The Local Langlands Correspondence for tamely ramified groups

David Roe

Department of Mathematics Harvard University

Harvard Number Theory Seminar

Outline

1 Local Langlands for GL_n

- Beyond GL_n
 - Statements
 - Construction

What is the Langlands Correspondence?

- A generalization of class field theory to non-abelian extensions.
- A tool for studying L-functions.
- A correspondence between representations of Galois groups and representations of algebraic groups.

Local Class Field Theory

Irreducible 1-dimensional representations of $\mathcal{W}_{\mathbb{Q}_p}$

1

Irreducible representations of $GL_1(\mathbb{Q}_p)$

The 1-dimensional case of local Langlands is local class field theory.

Conjecture

Irreducible n-dimensional representations of $\mathcal{W}_{\mathbb{Q}_p}$

1

Irreducible representations of $GL_n(\mathbb{Q}_p)$

In order to make this conjecture precise, we need to modify both sides a bit.

Smooth Representations

For n > 1, the representations of $GL_n(\mathbb{Q}_p)$ that appear are usually infinite dimensional.

Definition

A smooth \mathbb{C} -representation of $GL_n(\mathbb{Q}_p)$ is a pair (π, V) , where

- V is a ℂ-vector space (possibly infinite dimensional),
- π : $GL_n(\mathbb{Q}_p) \to GL(V)$ is a homomorphism,
- The stabilizer of each $v \in V$ is open in $GL_n(\mathbb{Q}_p)$.

The only finite-dimensional irreducible smooth π are

$$g \mapsto \chi(\det(g))$$

for some character $\chi \colon \mathbb{Q}_p^{\times} \to \mathbb{C}^{\times}$.

Langlands Parameters

We also need to clarify what kinds of representations of $\mathcal{W}_{\mathbb{Q}_p}$ to focus on.

Definition

A *Langlands parameter* is a pair (φ, V) with

$$\varphi \colon \mathcal{W}_{\mathbb{O}_n} \to \mathsf{GL}(V) \qquad \dim_{\mathbb{C}} V = n$$

such that φ is continuous and semisimple.

Parabolic Subgroups

Given a number of Langlands parameters $\varphi_i \colon \mathbf{W}_{\mathbb{Q}_p} \to \mathrm{GL}(V_i)$, one can form their direct sum. There should be a corresponding operation on the $\mathrm{GL}_n(\mathbb{Q}_p)$ side.

Definition

A parabolic subgroup of GL_n is a subgroup P conjugate to one consisting of block triangular matrices of a given pattern. For example:

$$\begin{pmatrix} * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix}$$

Such a subgroup has a Levi decomposition $P = M \ltimes N$, where M is conjugate to the corresponding subgroup of block diagonal matrices, and N consists of the subgroup of P with identity blocks on the diagonal.

Parabolic Induction

Since each Levi subgroup M is just a direct product of GL_{n_i} , a collection of representations $\pi_i \colon GL_{n_i}(\mathbb{Q}_p) \to GL(V_i)$ yields a representation $[X]_i \pi_i$ of M. We can pull this back to P and then induce to obtain

$$\pi = \operatorname{Ind}_P^{\operatorname{GL}_n(\mathbb{Q}_p)} \left[\underbrace{\times}_i \pi_i. \right.$$

Definition

We say that π is the *parabolic induction* of the π_i . We say that π is *supercuspidal* if π is not parabolically induced from any proper parabolic subgroup of $GL_n(\mathbb{Q}_p)$.

The Weil-Deligne Group

There is a natural bijection

Supercuspidal representations of $\mathrm{GL}_n(\mathbb{Q}_p)$

n-dimensional irreducible representations of $\mathcal{W}_{\mathbb{Q}_p}$.

But the parabolic induction of irreducible representations does not always remain irreducible. To extend this bijection from supercuspidal representations of $GL_n(\mathbb{Q}_p)$ to all smooth irreducible representations of $GL_n(\mathbb{Q}_p)$, one enlarges the right hand side using the following group:

 \leftrightarrow

$$\mathsf{WD}_{\mathbb{Q}_p} := \mathcal{W}_{\mathbb{Q}_p} \times \mathsf{SL}_2(\mathbb{C}).$$

Theorem (Local Langlands for GL_n : Harris-Taylor, Henniart)

There is a unique system of bijections

Irreducible representations of $GL_n(\mathbb{Q}_p)$

 $\xrightarrow{\operatorname{rec}_n}$

n-dimensional irreducible $representations of WD_{\mathbb{Q}_p}$

- rec₁ is induced by the Artin map of local class field theory.
- rec_n is compatible with 1-dimensional characters: $\operatorname{rec}_n(\pi \otimes \chi \circ \operatorname{det}) = \operatorname{rec}_n(\pi) \otimes \operatorname{rec}_1(\chi)$.
- The central character ω_{π} of π corresponds to det \circ rec_n: $\operatorname{rec}_{1}(\omega_{\pi}) = \operatorname{det}(\operatorname{rec}_{n}(\pi)).$
- \bullet rec_n $(\pi^{\vee}) = \operatorname{rec}_n(\pi)^{\vee}$
- rec_n respects natural invariants associated to each side, namely L-factors and ε-factors of pairs.

A First Guess

Now suppose **G** is some other connected reductive group defined over \mathbb{Q}_p , such as SO_n , Sp_n or U_n . We'd like to use a Langlands correspondence to understand representations of $\mathbf{G}(\mathbb{Q}_p)$ in terms of Galois representations. Something like

Homomorphisms
$$\varphi \colon \mathsf{WD}_{\mathbb{O}_n} \to \mathbf{G}(\mathbb{C})$$

 \leftrightarrow

Irreducible representations of $\mathbf{G}(\mathbb{Q}_p)$.

We need to modify this guess in two ways:

- change $\mathbf{G}(\mathbb{C})$ to a related group, ${}^{L}\mathbf{G}(\mathbb{C})$,
- and account for the fact that our correspondence is no longer a bijection.

Root Data

Reductive groups over algebraically closed fields are classified by root data

$$(X^*(S), \Phi(G, S), X_*(S), \Phi^{\vee}(G, S)),$$

where

- S ⊂ G is a maximal torus,
- $X^*(S)$ is the lattice of characters $\chi \colon S \to \mathbb{G}_m$,
- $X_*(S)$ is the lattice of cocharacters $\lambda : \mathbb{G}_m \to S$,
- Φ(G, S) is the set of roots (eigenvalues of the adjoint action of S on g),
- $\Phi^{\vee}(\mathbf{G}, \mathbf{S})$ is the set of coroots $(\langle \alpha, \alpha^{\vee} \rangle = 2)$.

Connected Langlands Dual

Given $\mathbf{G}\supset \mathbf{S}$, the connected Langlands dual group $\hat{\mathbf{G}}$ is defined to be the algebraic group over $\mathbb C$ with root datum

$$(X_*(S), \Phi^{\vee}(G, S), X^*(S), \Phi(G, S)).$$

For semisimple groups, this has the effect of exchanging the long and short roots (as well as interchanging the simply connected and adjoint forms).

				Sp _{2n}		
Ĝ	GL_n	PGL_n	SL_n	SO _{2n+1}	SO _{2n}	GL_n

Langlands Dual Group

For non-split **G**, such as U_n , we need to work a little harder. Suppose that **G** is quasi-split with Borel **B** \supset **S**, splitting over a finite extension E/\mathbb{Q}_p . Then $Gal(E/\mathbb{Q}_p)$ acts on the root datum, and we get an action on $\hat{\mathbf{G}}$ via pinned automorphisms. Define

$$^{L}\mathbf{G}:=\hat{\mathbf{G}}\rtimes\mathrm{Gal}(\mathbf{E}/\mathbb{Q}_{p}).$$

Unitary Groups

- E/Q_p a quadratic extension (so for p ≠ 2 there are three possibilities),
- $\tau \in Gal(E/\mathbb{Q}_p)$ the nontrivial element,
- V an n-dimensional E-vector space,
- Non-degenerate Hermitian form \langle , \rangle (so $\langle x, y \rangle = \tau \langle y, x \rangle$).

Then U(V) is the group of automorphisms of V preserving \langle , \rangle . Over $\bar{\mathbb{Q}}_p$, U becomes isomorphic to GL_n , so $\hat{\mathbb{U}}_n$ is GL_n , but $^L\mathbf{G}$ is non-connected: τ acts on $GL_n(\mathbb{C})$ by the outer automorphism

$$g \mapsto (g^{-1})^{\mathsf{T}}$$
.

Langlands Parameters

A Langlands parameter is now an equivalence class of homomorphisms

$$\varphi \colon \mathsf{WD}_{\mathbb{Q}_p} \to {}^L\mathbf{G}.$$

- We require that the composition of φ with the projection ${}^L\mathbf{G} \to \operatorname{Gal}(E/\mathbb{Q}_p)$ agrees with the standard projection $\mathcal{W}_{\mathbb{Q}_p} \to \operatorname{Gal}(E/\mathbb{Q}_p)$.
- We consider two parameters to be equivalent they are conjugate by an element of $\hat{\mathbf{G}}$. This definition of equivalence is chosen to match up with the notion of isomorphic representations on the $\mathbf{G}(\mathbb{Q}_p)$ side.

A Map

Conjecture

There is a natural map

Irreducible representations of **G**

Langlands parameters

 $\varphi \colon \mathsf{WD}_{\mathbb{Q}_p} \to {}^L\mathbf{G}$

It is surjective and finite-to-one; the fibers are called *L-packets*.

L-packets

Moreover, we can naturally parameterize these fibers. Given a Langlands parameter φ , let $Z_{\hat{\mathbf{G}}}(\varphi)$ be the centralizer in $\hat{\mathbf{G}}$ of φ , and let LZ be the center of $^L\mathbf{G}$. Define

$$A_{\varphi} = \pi_0(\mathbf{Z}_{\hat{\mathbf{G}}}(\varphi)/^L \mathbf{Z}).$$

The fibers should be in bijection with

$$A_{\varphi}^{\vee} = \{ \text{irreducible representations of } A_{\varphi} \}.$$

So we get a natural bijection

Irreducible representations of ${\bf G}$

$$\leftrightarrow$$

$$\begin{array}{c} (\varphi,\rho) \text{ with } \varphi \colon \operatorname{WD}_{\mathbb{Q}_p} \to {}^L\mathbf{G} \\ \text{ and } \rho \in A_\varphi^\vee \end{array}$$

Restrictions on φ

From now on we fix a totally ramified quadratic extension E/\mathbb{Q}_p and set $\mathbf{G} = \mathsf{U}(V)$ for V a quasi-split Hermitian space over E. We say that a Langlands parameter φ is

- discrete if $Z_{\hat{G}}(\varphi)$ is finite,
- tame if φ factors through the maximal tame quotient (and thus $p \neq 2$).
- regular if $Z_{\hat{G}}(\varphi(\tilde{\tau}))$ is connected and minimum dimensional (here $\tilde{\tau}$ is a procyclic generator of tame inertia).

We will construct an L-packet of supercuspidal representations of pure inner forms of $\mathbf{G}(\mathbb{Q}_p)$ given a tame, discrete regular parameter.

Filtrations

 $\mathbf{G}(\mathbb{Q}_p)$ acts on the Bruhat-Tits building $\mathcal{B}(\mathbf{G})$, and we can classify the compact subgroups of $\mathbf{G}(\mathbb{Q}_p)$ as stabilizers of convex subsets of $\mathcal{B}(\mathbf{G})$

- Each such compact **H** has the structure of a \mathbb{Z}_p -scheme.
- There is a decreasing filtration on each H.
- H⁰ is just the connected component of the identity (as a Z_p-scheme) and is of finite index in H.
- The special fiber $\mathbf{H}(\mathbb{F}_p)$ is given by $\mathbf{H}/\mathbf{H}^{0+}$.
- The filtration on **T** is the one given by Moy and Prasad, coming from the filtration on \mathbb{Q}_p^{\times} .

We can thus obtain representations of compact subgroups of **G** by pulling back representations of reductive groups over finite fields.

Outline

Our plan for constructing an L-packet from φ is as follows. We construct:

- A maximal unramified anisotropic torus T, which embeds into G in various ways,
- A character χ_{φ} on \mathbf{T}^0 that vanishes on \mathbf{T}^{0+} ,
- For each $\rho \in A_{\varphi}^{\vee}$, an embedding of **T** into a maximal compact subgroup **H** \subset **G**.
- We get a Deligne-Lusztig representation of $\mathbf{H}^0(\mathbb{F}_p) = \mathbf{H}^0/\mathbf{H}^{0+}$ associated to the torus $\mathbf{T}^0(\mathbb{F}_p) = \mathbf{T}^0/\mathbf{T}^{0+}$ and the character χ_{ω} .
- We induce this representation up to a representation of G.

An Unramified Anisotropic Torus

We have a specified torus $\hat{\mathbf{S}} \subset \hat{\mathbf{G}}$, dual to the centralizer \mathbf{S} of a maximal \mathbb{Q}_p -split torus.

- We can conjugate φ so that $\varphi(\tilde{\tau}) \in \hat{\mathbf{S}} \rtimes \operatorname{Gal}(E/\mathbb{Q}_p)$.
- $\varphi(F)$ then lies in the normalizer of $\hat{\mathbf{S}}$. It's projection onto the Weyl group gives an element of

$$\mathsf{H}^1(\langle \mathsf{F} \rangle, W^{\mathcal{I}}) \hookrightarrow \mathsf{H}^1(\mathbb{Q}_p, W),$$

which is exactly the data we need to define a maximal unramified torus as a twist of **S**.

• Discreteness of φ implies that

$$(\hat{\mathfrak{g}}^{\mathcal{I}})^{\mathsf{F}}=0\Rightarrow\hat{\mathfrak{g}}^{\mathcal{I}}=\hat{\mathfrak{s}}^{\mathcal{I}}$$
 and $X_*(\boldsymbol{S})^{\mathsf{F}}=0$

and thus that T is anisotropic.

A Character

• The image of φ lands inside some group containing $\hat{\mathbf{S}}$ with finite index. If it were a semidirect product, we could just use the local Langlands correspondence for tori:

$$\mathsf{H}^1(\mathbb{Q}_{\pmb{\rho}},\hat{\mathbf{T}}) \cong \mathsf{Hom}(\mathbf{T}(\mathbb{Q}_{\pmb{\rho}}),\mathbb{C}^{\times}).$$

- In general this extension is not a semidirect product. But we can use a modification of the Langlands correspondence for tori to obtain a character χ_{φ} of $\mathbf{T}^0(\mathbb{Q}_p)$, where \mathbf{T}^0 is the connected component in the Néron model of \mathbf{T} .
- The depth preservation feature of the Langlands correspondence for tori, together with the fact that φ is tamely ramified, implies that χ_{φ} vanishes on \mathbf{T}^{0+} .

Construction of χ_{φ}

Let $D \subset {}^L$ **G** be the group generated by $\hat{\mathbf{S}} \rtimes \operatorname{Gal}(E/\mathbb{Q}_p)$ and $\varphi(\mathsf{F})$. Denote by $M = \mathbb{Q}_{p^s} \cdot E$ the splitting field of **T**.

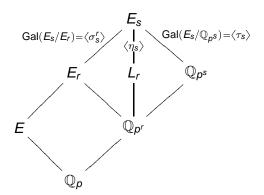
$$1 \to \hat{\mathbf{T}} \to D \to \operatorname{\mathsf{Gal}}(M/\mathbb{Q}_p) \to 1.$$

Let $P_K(D, \mathbf{T})$ be the set of homomorphisms from $\operatorname{Gal}(\bar{K}/K)$ to D that project correctly onto $\operatorname{Gal}(M/\mathbb{Q}_p)$, modulo conjugacy by $\hat{\mathbf{T}}$. Set D_s as the preimage in D of $\operatorname{Gal}(M/\mathbb{Q}_{p^s})$ and let $\Gamma = \operatorname{Gal}(\mathbb{Q}_{p^s}/\mathbb{Q}_p)$. Then χ_{φ} is the image of φ under

$$\begin{split} P_{\mathbb{Q}_p}(D,\mathbf{T}) &\xrightarrow{\text{res}} P_{\mathbb{Q}_{p^s}}(D_s,\mathbf{T})^\Gamma \cong \mathsf{H}^1(\mathbb{Q}_{p^s},\hat{\mathbf{T}})^\Gamma \\ &\cong \mathsf{Hom}(\mathbf{T}(\mathbb{Q}_{p^s})_\Gamma,\mathbb{C}^\times) \to \mathsf{Hom}(\mathbf{T}^0(\mathbb{Q}_{p^s})_\Gamma,\mathbb{C}^\times) \\ &\cong \mathsf{Hom}(\mathbf{T}^0(\mathbb{Q}_p),\mathbb{C}^\times). \end{split}$$

Basic Tori

We classify unramified anisotropic twists of the "quasi-split" torus **S**. Essentially, they are products of basic tori. For each s = 2r, define $T_s = \{x \in E_s : Nm_{E_s/L_r} x = 1\}$,



Embeddings of Basic Tori

In order to get Deligne-Lustig representations, we need to embed ${\bf T}$ into maximal compacts of ${\bf G}$. We do so by building a Hermitian space around each basic torus in the product decomposition of ${\bf T}$.

For each $\kappa \in L_r^{\times}$, we define a Hermitian product on E_s

$$\phi_{\kappa}(\mathbf{x}, \mathbf{y}) = \text{Tr}_{E_{\mathcal{S}}/E}(\frac{\kappa}{\pi_{L}}\mathbf{x} \cdot \eta_{\mathcal{S}}(\mathbf{y}))$$

This Hermitian space is quasi-split if and only if $v_L(\kappa)$ is even.

Embeddings of General Tori

In general, we choose a κ_i for each basic torus in the decomposition of **T**. This choice corresponds to a choice of $\rho \in A_\varphi^\vee$ as long as the sum of the valuations of the κ_i is even.

We prove **T** fixes a unique point on the building $\mathcal{B}(\mathbf{G})$ and thus embeds in a unique maximal compact $\mathbf{H} \subset \mathbf{G}$.

The reduction of H is

$$O(m) \times Sp(m')$$
,

where m is the sum of the dimensions of basic tori whose κ_i has even valuation and m' is the sum of those with $v(\kappa_i)$ odd.

Constructing a representation of $G(\mathbb{Q}_p)$

Modulo p, we have a maximal torus $\mathbf{T}^0(\mathbb{F}_p)$ sitting in a connected reductive group $\mathbf{H}^0(\mathbb{F}_p)$ and a character χ_{φ} of $\mathbf{T}^0(\mathbb{F}_p)$. This situation was studied by Deligne and Lusztig, and they produce a representation from étale cohomology. The irreducibility of this representation follows from the regularity condition on φ .

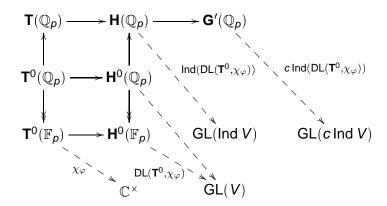
We pull back to \mathbf{H}^0 and the only wrinkle in the induction process occurs between \mathbf{H}^0 and \mathbf{H} . Once we have a representation of \mathbf{H} , we define a representation on all of $\mathbf{G}(\mathbb{Q}_p)$ by compact induction.

A Finite Induction

There are three cases for the induction from \mathbf{H}^0 to \mathbf{H} .

- n even, $\mathbf{H}(\mathbb{F}_p) = \operatorname{Sp}(n)$. Here $\mathbf{H} = \mathbf{H}^0$ and there is no induction.
- n even, otherwise. The fact that the normalizer of $\mathbf{T}^0(\mathbb{F}_p)$ in $\mathbf{H}(\mathbb{F}_p)$ contains the normalizer in $\mathbf{H}^0(\mathbb{F}_p)$ with index 2 implies that the induction remains irreducible.
- n odd. Now the induction from H⁰ to H splits into two irreducible components. We can pick one using a recipe for the central character, together with the fact that in the case that n is odd the center of O(m) is not contained in SO(m).

Summary



Further Work

- There are only a few instances where I depend on the fact that G = U(V). I'd like to come up with general arguments that work for any reductive group splitting over a tame extension.
- There are various properties we expect the correspondence to satisfy. All of the properties that Reeder and DeBacker prove about their L-packets (including stability and an analysis of which representations are generic) we should be able to do for L-packets in the tame case.
- I want to build a computational framework within Sage to experiment with these L-packets.