p-adic Precision

David Roe

Department of Mathematics
Massachusetts Institute of Technology

Simons Collaboration Meeting

May 7, 2021

Outline

@ Methods of Precision Tracking

© Implementation

p-adic precision in Sage

This work is joint with Xavier Caruso and Tristan Vaccon.

Throughout the talk I’ll be using Q,, as an example, but the methods
apply to any complete discrete valuation field.

Methods of Precision Tracking
®00000

Ball arithmetic

Sage, and most other p-adic systems, normally tracks precision by
attaching it to each element and propagating it through arithmetic.

Ball arithmetic

The absolute precision of p'u + O(p") is N, and the relative
precisionis N — v.
@ The absolute precision of the sum or difference of two numbers
is the minimum of their absolute precisions.

@ The relative precision of the product of quotient of two number
is the minimum of their relative precisions.

Standard because you get provably correct results, and the precision
behavior is often better than R (for example, you don’t get gradually
accumulating error from adding elements).

Methods of Precision Tracking
0O@0000

Floating point

Problem: sometimes you lose all your precision, especially if you
ignore numerical stability. Can emulate methods over R and drop
precision tracking completely.

Floating point arithmetic

Pick a finite collection of representable numbers, e.g. p"u for
~M <v < Mand0 < u < p" and define arithmetic operations to
yield the closest representable number to the true answer.

Can sometimes mathematically analyze precision and show that the
result is more precise than what interval arithmetic would predict. But
without this work, floating point calculations have no guarantees.

Methods of Precision Tracking
[e]e] lelele}

Lazy and relaxed arithmetic

Can record elements’ construction in addition to their precision.

Lazy elements

A lazy element includes
@ an approximation
@ a current precision

@ a pointer back to its inputs.

This structure allows for the computation of additional digits at need.
Two approaches:

@ Approximation using standard elements; double precision when
asked for more.

@ Approximation using polynomials with small coefficients;
there’s an asymptotically better algorithm for multiplication.

Methods of Precision Tracking
[e]e]e] lele}

Lattices

Ball arithmetic is optimal if you consider precision to be an attribute
of an individual number. But we can do better if we allow precision
data to incorporate relationships between variables.

Given n variables, we will think about their values as a vector in a
n-dimensional vector space E. A lattice H C E is a bounded
sub-Z,-module which generates E over Q. In practice, it’s just the
Z,-span of n vectors. For example, the ball of radius » > 0 around the
origin is a lattice, as is the diagonal lattice spanned by

(p™,0,...,0),
(0,p™2,...,0),
(0,0,...,p™).

An approximate element of E takes the form x + H for some lattice H.

Methods of Precision Tracking
0000e0

Lattice example

Suppose x = 4 + O(3%) and y = 2 + O(3%). Setu = x + y and
v = x —y. Then the precision of (x,y) is

(3%,0)23 + (0,3%)Zs,
L . . o 1 1
and the precision of (u, v) is obtained by multiplying by (1 _1):

L= (353%2Z3 + (3% -3Y)23 = (0,3%)Z3 + (3%, -3%)Zs.

This lattice is not diagonal: the smallest diagonal lattice containing it
is (3%,0)Z3 + (0, 3*)Z3, corresponding to the fact that « and v have
absolute precision 4 in interval arithmetic. But if you compute
r=u+v=2xand s = u —v = 2y then (r, s) has precision lattice

(0,2-3YZ5 + (3%,-3%)Z3 = (35,0)Z3 + (0,3")Zs.

Methods of Precision Tracking

00000e

The precision lemma (Caruso-R-Vaccon)

Using lattices to track precision is optimal in the following sense:

Lemma

Let E and F be two finite dimensional normed vector spaces over Q,,
and f : U — F be a function defined on an open subset U of E.
Suppose f is differentiable at x € U and df, is surjective. Then for
sufficiently small H,

f(x+ H) = f(x) + dfx(H).

The required size on H depends on the magnitude of the higher
derivatives, and is computable for concrete f. We also show variants
for maps between p-adic manifolds and infinite dimensional Banach
spaces.

Implementation
[Jelelele}

Representing lattices

@ We represent a precision lattice using an upper triangular matrix,
whose rows give a basis for the lattice.

@ We scale the diagonal entries to be powers of p.

@ Note that lattices are exact, since we may use row operations to
reduce each column modulo the power of p on the diagonal.

Implementation
[e] lele]e}

Adding and deleting variables

@ Adding a variable via arithmetic: w = f(v_1,...v_n). We
add a new column with entries given by %.
@ The resulting matrix is no longer square.

e In one model (ZpLF) we allow such submodules (at the cost of
working with inexact objects).

o In the other model (ZpLC) we add a new row (0,....,0, p¢) for
some cap C.

@ Introducing a constant or input: w = R (value, prec).We
add a column of zeros, possibly capped by a new row’s p€.

o Deleting a variable: delete the corresponding column,
re-echelonize, then delete a row of zeros at the bottom.

Implementation
[e]e] lele}

Complexity

o Tracking precision this way requires storing a matrix with
number of columns equal to the number of variables, and
number of rows either the number of variables (ZpLC) or the
number of input variables (ZpLF).

@ The size of the entries is bounded by p¢, where C is the precision
cap (ZpLC) or the precision of floating point arithmetic (ZpLF).

@ Adding variables requires O(nr) operations, where n is the arity
of the operation (often 2) and r is the current number of rows.

e Deleting a variable requires O(z?) operations (ZpLC), where z is
the number of columns to the right of the deleted column. In
practice negligible due to temporal locality; ZpLF is even better.

@ In an algorithm with complexity ¢, input/output size s and
memory usage m ~ s + v/c, tracking precision using with ZpLC
takes O(sc) operations; with ZpFL O(c%/? 4 sc).

Implementation
[e]ele] o}

Correctness and optimality

@ Our current implementation does not check the smallness
condition required to apply the precision lemma, so the results
are not provably correct.

@ The precision cap can reduce the precision of the result, but this
is checkable a fortiori.

@ Can quantify the amount of precision lost by checking precision
on individual variables. If H C E'is a lattice and 7r; : E — Qpe;
are projections onto the variables, the number of diffused digits
of precision is the length of Hy/H, where
Hy = 7T1(H) ®D--- @ﬂ'n(H).

Implementation
[e]e]e]e]]

To Sage!

[3]:

[4] :

[5]:

padic demo

May 7, 2021

0.1 The SOMOS 4 sequence

The SOMOS 4 sequence is the sequence defined by the recurrence

2
Un+1Un+3 + U 1o

Un+4 = u
n

def somos(u0, ul, u2, u3, n):
a, b, c, d = u0, ul, u2, u3
for _ in range(4, nt+i1):
a, b, c, d=D>b, c, d, (bxd + c*c) / a
print(d)

Z2 = Zp(2,40,print_mode='digits')
u0 = ul = u2 = z22(1,15); u3d = Z2(3,15)
somos (u0,ul,u2,u3,18)

..000000000000100
..000000000001101
..000000000110111
..101010111010111
..1100111101111
..1110000010010
..0001000111001
..0000011111101
..1000000110101
..101101010011
..110000000000
..000101011101
..001001101011
..000011110011
.11

Z2 = ZpLC(2,40,print_mode='digits"')
u0 ul = u2 = 722(1,15); u3 = Z2(3,15)
somos (u0,ul,u2,u3,18)

..000000000000100
..000000000001101

..000000000110111
..101010111010111
..101100111101111
..1111110000010010
..100001000111001
..100000011111101
..001000000110101
..010101101010011
..001110000000000
..111000101011101
..111001001101011
..111000011110011
..100000000000111

0.2 Basic arithmetic

[6]: Z3 = ZpLC(3)

x = Z3(4, 6)
y = 23(2, 4)
u=x+ty
vV=Xx-Y

u, v

[6]: (2%3 + 0(374), 2 + 0(374))

[71: (u+v, u-v)

[7]1: (2 + 243 + 0(376), 1 + 3 + 0(3°4))

[8]: x+x+x

[8]: 3+ 32+ 0(3°7)

[9]:

=

= Z3.precision()
.precision_lattice([u,v])

=

[9]: [81 648]
[0 729]

[11]: L.diffused_digits([u,v])

[11]: 2

0.3 Computing with Matrices

Products of many matrices

[67]:

[58]:

[50] :

[50]:

[51]:

[51]:

[52]:

[52]:

[63]:

[53]:

[54]:

[54] :

def random_element(R, prec):
return R(ZZ.random_element (R.prime() “prec), prec)

def random_matrix(MS, prec):
return MS([random_element (MS.base_ring(), prec) for _ in range(MS.nrows() *_
—MS.ncols())])

Z2 = Zp(2,40,print_mode='digits')
MS = MatrixSpace(Z2,2)
M = MS(1)
for _ in range(60):

M #= random_matrix(MS, prec=8)
M

[..00000000000000000 ..00000000000000000000]
[..00000000000000000 ..00000000000000000000]

Z2 = ZpLC(2,40,print_mode='digits')
MS = MatrixSpace(Z2,2)
M = MS(1)
for _ in range(60):

M #= random_matrix(MS, prec=8)
M

[..10110100000000000000000 ..00000100000000000000000]
[..110111000000000000000 ..110011000000000000000]

Determinants and characteristic polynomials

Z3 = Zp(3,40,print_mode='digits')

D = diagonal matrix([z3(1,5), Z3(9,5), Z23(27,5), Z3(81,5) 1)
D.determinant ()

..1000000000

MS = D.parent()
P = random_matrix(MS, prec=5)
Q random_matrix(MS, prec=5)
M = P*xDx*Q

M.determinant ()

..00000000000
M.characteristic_polynomial ()

..0000000000000000000000000000000000000001*x"4 + ..122*x"3 + ..000*x"2 +
..00000*x + ..00000000

[65]: Z3 = ZpLC(3,40,print_mode='digits"')
D = diagonal matrix([Z3(1,5), Z3(9,5), Z3(27,5), Z3(81,5) 1)
MS = D.parent()

random_matrix(MS, prec=5)

random_matrix(MS, prec=5)

P*D*Q

.determinant ()

p
Q
M
M
[656]: .7.0

[66]: M.characteristic_polynomial()

[56]: ..0000000000000000000000000000000000000001*x~4 + ..01211*x"3 + ..01200*x"2 +
..12000000*x + ..20000000000000

0.4 Computing with polynomials

Euclidean algorithm
[61]: def random_polynomial(S, degree, prec):
return S([random_element(S.base_ring(), prec) for _ in range(degree+1)])

[30]: | def euclidean(A,B):
while B != O:
A, B=B, AYB
return A.monic()
[65]: Q2 = Qp(2,40,print_mode='digits')
S.<x> = PolynomialRing(Q2)
P = random_polynomial(S, degree=10, prec=5)
Q
D
D

random_polynomial(S, degree=10, prec=5)
x5 + random_polynomial (S, degree=4, prec=8)

[65]: ..0000000000000000000000000000000000000001*x"5 + ..11001000*x~4 +
..10010111%x"3 + ..11110111%x"2 + ..01101101*x + ..01110101

With high probability, P and @ are coprime, implying that the ged of DP is DQ is D. However,
we observe that we do not always get this expected result:

[66]: euclidean(D*P, DxQ)

[66]: .1*x"12 + ..7.70*%x"11 + ..7.1*x"10 + ..7.70*%x"9 + ..7.70%x"8 + ..7.70%x"7
+ .7.70%x76 + .7.70%x"5 + .7.1%x"4 + .7.70%x"3 + .7.0%x"2 + .7.0%x +
.7.70

Here, we stopped too early since the remainder lost its precision. If we use floating point arithmetic,
the opposite problem occurs, since the remainder is not zero soon enough.

[67]:

[67]:

[68]:

[68]:

[73]:

[73]:

[74] :

[74] :

[76]:

[79]:

[79]:

[80]:

[80]:

[81]:

Q2 = QpFP(2,15,print_mode='digits"')

S.<x> = PolynomialRing(Q2)

P = random_polynomial(S, degree=10, prec=5)
Q

D

D

random_polynomial (S, degree=10, prec=5)
x~5 + random_polynomial(S, degree=4, prec=8)

x5 + 11100101*x"4 + 10110000*x~3 + 11001100*x"2 + 100101*x + 10101110

euclidean(D*P, Dx*Q)

With lattice precision, we get the right answer.

Q2 = QpLC(2,40,print_mode='digits"')

S.<x> = PolynomialRing(Q2)

random_polynomial (S, degree=10, prec=5)
random_polynomial (S, degree=10, prec=5)

x~5 + random_polynomial(S, degree=4, prec=8)

P
Q
D
D
..0000000000000000000000000000000000000001*x~5 + ..00110100*x~4 +
..01010011*x"3 + ..10011010*x"2 + ..01111101*x + ..11111100
euclidean(D*P, D*Q)

..0000000000000000000000000000000000000001*x"5 + ..00110100*x"4 +
..01010011*x"3 + ..10011010*x"2 + ..01111101*x + ..11111100

0.5 Lazy p-adics

R

ZpER(5, print_mode='digits')

)
1]

R(6) .sqrt()

.42223233033132124031
a[:50]
..720344201141421014133000210413342223233033132124031

al[:150]

[81]: ..72140112412204203103043313134242002400043312041344041012040014113232133044443
24101132344211242434114320344201141421014133000210413342223233033132124031

[82]: u = R.unknown()
v = R.unknown()
w = R.unknown()
u.set (1l + 2%v + 3*%xw 2 + 5kuxvky)
v.set(2 + 4xwy + sqrt(l + 5*u + 10*v + 15%w))
w.set(3 + 25x(u*v + vkw + uxw))
[82]: True
[83]: u

[83]: ..31203130103131131433

[84]: v

[84]: ..33441043031103114240

[85]: w

[85]: ..30212422041102444403

[86]: |u == 1 + 2%y + 3*wW™2 + Bxukviy
[86]: True

[87]:|v == 2 + 4*%w + sqrt(l + 5*u + 10*v + 15%w)

[87]: True
[88]: w == 3 + 25%x(u*v + v*w + wkw)
[88]: True

[1:

