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Theory

X ⊂ Pn
Fq

smooth, given by f ∈ Fq[x0, . . . , xn], deg(f ) = d .

ZX (T ) = exp

( ∞∑
n=1

#X (Fqn )
T n

n

)
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#X (Fqn )
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ZX (T ) =
2n−2∏
i=0

Pi(T )(−1)i+1
,

where Pi(T ) = det(1− TFi |H i(X )).
This works when H∗ is a Weil cohomology theory, where each H i(X )
comes equipped with a Frobenius.
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Theory

Weil cohomology

Contravariant functors H i from smooth proper varieties over Fq to
finite dimensional K -vector spaces

equipped with endomorphisms Fi with Pi(T ) = det(1−TFi |H i(X )).

Lefschetz: for any m, #X (Fqm ) =
∑2 dim(X)

i=0 (−1)i trace(F m
i |H i(X )).

Write H i(X )(k) for H i(X ) with Frobenius q−kFi . If n = dim(X ), one
has functorial, F -equivariant traceX : H2n(X )(n)→ K ,
isomorphisms if X is geometrically irreducible.
Associative, functorial, F -equivariant cup products so that
H i(X )× H2n−i(X )(n)

∪−→ H2n(X )(n)
traceX−−−−→ K is perfect.

Rigid cohomology is an example of a Weil cohomology.
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Theory

Let
U = Pn

Fq
\X ,

f ∈ Zq[x0, . . . , xn] a lift of f ,
X the zero locus of f,
U = Pn

Zq
\X

X̃ = XQq , Ũ = UQq .
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Theory

By the Lefschetz hyperplane theorem, H i
rig(X ) ∼= H i

rig(Pn
Fq

) for
i ≤ n − 2.
By Poincare duality and a computation with projective space,
H i

rig(X ) is zero for i 6= n − 1 odd and is one dimensional for
i 6= n − 1 even, with q-Frobenius acting by multiplication by qi/2.

The Gysin sequence yields Frobenius-equivariant exact
sequences

0→ Hn
rig(U)→ Hn−1

rig (X )(−1)→ 0 if n even,

0→ Hn
rig(U)→ Hn−1

rig (X )(−1)→ Hn+1
rig (Pn

Fq
)→ 0 if n odd.
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Theory

Thus

ZX (T ) = Pn−1(T )(−1)n
n−1∏
i=0

1
1− qiT

,

where
Pn−1(T ) = det(1− q−1Fq|Hn

rig(U)).
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Algorithm

Algorithm Summary

To find an approx. matrix for Frobenius on Hn
rig(U) (modulo pr ):

Compute a basis for Hn
rig(U) = Hn

dR(Ũ/Qq).
Apply absolute Frobenius to each basis element, truncating the
result modulo ps for some s ≥ r .
Apply a reduction process to write each result as a linear
combination of basis elements plus a coboundary.
Obtain q-power Frobenius as the product of conjugates of the
resulting matrix.
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Algorithm

Berthelot gives a description of H i
rig(U) in terms of Monsky-Washnitzer

cohomology:
Since U is affine, we can find some A ∼= Zq[x1, . . . , xm]/I with
U = Spec A.
Let Zq〈x1, . . . , xm〉† be the ring of power series in ZqJx1, . . . , xmK
converging on an open polydisk of radius greater than 1. Set
A† = Zq〈x1, . . . , xm〉†/IZq〈x1, . . . , xm〉†.

H i
rig(U) is isomorphic to the i th cohomology of the complex

Ω•A/Zq
⊗A A† ⊗Zq Qq.
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Algorithm

Description of Hn
dR(Ũ/Qq), after Griffiths

Let Ω =
∑n

i=0(−1)ixidx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

A† is the ring of formal sums
∑∞

i=0 gi f
−i , where gi ∈ Zq[x0, . . . , xn]

is homogenous of degree di , and

lim inf
i→∞

v(gi)/i > 0,

where v(
∑

cIx I) = minI v(cI).

Hn
dR(Ũ/Qq) is the quotient of the group of n-forms generated by

gΩ/fm (m ∈ Z,g ∈ Qq[x0, . . . , xn] homogeneous degree
md − n − 1) by the subgroup generated by those of the form

(∂ig)Ω

fm
−m

(∂i f)gΩ

fm+1 .
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Algorithm

Reduction

(∂ig)Ω

fm
−m

(∂i f)gΩ

fm+1 .

Since X is smooth, a theorem of Macauly implies

(∂0f, . . . , ∂nf) ⊃ (x0, . . . , xn)α,

where α = (n + 1)(d − 2) + 1.
We now have a reduction algorithm: if

deg(g) = md − n − 1 ≥ α,

then g =
∑n

i=0 gi(∂i f), and

gΩ

fm+1 ≡
1

mfm

n∑
i=0

(∂igi)Ω.
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Algorithm

Basis for Hn
rig(U)

(∂ig)Ω

fm
−m

(∂i f)gΩ

fm+1 .

Define Mh to be a set of monomials that generate the degree
hd − n − 1 part of Fq[x0, . . . , xn]/(∂0f, . . . , ∂nf).
Then we can choose a basis for Hn

rig(U) to be{
µΩ

fh
| 1 ≤ h ≤ n, µ ∈ Mh

}
.
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Algorithm

Frobenius

Lift absolute frobenius to F : A† → A† by F (xi) = xp
i (acting via

Frobenius on the coefficients) and

F (f−1) = f−p
(

1 + p
F (f)− fp

pfp

)−1

= f−p
∑
j≥0

(F (f)− fp)j f−pj

This extends to Hn
dR(Ũ/Qq) by setting F (dxi/xi) = pdxi/xi and

F (Ω) = F (x0 · · · xn)F (x−1
0 · · · x−1

n Ω).
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Algorithm

Precision

We must truncate the power series expansion for the image of each
basis element under Frobenius. The level at which we truncate needs
to be larger than our desired final precision, since the reduction step

gΩ

fm+1 ≡
1

mfm

n∑
i=0

(∂igi)Ω

can lose precision when m is a multiple of p. Figuring out exactly how
much precision is lost is tricky.
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Algorithm

Runtime

In our implementation, we use Gröbner bases for some of the
reduction steps, and this makes the analysis of the runtime difficult.
David Harvey’s improvements to the algorithm improve the runtime
and make the analysis simpler; I’ll leave a discussion of the theoretical
runtime to him.

David Roe ( Harvard University ) Zeta functions with p-adic cohomology CRM 14 / 16



Practice

We computed the zeta function of the quartic surface over F3 defined
by the polynomial

x4 − xy3 + xy2w + xyzw + xyw2 − xzw2 + y4 + y3w − y2zw + z4 + w4.

On a dual Opteron 246 running at 2 GHz with 2GB of RAM, we have
the following timings:

Final Precision Initial Precision CPU sec MB
32 36 227 37
33 37 731 53
— 38 907 64
— 39 4705 124
34 310 13844 906
35 311 15040 1103
36 312 40144 1795
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Practice

In fact, in this case

Pn−1(T ) =
1
3

(3T 21 + 5T 20 + 6T 19 + 7T 18 + 5T 17 + 4T 16 + 2T 15−T 14

− 3T 13 − 5T 12 − 5T 11 − 5T 10 − 5T 9 − 3T 8

− T 7 + 2T 6 + 4T 5 + 5T 4 + 7T 3 + 6T 2 + 5T + 3)
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Questions

Questions?
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