M \Delta P \)
 5 – Replace \(M \) with the new \(M' \)

HOW???
Bipartite: Finding an Augmenting Path

\[M = \{(1,6),(2,7)\} \]

1. Direct all edges in the matching from B to A, and all edges not in the matching from A to B.

2. Create a node \(s \) that connects to all exposed vertices in set A.

3. Do a Breadth First Search to find an exposed vertex in set B from node \(s \).
Same

• A matching is maximum if and only if there are no augmenting paths

• General Plan: keep looking for augmenting paths to expand the matching

Different

• We can’t add direction to the edges to find augmenting paths

• We might find “fake” augmenting paths, called FLOWERS
Flowers: Stems & Blossoms
Flowers: Stems & Blossoms

EXPOSED
Flowers: Stems & Blossoms
Flowers: Stems & Blossoms

EXPOSED

Odd, alternating cycle with two edges adjacent to the stem and not in M

Even, alternating path from an exposed vertex to the blossom
Revised Algorithm

1 – Start with any matching \mathbf{M} (let’s say $\mathbf{M} = \{\}$)
2 – Find a flower, augmenting path or neither:
 3 – If neither: We’re done!
 4 – If augmenting path: augment to $\mathbf{M'} = \mathbf{M} \Delta \mathbf{P}$
 5 – If flower: find a larger matching or decide that \mathbf{M} is maximum...
Theorem: M is maximum in G if and only if $M-B$ is maximum in $G-B$
Theorem: \(M \) is maximum in \(G \) if and only if \(M - B \) is maximum in \(G - B \)
Theorem: \(M \) is maximum in \(G \) if and only if \(M-B \) is maximum in \(G-B \)

1- Flip the stem
 - The matching is still the same size
 - The blossom has an exposed vertex
Theorem: M is maximum in G if and only if $M-B$ is maximum in $G-B$

1- Flip the stem
 -The matching is still the same size
 -The blossom has an exposed vertex

2- Shrink the blossom to one single vertex
 -All vertices in B combine into β
 -Edges into any vertex in B go into β
Theorem: \(M \) is maximum in \(G \) if and only if \(M-B \) is maximum in \(G-B \)

1- Flip the stem
 - The matching is still the same size
 - The blossom has an exposed vertex

2- Shrink the blossom to one single vertex
 - All vertices in \(B \) combine into \(\beta \)
 - Edges into any vertex in \(B \) go into \(\beta \)
Theorem: \(M \) is maximum in \(G \) if and only if \(M-B \) is maximum in \(G-B \)

1- Flip the stem
 - The matching is still the same size
 - The blossom has an exposed vertex

2- Shrink the blossom to one single vertex
 - All vertices in \(B \) combine into \(\beta \)
 - Edges into any vertex in \(B \) go into \(\beta \)

3- The matching \(M-B \) in graph \(G-B \) is \(|B-1|/2\) smaller than matching \(M \) in \(G \)
Theorem: \(M \) is maximum in \(G \) if and only if \(M-B \) is maximum in \(G-B \)

3- The matching \(M-B \) in graph \(G-B \) is \(|B-1|/2\) smaller than matching \(M \) in \(G \)
Increasing a Matching from a Flower

Augment new Graph
Increasing a Matching from a Flower

Add back in the blossom with extra edges from the new matching.
Revised Algorithm

1 – Start with any matching M (let’s say $M = \{\})$
2 – Find a flower, augmenting path or neither:
 3 – If neither: We’re done!
 4 – If augmenting path: augment to $M' = M \Delta P$
5 – If flower: (recursively…)
 a. Flip the stem
 b. Shrink the blossom to a single vertex
 c. Increase M or decide that it is Maximum
Revised Algorithm

1 – Start with any matching M (let’s say $M = \{\})$

2 – Find a flower, augmenting path or neither:

3 – If neither: We’re done!

4 – If augmenting path: augment to $M' = M \Delta P$

5 – If flower: (recursively...)
 a. Flip the stem
 b. Shrink the blossom to a single vertex
 c. Increase M or decide that it is Maximum

HOW???
Finding Flowers and Augmenting Paths
Creating Alternating Forests

1. Label all exposed vertices as SQUARE, start a new tree in our alternating forest for each one
Creating Alternating Forests

1. Label all exposed vertices as SQUARE, start a new tree in our alternating forest for each one
2. Add edges \((u, v)\) from \(u\) in the forest to \(v\)
Creating Alternating Forests

1. Label all exposed vertices as SQUARE, start a new tree in our alternating forest for each one
2. Add edges \((u, v)\) from \(u\) in the forest to \(v\)
3. If an edge \((u, v)\) has \(v\) unlabelled, label it TRIANGLE. Label its “mate” (across an edge in the matching) as a SQUARE
Creating Alternating Forests

1. Label all exposed vertices as SQUARE, start a new tree in our alternating forest for each one
2. Add edges \((u, v)\) from \(u\) in the forest to \(v\)
3. If an edge \((u, v)\) has \(v\) unlabelled, label it TRIANGLE. Label its “mate” (across an edge in the matching) as a SQUARE
Creating Alternating Forests

1. Label all exposed vertices as SQUARE, start a new tree in our alternating forest for each one.
2. Add edges \((u, v)\) from \(u\) in the forest to \(v\).
3. If an edge \((u, v)\) has \(v\) unlabelled, label it TRIANGLE. Label its “mate” (across an edge in the matching) as a SQUARE.
Creating Alternating Forests

1. Label all exposed vertices as SQUARE, start a new tree in our alternating forest for each one.
2. Add edges \((u, v)\) from \(u\) in the forest to \(v\).
3. If an edge \((u, v)\) has \(v\) unlabelled, label it TRIANGLE. Label its “mate” (across an edge in the matching) as a SQUARE.
Creating Alternating Forests

1. Label all exposed vertices as SQUARE, start a new tree in our alternating forest for each one
2. Add edges \((u, v)\) from \(u\) in the forest to \(v\)
3. If an edge \((u, v)\) has \(v\) unlabelled, label it TRIANGLE. Label its “mate” (across an edge in the matching) as a SQUARE
4. If an edge \((u, v)\) already has \(v\) labelled SQUARE and \(v\) belongs to a different alternating tree, then we have an augmenting path
Creating Alternating Forests

1. Label all exposed vertices as SQUARE, start a new tree in our alternating forest for each one.
2. Add edges \((u, v)\) from \(u\) in the forest to \(v\).
3. If an edge \((u, v)\) has \(v\) unlabelled, label it TRIANGLE. Label its “mate” (across an edge in the matching) as a SQUARE.
4. If an edge \((u, v)\) already has \(v\) labelled SQUARE and \(v\) belongs to a different alternating tree, then we have an augmenting path.
5. If an edge \((u, v)\) already has \(v\) labelled SQUARE and \(v\) belongs to the same alternating tree, then we have found a flower.
Questions?