Combinatorial Games

Daniel Heins

18.304

February 25, 2013
1 Introduction

2 Impartial Games
 - Nim
 - Sprouts

3 Other Games
 - Chess
 - Go
 - Conway’s Game of Life
Definitions

- What is game theory? What is a combinatorial game?
Definitions

- What is game theory? What is a combinatorial game?
- "Perfect information" - players fully aware of board position and set of available moves
Definitions

- What is game theory? What is a combinatorial game?
- "Perfect information" - players fully aware of board position and set of available moves
- "Impartial games" - the moves available depend on the position, and not on which player has the turn
Definitions

- What is game theory? What is a combinatorial game?
- "Perfect information" - players fully aware of board position and set of available moves
- "Impartial games" - the moves available depend on the position, and not on which player has the turn
- Fairness
Definitions

- What is game theory? What is a combinatorial game?
- "Perfect information" - players fully aware of board position and set of available moves
- "Impartial games" - the moves available depend on the position, and not on which player has the turn
- Fairness
- Games can be played as miserè or normal, which set the conditions for victory
Subtraction Game

Assume we are playing a normal game (if a player can’t move, that player loses)

- Start with n objects
- On each turn, a player may remove anywhere from 1 to k objects
Subtraction Game

Assume we are playing a normal game (if a player can’t move, that player loses)

- Start with n objects
- On each turn, a player may remove anywhere from 1 to k objects
- What is the winning strategy?
Subtraction Game

Assume we are playing a normal game (if a player can’t move, that player loses)

- Start with n objects
- On each turn, a player may remove anywhere from 1 to k objects
- What is the winning strategy?
- Always leave m objects, where $m \equiv 0 \pmod{k+1}$
Nim

- Each turn, remove any number of objects from ONE pile
Nim Sum

- The nim sum is the binary digital sum, designated $x \oplus y$
Nim Sum

- The nim sum is the binary digital sum, designated $x \oplus y$
- $x \oplus x = 0$
The nim sum is the binary digital sum, designated $x \oplus y$

$x \oplus x = 0$

To win a game of Nim, at the end of each turn, the Nim Sum of the heaps should be 0
Sprouts

- During each turn, a player connects two open spots and then adds a new spot somewhere in the middle of the line.
Sprouts

During each turn, a player connects two open spots and then adds a new spot somewhere in the middle of the line.

Each spot can only have up to 3 lines attached.
Sprouts

- During each turn, a player connects two open spots and then adds a new spot somewhere in the middle of the line.
- Each spot can only have up to 3 lines attached.
- If a player cannot connect two open spots without crossing, that player loses.
Who wins sprouts?

- Sprouts cannot end in a draw, but it will certainly end (it is finite)
Who wins sprouts?

- Sprouts cannot end in a draw, but it will certainly end (it is finite)
- The answer depends on the number of initial spots, but no one has proven a result!
Who wins sprouts?

- Sprouts cannot end in a draw, but it will certainly end (it is finite)
- The answer depends on the number of initial spots, but no one has proven a result!

<table>
<thead>
<tr>
<th>Spots</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Outcome</td>
<td>Loss</td>
<td>Loss</td>
<td>Win</td>
<td>Win</td>
<td>Win</td>
<td>Loss</td>
</tr>
</tbody>
</table>
Chess

- Number of legal game positions $\approx 10^{45}$
Chess

- Number of legal game positions $\approx 10^{45}$
- Game-tree complexity $\approx 10^{123}$
Chess

- Number of legal game positions $\approx 10^{45}$
- Game-tree complexity $\approx 10^{123}$
- Zernelo’s Theorem - Chess must have a winning strategy.
Go

- Number of legal game positions $\approx 10^{170}$
Go

- Number of legal game positions $\approx 10^{170}$
- Game-tree complexity $\approx 10^{700}$
Conway’s Game of Life

- Any live cell with fewer than two live neighbors dies, as if caused by under-population
- Any live cell with two or three live neighbors lives on to the next generation
- Any live cell with more than three live neighbors dies, as if by overcrowding
- Any dead cell with exactly three live neighbors becomes a live cell, as if by reproduction