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Demo
https://beta.lmfdb.org/ModularCurve/Q/
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Modular Curves

Classically, modular curves are associated to congruence subgroups of PSL2(Z), which acts
on the upper half plane (the modular curve is the quotient∗ as a Riemann surface).

We associate to each (conjugacy class of) open subgroup H in GL2(Ẑ) a moduli space whose
points∗ correspond to elliptic curves with adelic Galois representation having image inside H.

We restrict to H with surjective determinant so that the resulting curve XH is defined over Q.

The level of H is the smallest so that H is the full preimage of its reduction modulo N.

The index of H is the index inside GL2(Ẑ).

The genus of H is the genus of XH .

A subgroup H is coarse if it contains −I, and fine otherwise.

Connection with modular forms: the Jacobian of XH decomposes∗ into a product of abelian
varieties associated to weight 2 newforms.
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Computation structure

1 For 200 < N ≤ 400, find all subgroups of GL2(N) with surjective determinant up to
conjugacy (with a bound on g, divided into coarse and fine subgroups), together with
inclusion relationships.

2 For each coarse subgroup H, decompose Jac(XH) into a product of modular abelian varieties
(up to isogeny), each associated to a weight 2 newform.

3 Find models of various types – canonical, embedded, Weierstrass, conic – together with maps
to the j-line.

4 Use group theory and models to get initial gonality bounds, then propagate along the modular
maps.

5 Compute Galois images for elliptic curves over Q and over number fields, using the results to
create a database of low-degree points.

6 Run a point search on the models found and a literature search to add more low-degree points.
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Labels

Besides the classical curves such as X0(N) and
X1(N), there are many labeling schemes in the
literature:

1 Cummins-Pauli
2 Rouse and Zureick-Brown
3 Rouse, Sutherland, and Zureick-Brown
4 Sutherland
5 Sutherland and Zywina

We propose another, close to the RSZB label, which collects H together based on ⟨H,−I⟩ and
breaks ties differently. It is possible to compute even for groups of level 336 where the RSZB label
becomes infeasible.
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Similarity invariants (Sutherland)
Let pe be a prime power. Each A ∈ M2(pe) is similar to a matrix of the form

zI + p j
(
0 1
−d t

)
,

where the tuple of integers inv(A) := ( j, z, d, t) is uniquely determined by
j ≤ e is the largest integer such that A mod p j is a scalar matrix;
z ∈ [0, p j − 1] satisfies zI ≡ A (mod p j);
d, t ∈ [0, pe− j − 1] satisfy d ≡ det p− j(A − zI) and t ≡ tr p− j(A − zI).

We extend this to general moduli N = pe1
1 . . . p

en
n with p1 < · · · < pn prime via

inv(A) := (inv(A mod pe1
1 ), . . . , inv(A mod pen

n )).

Lemma
Matrices A, B ∈ GL2(N) are conjugate if and only if inv(A) = inv(B).

David Roe (MIT) Modular Curves in the LMFDB Zagreb 7 / 19



Canonical generators (Sutherland)

Given an open H ≤ GL2(Ẑ), we wish to choose a representative of the conjugacy class [H] that H
represents, and generators for it in a way the depends only on [H].
We first fix an ordering of GL2(N)-conjugacy classes [g] (rather than sorting by similarity invariant
it is better to sort by decreasing |g|, decreasing #[g], then by similarity invariant).
The canonical generators for coarse H ≤ GL2(Ẑ) of level N are the lexicographically minimal
sequence h1, . . . , hn ∈ GL2(N) such that

H(N) ∩ SL2(N) = ⟨h1, . . . , hm⟩ for some m ≤ n and H(N) = ⟨h1, . . . , hn⟩.
⟨h1, . . . , hi⟩ < ⟨h1, . . . , hi + 1⟩ for 1 ≤ i < n;

[h1], . . . , [hm] and [hm+1], . . . , [hn] are nondecreasing (under our fixed ordering);

The canonical generators for fine H ≤ GL2(Ẑ) are the sequence ϵ1h1, . . . , ϵnhn where h1, . . . , hn

are canonical generators for ±H and ϵ1, . . . , ϵn ∈ {±1}n minimize
∑
ϵi=1 2

i−1.
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Subgroup enumeration (Sutherland)

1 Compute canonical generators for GL2(N), let Vc
0 = (GL2(N)),V f

0 = ∅, and i = 0.

2 Compute Vc
i+1, V f

i+1 , and Ec
i+1 as follows:

1 For each H ∈ Vc
i compute the maximal subgroups H′ < H with det(K) = Ẑ×.

2 Compute signs ϵi for each fine maximal F < H and compute canonical generators.
3 Add distinct F to V f

i+1 along with generators for F ∩ K for each coarse maximal K < H.
4 Add coarse maximal K < H to Vc

i+1 and coarse edges (K,H) to Ec
i+1 .

3 Compute canonical generators for H ∈ Vc
i+1, remove duplicates, update Ec

i+1.
4 Compute E f using signs from 2b and intersections from 2c, group by coarse parent.
5 Output Vc :=

∪
i Vc

i ,V
f :=

∪
i V f

i , E
c :=

∪
i Ec

i , and E f .

Steps 2, 3, 5 are designed to be highly parallelizable.
This description omits many details (conjugators, level-lifting, hashing, etc...).
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Modular curves XH/Q of level N ≤ 400 and genus g ≤ 24

level coarse XH/Q fine XH/Q XH/Q

240 275 184 5 113 941 5 389 125
336 233 684 4 367 741 4 601 425
120 251 423 2 938 971 3 190 394
168 161 247 2 499 153 2 660 400
312 157 819 2 188 045 2 345 864
264 148 031 2 140 707 2 288 738
280 82 433 947 340 1 029 773

48 43 910 486 297 530 207
360 28 184 455 652 483 836
24 23 102 210 057 233 159
...

...
...

...

≈ 2 million ≈ 23 million ≈ 25 million
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Coarse modular curves XH/Q of level N ≤ 70 and genus g ≤ 24
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Models
Once the subgroup lattice inside GL2(N) is computed, we compute models (for small enough
genus):

1 First, compute a canonical or embedded∗ model of XH by looking for relations between
modular forms.

2 Then, try various strategies to find a plane model:
1 Pick three (small) linear combinations of the coordinates and look for relations of increasing

degree (as modular forms).
2 Use Magma’s representation of the function field to drop the dimension, then project (starting

from rational cusps).
3 For small genus, compute a gonal map to P1 and use it together with a product of coordinates to

get a map to P2.

3 For pointless genus 0 curves, use the classification of genus 0 subgroups of SL2(N) and
express as a twist of a fixed curve.

4 If elliptic or hyperelliptic over Q, use Magma to find Weierstrass model.
5 When hyperelliptic but not over Q, express as a double cover of a pointless conic.
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Maps between models

As moduli spaces, inclusions H1 ⊂ H2 induce modular maps XH1 → XH2 . In particular, every XH

has a map to X(1) which we call the j-map.

When genus 0 or 1, or hyperelliptic, compute this map using the fact that the coordinates on
the canonical or embedded model of XH are defined in terms of modular forms.

Maps between canonical models can be defined using linear polynomials, so search for linear
relations when possible. Otherwise, find an absolute j-map.

When constructing other models, track the maps.
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Gonality

Gonality bounds initially come from Abramovich (upper) and point counting via modular
forms (lower).
We can propagate these using three inequalities (applied to modular maps):

1 If X → Y dominant has degree d then γ(X) ≤ dγ(Y),
2 If X → Y dominant then γ(Y) ≤ γ(X),
3 (Castelnuovo-Severi) If X → Y has degree d, X → P1 has degree γ and gcd(d, γ) = 1 then

γ ≥ g(X) − dg(Y)
d − 1 + 1.

After improving gonalities using models, can propagate again.
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Rational points

The current collection of rational and low-degree points comes from several sources:
1 Cusps, with orbits (and fields of definition) derived from the group theory and cyclotomic

fields.
2 Computation of adelic Galois images for elliptic curves over Q (propagated using modular

maps)
3 Computation of mod-ℓ Galois images for elliptic curves of number fields (propagated using

modular maps)
4 For each N and CM discriminant D, computation of the minimal H of level N with CM of

discriminant D (propagated using modular maps)
5 For a small set of curves, hand curated j-invariants from the literature.

Notably, we haven’t yet run any kind of point search on the models we’ve found. Coming soon....
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More demo

1 Classic search
2 Level 13
3 Point search
4 Genus vs rank
5 Trigonal curves
6 Models
7 More models
8 Lattice
9 j-map
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https://beta.lmfdb.org/ModularCurve/Q/?genus=1-&contains_negative_one=yes&family=any
https://beta.lmfdb.org/ModularCurve/Q/?level=13&contains_negative_one=yes
https://beta.lmfdb.org/ModularCurve/Q/low_degree_points?genus=2-&cm=noCM&cusp=no&sort_order=j_height
https://beta.lmfdb.org/ModularCurve/Q/?genus=2-&genus_minus_rank=0&contains_negative_one=yes&showcol=dims
https://beta.lmfdb.org/ModularCurve/Q/?gonality_type=possibly&q_gonality=3&contains_negative_one=yes
https://beta.lmfdb.org/ModularCurve/Q/21.126.4.d.1/
https://beta.lmfdb.org/ModularCurve/Q/40.72.3.bh.1/
https://beta.lmfdb.org/ModularCurve/Q/30.216.11.j.1/
https://beta.lmfdb.org/ModularCurve/Q/12.24.0.r.1/


We need you!

We hope for this database to serve as a repository of knowledge about specific modular curves.
You can help in several ways.

1 Contribute to annotations for modular curves, describing connections with the literature and
special features (talk to me for an LMFDB account).

2 Contribute better models (with maps to the j-line), gonality bounds, collections of low degree
points, or regimes where low degree points are provably complete (with references).

3 Algorithmic advances: generalize Zywina’s OpenImage code to number fields, or optimize
canonical models to run faster for level larger than 70.

4 Help expand the scope: (modular) automorphism groups, degrees of maps to elliptic curves
(bielliptic, trielliptic, etc), exceptional isomorphisms, Atkin-Lehner quotients.
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Questions?
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