The inverse Galois problem for p-adic fields

David Roe

Department of Mathematics Massachusetts Institute of Technology

August 30, 2019

David Roe (MIT)

The inverse Galois problem for p-adic fields

Inverse Galois Problem

- Classic Problem: determine if a finite *G* is a Galois group.
- Depends on base field: every G is a Galois group over $\mathbb{C}(t)$.
- Most work focused on L/Q: S_n and A_n, every solvable group, every sporadic group except possibly M₂₃,...
- Generic polynomials $f_G(t_1, \ldots, t_r, X)$ are known for some (G, K): every L/K with group G is a specialization.

Computational Problems

Given a finite group G, find algorithms for

- Existence problem: exist L/\mathbb{Q}_p with $\operatorname{Gal}(L/\mathbb{Q}_p) \cong G$?
- 2 Counting problem: how many such *L* exist (always finite)?
- Enumeration problem: list the L.

Ramification Groups

Suppose

- L/K is an extension of *p*-adic fields, G = Gal(L/K),
- π is a uniformizer of *L*,

•
$$G_i = \{ \sigma \in G : v_L(\sigma(x) - x) \ge i + 1 \forall x \in O_L \} \text{ for } i \ge -1,$$

•
$$U_L^{(0)} = O_L^{\times}$$
 and $U_L^{(i)} = 1 + \pi^i O_L$ for $i \ge 1$.

Proposition ([2, Prop. IV.2.7])

For $i \ge 0$, the map $\theta_i : G_i/G_{i+1} \to U_L^{(i)}/U_L^{(i+1)}$ defined by $\theta_i(\sigma) = \sigma(\pi)/\pi$ is injective and independent of π .

Corollary

- G/G_0 is cyclic,
- G_0/G_1 is cyclic of order prime to p,
- G_i/G_{i+1} is an elementary abelian *p*-group for $i \ge 1$.

p-realizable groups

Definition

A group *G* is *potentially p*-*realizable* if it has a filtration $G \supseteq G_0 \supseteq G_1$ so that

- G_0 and G_1 are normal in G,
- 2 G/G_0 is cyclic, generated by some $\sigma \in G$,
- **③** G_0/G_1 is cyclic, generated by some $\tau \in G_0$,
- $\ \, \bullet \quad \tau^{\sigma} = \tau^{p},$
- **6** G_1 is a *p*-group.

It is *p*-realizable if there exists L/\mathbb{Q}_p with $\text{Gal}(L/\mathbb{Q}_p) \cong G$. It is *minimally unrealizable* if it is not *p*-realizable, but every proper quotient is.

Counting for *p*-groups

When *G* is a *p*-group, complete answer available. Suppose K/\mathbb{Q}_p has degree *n* and $K \not \supseteq \mu_p$.

Theorem ([3])

The maximal pro-p quotient of Gal(K) is a free pro-p group on n + 1 generators.

Corollary

If G is a p-group generated by d elements (minimally), the number of extensions L/K with Galois group G is

$$\frac{1}{|\mathsf{Aut}(G)|} \left(\frac{|G|}{p^d}\right)^{n+1} \prod_{i=0}^{d-1} (p^{n+1} - p^i).$$

We get an easy condition on when a *p*-group is *p*-realizable. Let $W = G^pG'$ be the Frattini subgroup; G/W is the maximal elementary abelian quotient of *G*. A set of elements generates *G* if and only if its projection onto G/W spans G/W as an \mathbb{F}_p -vector space.

Corollary

If p > 2 and *G* is a *p*-group then *G* is *p*-realizable if and only if *G*/*W* has dimension less than 3.

Presentation of the absolute Galois group

For p > 2, Gal $(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ is the profinite group generated by σ, τ, x_0, x_1 with x_0, x_1 pro-*p* and the following relations (see [1])

$$\begin{aligned} \tau^{\sigma} &= \tau^{p} \\ \langle x_{0}, \tau \rangle^{-1} x_{0}^{\sigma} &= x_{1}^{p} \bigg[x_{1}, x_{1}^{\tau_{2}^{p+1}} \left\{ x_{1}, \tau_{2}^{p+1} \right\}^{\sigma_{2} \tau_{2}^{(p-1)/2}} \\ &\qquad \left\{ \left\{ x_{1}, \tau_{2}^{p+1} \right\}, \sigma_{2} \tau_{2}^{(p-1)/2} \right\}^{\sigma_{2} \tau_{2}^{(p+1)/2} + \tau_{2}^{(p+1)/2}} \\ \hline h \in \mathbb{Z}_{p} \text{ with mult. order } p - 1, \quad \text{proj}_{p} : \hat{\mathbb{Z}} \to \mathbb{Z}_{p} \\ \langle x_{0}, \tau \rangle &:= (x_{0} \tau x_{0}^{h^{p-2}} \tau \dots x_{0}^{h} \tau)^{\text{proj}_{p}/(p-1)} \\ \beta : \text{Gal}(\mathbb{Q}_{p}^{t}/\mathbb{Q}_{p}) \to \mathbb{Z}_{p}^{\times} \qquad \beta(\tau) = h \qquad \beta(\sigma) = 1 \\ \{x, \rho\} &:= (x^{\beta(1)} \rho^{2} x^{\beta(\rho)} \rho^{2} \dots x^{\beta(\rho^{p-2})} \rho^{2})^{\text{proj}_{p}/(p-1)} \\ \sigma_{2} &:= \text{proj}_{2}(\sigma) \qquad \tau_{2} := \text{proj}_{2}(\tau) \end{aligned}$$

Counting in general

By the Galois correspondence, Galois extensions of \mathbb{Q}_p correspond to finite index normal subgroups of Gal $(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$. Thus the number of extensions L/\mathbb{Q}_p with Gal $(L/\mathbb{Q}_p) \cong G$ is

$$\frac{1}{\#\operatorname{Aut}(G)} \# \left\{ \varphi : \operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p) \twoheadrightarrow G \right\}$$

So we count the tuples σ , τ , x_0 , $x_1 \in G$ (up to automorphism) that

- satisfy the relations from $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$,
- generate G.

Basic Strategy

Loop over σ generating the unramified quotient and τ generating the tame inertia (with $\tau^{\sigma} = \tau^{p}$). For each such (σ, τ) up to automorphism, count the valid x_0, x_1 .

Counting for many *G*, so we can build up from quotients.

Iterative Strategy

- Pick a minimal normal subgroup N ⊲ G, then try to lift (σ, τ, x₀, x₁) from G/N to G.
- Tame G form a base case.

Two subtleties.

- If N is not characteristic, it will not be preserved by Aut(G) so not all automorphisms descend;
- The map Stab_{Aut(G)}(N) → Aut(G/N) may not be surjective, so equivalent quadruples may become inequivalent.

Counts

Potentially *p*-realizable G with the count of L/\mathbb{Q}_p at least n. p=3p=5p=715,000 10,000 5.0000 2020() 100 100 1020n n n

The largest counts occurred for cyclic groups or products of large cyclic groups with small nonabelian groups:

- C_{1458} (p = 3) with 2916,
- C_{1210} (p = 11) with 2376,
- $C_{243} \times S_3$ (p = 3) with 1944.

But also 1458G553, $(C_{27} \rtimes C_{27}) \rtimes C_2$ (*p* = 3) with 1323.

Realizability Criteria

Given potentially *p*-realizable *G*, let *V* be it's *p*-core and $W = V^p V'$. Then V/W is an \mathbb{F}_p vector space with action of G/V. Let T_G be the set of pairs $(\sigma, \tau) \in G^2$ generating G/V and satisfying $\tau^{\sigma} = \tau^p$.

Definition

G is strongly-split if $\operatorname{ord}_G(\sigma) = \operatorname{ord}_{G/V}(\sigma)$ for all $(\sigma, \tau) \in T_G$. *G* is tame-decoupled if τ acts trivially on V/W for all $(\sigma, \tau) \in T_G$. *G* is x_0 -constrained if $x_0^{\sigma} \langle x_0, \tau \rangle^{-1} \in W \Rightarrow x_0 \in W$ for all $(\sigma, \tau) \in T_G$.

Set $n_{G,ss} = 0$ if strongly-split, 1 o/w; $n_{G,xc} = 0$ if x_0 -constrained, 1 o/w.

Theorem

Let *n* be the largest multiplicity of an indecomposable factor of V/W.

- If *G* is tame-decoupled then it is *x*₀-constrained.
- If $n > 1 + n_{G,ss} + n_{G,xc}$ then G is not p-realizable.
- If W = 1 and V is a sum of distinct irreducibles, G is p-realizable.

Minimally unrealizable *G* with abelian *V*, p = 3

Label	Description	V	SS	TD	XC	$1 + n_{G,ss} + n_{G,xc}$
27G5	\mathbb{F}_3^3	1^{3}	Ν	Y	Y	2
36G7	$\mathbb{F}_3^2 \rtimes C_4$	1^{2}	Y	Υ	Υ	1
54G14	$\mathbb{F}_3^3 \rtimes C_2$	1^{3}	Υ	Ν	Ν	2
72G33	$\mathbb{F}_3^2 \rtimes D_8$	1^{2}	Υ	Υ	Υ	1
162G16	$C_9^2 \rtimes C_2$	1^{2}	Υ	Ν	Ν	2
324G164	$\mathbb{F}_3^{\check{4}} \rtimes C_4$	2^{2}	Υ	Ν	Υ	1
324G169	$\mathbb{F}_{3}^{\check{4}} \rtimes (C_{2} \times C_{2})$	$1^2 \oplus 1^2$	Υ	Ν	Ν	2
378G51	$\mathbb{F}_3^{\check{2}} \rtimes (C_7 \rtimes C_6)$	1^2	Υ	Υ	Υ	1
648G711	$\mathbb{F}_3^{\check{4}} times C_8$	2^{2}	Υ	Ν	Υ	1

There are two instances not explained by the theorem.

- For 324G169, $V \cong 1^2 \oplus 1^2$. There are nontrivial x_0 satisfying $x_0^{\sigma} \langle x_0, \tau \rangle^{-1} = 1$, but they all lie in a 1-dimensional indecomposable subrepresentation. The other subrepresentation can't be spanned by x_1 on its own.
- For 162G16, the quotient by *W* is *p*-realizable. Here *V* is abelian but has exponent 9 rather than 3, so the wild relation takes the form

$$x_0^{\sigma} \langle x_0, \tau \rangle^{-1} = x_1^p.$$

In order to get a nontrivial x_1 , we need to find x_0 with $x_0^{\sigma} \langle x_0, \tau \rangle^{-1}$ of order 3. Such x_0 exist, but they all have the property that $x_0^{\sigma} \langle x_0, \tau \rangle^{-1}$ is a multiple of x_0 , preventing x_1 from spanning the rest of *V*.

Minimally unrealizable G with nonabelian V, p = 3

Label	Description	G/W	V/W
486G146	$(\mathbb{F}_3^4 \rtimes C_3) \rtimes C_2$	54G13	$1^2 \oplus 1$
648G218	$(C_{27} \rtimes C_3) \times D_8$	72G37	1^{2}
648G219	$(\mathbb{F}_3^3 \rtimes C_3) \times D_8$	72G37	1^{2}
648G220	$((C_9 \times C_3) \rtimes C_3) \times D_8$	72G37	1^{2}
648G221	$((C_9 \times C_3) \rtimes C_3) \times D_8$	72G37	1^{2}
972G816	$\left(\mathbb{F}_3^2 \times \left(\mathbb{F}_3^2 \rtimes C_3\right)\right) \rtimes \left(C_2^2\right)$	324G170	$1^2\oplus 1\oplus 1$
1458G613	$((\check{C}_{81} \times \check{C}_3) \rtimes C_3) \rtimes \check{C}_2$	18G4	1^{2}
1458G640	$(C_9^2 \rtimes C_9) \rtimes C_2$	18G4	1^{2}

Proof.

To prove that *G* is not *p*-realizable, we show that a map $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to G$ cannot possibly be surjective. In any attempt at surjectivity, we need to choose $(\sigma, \tau) \in T_G$. Having done so, we must generate all of *V*, which is equivalent to generating *V/W*. There are only three ways to produce elements of *V*: the image of x_0 , the image of x_1 and a power of σ . When *G* is x_0 -constrained, x_0 must map to $0 \in V/W$. When *G* is strongly split, every power of σ lying in *V* also lies in *W*. So there are $1 + n_{G,ss} + n_{G,sc}$ generators available.

The action of G/V on V/W spreads out these generators: we can get anything in the G/V submodule spanned by them. But when $n > 1 + n_{G,ss} + n_{G,xc}$, this submodule can't possibly be everything.

Proof.

We show that when W = 1 and V is a sum of distinct irreducibles, then G is p-realizable. In this case, the relations simplify and we can just choose to map x_0 to 1 and x_1 to an element projecting nontrivially on each irreducible G/V-submodule of V. The resulting homomorphism is surjective.

- J. Neukirch, A. Schmidt, K. Wingberg. *Cohomology of number fields*. Springer, Berlin, 2015, pg 419.
- [2] J.-P. Serre. Local fields. Springer, Berlin, 1979, pg 67.
- [3] I. Shafarevich. On p-extensions. Mat. Sb. 20 (1947), no. 62, 351–363.