Floyd-Warshall Algorithm

Chandler Burfield

February 20, 2013
All-Pairs Shortest Paths

Problem

To find the shortest path between all vertices $v \in V$ for a weighted graph $G = (V, E)$.
How to Develop a Dynamic-Programming Algorithm

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a bottom-up manner.
An **intermediate vertex** of a simple path $p = \{v_1, v_2, \ldots, v_l\}$ is any vertex other than v_1 or v_l i.e. a vertex from the set $\{v_2, \ldots, v_{l-1}\}$.
The weight of an edge between vertex i and vertex j in graph $G = (V, E)$, where

\[w_{ij} = \begin{cases}
0 & \text{if } i = j \\
\text{the weight of a directed edge } (i, j) & \text{if } i \neq j \text{ and } (i, j) \in E \\
\infty & \text{if } i \neq j \text{ and } (i, j) \notin E
\end{cases} \]

An $n \times n$ matrix representing the edge weights of an n-vertex graph, where $W = (w_{ij})$.

Weight Matrix
Path Matrix

\[d_{ij}^{(k)}\]

The weight of the shortest path from vertex \(i\) to vertex \(j\) for which all intermediate vertices are in the set \(\{1, 2, \ldots, k\}\).

\[D^{(k)}\]

An \(n \times n\) matrix representing the path distances between vertices in a directed \(n\)-vertex graph, where \(D^{(k)} = (d_{ij}^{(k)})\).
Observations

- A shortest path does not contain the same vertex more than once.

- For a shortest path from i to j such that any intermediate vertices on the path are chosen from the set $\{1, 2, ..., k\}$, there are two possibilities:

 1. k is not a vertex on the path, so the shortest such path has length d_{ij}^{k-1}

 2. k is a vertex on the path, so the shortest such path is $d_{ik}^{k-1} + d_{kj}^{k-1}$

- So we see that we can recursively define $d_{ij}^{(k)}$ as

$$
d_{ij}^{(k)} = \begin{cases}
 w_{ij} & \text{if } k = 0 \\
 \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) & \text{if } k \geq 1
\end{cases}
$$
The predecessor of vertex j on a shortest path from vertex i with all intermediate vertices in the set $\{1, 2, \ldots, k\}$. Where

$$
\pi_{ij}^{(0)} = \begin{cases}
NIL & \text{if } i = j \text{ or } w_{ij} = \infty \\
i & \text{if } i \neq j \text{ and } w_{ij} < \infty
\end{cases}
$$

And

$$
\pi_{ij}^{(k)} = \begin{cases}
\pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \\
\pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}
\end{cases}
$$

The predecessor matrix, where $\Pi^{(k)} = (\pi_{ij}^{(k)})$.

Floyd-Warshall(W)

\[n = W \cdot \text{rows} \]

\[D^{(0)} = W \]

for \(k = 1 \) to \(n \)

let \(D^{(k)} = (d_{ij}^{(k)}) \) be a new matrix

for \(i = 1 \) to \(n \)

for \(j = 1 \) to \(n \)

\[d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) \]

return \(D^{(n)} \)
Floyd-Warshall(W)

\[n = W.rows \]
\[D^{(0)} = W \]

for \(k = 1 \) to \(n \)

let \(D^{(k)} = (d_{ij}^{(k)}) \) be a new matrix

for \(i = 1 \) to \(n \)

for \(j = 1 \) to \(n \)

\[d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) \]

return \(D^{(n)} \)

Runtime

\(\Theta(n^3) \)

Space

\(\Theta(n^3) \) here, but if we reuse space this can be done in \(\Theta(n^2) \).
Floyd-Warshall(W)

\[n = W.rows \]
\[D = W \]

\(\Pi \) initialization

for \(k = 1 \) to \(n \)
 for \(i = 1 \) to \(n \)
 for \(j = 1 \) to \(n \)
 if \(d_{ij} > d_{ik} + d_{kj} \)
 then \(d_{ij} = d_{ik} + d_{kj} \)
 \(\pi_{ij} = \pi_{kj} \)

return \(D \)

Analysis

- The shortest path can be constructed, not just the lengths of the paths.
- Runtime: \(\Theta(n^3) \).
- Space: \(\Theta(n^2) \).
Floyd-Warshall(W)

\[n = W.rows \]
\[D = W \]

\(\Pi \) initialization

for \(k = 1 \) to \(n \)
 for \(i = 1 \) to \(n \)
 for \(j = 1 \) to \(n \)
 if \(d_{ij} > d_{ik} + d_{kj} \)
 then \(d_{ij} = d_{ik} + d_{kj} \)
 \(\pi_{ij} = \pi_{kj} \)

return \(D \)
Proof of Correctness

Inductive Hypothesis

Suppose that prior to the kth iteration it holds that for $i, j \in V$, d_{ij} contains the length of the shortest path Q from i to j in G containing only vertices in the set $\{1, 2, \ldots, k-1\}$, and π_{ij} contains the immediate predecessor of j on path Q.

\[
\begin{align*}
\text{all intermediate vertices in } \{1, 2, \ldots, k-1\} & \quad \text{all intermediate vertices in } \{1, 2, \ldots, k-1\} \\
\text{all intermediate vertices in } \{1, 2, \ldots, k\} & \quad \text{all intermediate vertices in } \{1, 2, \ldots, k\}
\end{align*}
\]
Applications

- Detecting the Presence of a Negative Cycle
- Transitive Closure of a Directed Graph
Other All-Pairs Shortest Paths Algorithms

- Dynamic Programming Approach Based on Matrix Multiplication
- Johnson’s Algorithm for Sparse Graphs