The inverse Galois problem for p-adic fields

David Roe

Department of Mathematics
University of Pittsburgh

November 13, 2017
Outline

1. Counting Problem
2. Enumeration Problem
3. Algebraic Tori
Inverse Galois Problem

- Classic Problem: determine if a finite G is a Galois group.
- Depends on base field: every G is a Galois group over $\mathbb{C}(t)$.
- Most work focused on L/\mathbb{Q}: S_n and A_n, every solvable group, every sporadic group except possibly M_{23}, \ldots
- Generic polynomials $f_G(t_1, \ldots, t_r, X)$ are known for some (G, K): every L/K with group G is a specialization.

Computational Problems

Given a finite group G, find algorithms for

1. Existence problem: exist L/\mathbb{Q}_p with $\text{Gal}(L/\mathbb{Q}_p) \cong G$?
2. Counting problem: how many such L exist (always finite)?
3. Enumeration problem: list the L.
If L/K is an extension of p-adic fields, it decomposes:

$\begin{align*}
L & \\
\mid & \text{wild} \\
L_t & \\
\mid & \text{tame} \\
L_u & \\
\mid & \text{unram} \\
K &
\end{align*}$

- **Wild** – totally ramified, degree a power of p.
- **Tame** – totally ramified, degree relatively prime to p. Have $L_t = L_u(\sqrt[p]{\pi})$ for some uniformizer $\pi \in L_u$.
- **Unramified** – there is a unique unramified extension of each degree: equivalence of categories with extensions of the residue field.
Filtrations of p-adic Galois groups

The splitting of L/K into unramified, tame and wild pieces induces a filtration on $\text{Gal}(L/K)$. We can refine this filtration to

$$G \supset G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_r = 1.$$

- For every i, $G_i \trianglelefteq G$;
- $G/G_0 = \langle \sigma \rangle$ is cyclic, and $L^{G_0} = L_u$;
- $G_0/G_1 = \langle \tau \rangle$ is cyclic, order prime to p and $\sigma^{-1}\tau \sigma = \tau^q$;
- For $0 < i < r$, $G_i/G_{i+1} \cong \mathbb{F}_p^{k_i}$.

Necessary condition: G must be solvable with such a filtration.
Absolute Galois groups

In the projective limit, get a tower of infinite extensions:

\[\overline{K} \]

\[K^t \] \hspace{1cm} \text{wild}

\[K^u \] \hspace{1cm} \text{tame}

\[K \] \hspace{1cm} \text{unram}

\[\text{Gal}(K^u/K) = \langle \sigma \rangle \cong \hat{\mathbb{Z}} \]

\[\text{Gal}(K^t/K^u) = \langle \tau \rangle \cong \prod_{\ell \neq p} \mathbb{Z}_\ell \]

\[\sigma^{-1} \tau \sigma = \tau^\ell \]

\[\text{Gal}(\overline{K}/K^t) \text{ is pro-} p. \]
Presentation of the absolute Galois group

For \(p > 2 \), \(\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \) is the profinite group generated by \(\sigma, \tau, x_0, x_1 \) with \(x_0, x_1 \) pro-\(p \) and the following relations (see [7])

\[
\tau^\sigma = \tau^p
\]

\[
\langle x_0, \tau \rangle^{-1} x_0^\sigma = x_1^p \left[x_1, x_1^{\tau^2} \right] \left\{ x_1, \tau^{p+1} \right\}^{\sigma_2 \tau_2^{(p-1)/2}}
\]

\[
\left\{ \left\{ x_1, \tau^{p+1} \right\}, \sigma_2 \tau_2^{(p-1)/2} \right\}^{\sigma_2 \tau_2^{(p+1)/2} + \tau_2^{(p+1)/2}}
\]

\(h \in \mathbb{Z}_p \) with mult. order \(p - 1 \), \(\text{proj}_p : \hat{\mathbb{Z}} \to \mathbb{Z}_p \)

\[
\langle x_0, \tau \rangle := (x_0 \tau x_0^{h^{p-2}} \tau \ldots x_0^h \tau)^{\text{proj}_p} / (p-1)
\]

\[
\beta : \text{Gal}(\mathbb{Q}_p^t/\mathbb{Q}_p) \to \mathbb{Z}_p^\times \quad \beta(\tau) = h \quad \beta(\sigma) = 1
\]

\[
\{x, \rho\} := (x^{\beta(1)} \rho^2 x^{\beta(\rho)} \rho^2 \ldots x^{\beta(\rho^{p-2})} \rho^2)^{\text{proj}_p} / (p-1)
\]

\[
\sigma_2 := \text{proj}_2(\sigma) \quad \tau_2 := \text{proj}_2(\tau)
\]
The number of extensions L/Q_p with $\text{Gal}(L/Q_p) \cong G$ is

$$\frac{1}{\# \text{Aut}(G)} \# \left\{ \varphi : \text{Gal}(\overline{Q}_p/Q_p) \twoheadrightarrow G \right\}$$

So it suffices to count the tuples $\sigma, \tau, x_0, x_1 \in G$ that

1. satisfy the relations from $\text{Gal}(\overline{Q}_p/Q_p)$,
2. generate G.

Overall Strategy

Loop over σ generating the unramified quotient and τ generating the tame inertia (with $\tau^\sigma = \tau^p$). For each such (σ, τ) up to automorphism, count the valid x_0, x_1.
Counting x_0, x_1

- The hard relation has x_0 in LHS only, x_1 in RHS only.
- If we didn’t have to worry about (σ, τ, x_0, x_1) generating, could count collisions: for each y in the p-core, the product of the number of ways it can be represented as LHS with the number as RHS.
- Can make this work when the p-core is multiplicity free as a representation of the tame quotient, using a lemma on generating sets for p-groups.
- Naive looping faster for small G.
Conclusions

Assume $p > 2$. Call a group potentially p-adic if
1. it has a valid filtration,
2. in the case that the order is a power of p, it has one or two generators.

Notable Examples ($p = 3$)

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
<th>Num</th>
</tr>
</thead>
<tbody>
<tr>
<td>36G7</td>
<td>$(C_3 \times C_3) \rtimes C_4$</td>
<td>0</td>
</tr>
<tr>
<td>54G6</td>
<td>$(C_9 \rtimes C_3) \rtimes C_2$</td>
<td>49</td>
</tr>
<tr>
<td>54G14</td>
<td>$(C_3 \times C_3 \times C_3) \rtimes C_2$</td>
<td>0</td>
</tr>
<tr>
<td>54G15</td>
<td>$C_6 \times C_3 \times C_3$</td>
<td>0</td>
</tr>
<tr>
<td>72G33</td>
<td>$(C_{12} \times C_3) \rtimes C_2$</td>
<td>0</td>
</tr>
<tr>
<td>18T89</td>
<td>$(C_3 \times ((C_3 \times C_3) \rtimes C_3)) \rtimes C_2$</td>
<td>0</td>
</tr>
<tr>
<td>18T128</td>
<td>$(C_3 \times C_3 \times C_3 \times C_3) \rtimes C_4$</td>
<td>0</td>
</tr>
<tr>
<td>18T138</td>
<td>$((C_3 \times C_3) \rtimes C_2) \times ((C_3 \times C_3) \rtimes C_2)$</td>
<td>0</td>
</tr>
<tr>
<td>15T64</td>
<td>$(C_3 \times (((C_3 \times C_3 \times C_3 \times C_3) \rtimes C_5) \rtimes C_4)) \rtimes C_2$</td>
<td>200</td>
</tr>
</tbody>
</table>
Inductive Approach

Want an algorithm to list the L with a given Galois group.

Solution for tame case

Lift irreducible polynomials from residue field for unramified, then adjoin n^{th} roots of $p \cdot u$.

Thus, it suffices to solve:

Problem

Fix a Galois extension L/K, set $H = \text{Gal}(L/K)$ and suppose G is an extension of H:

$$1 \to A \to G \to H \to 1,$$

with $A \cong \mathbb{F}_p^k$. Find all M/L s.t. M/K Galois and $\text{Gal}(M/K) \cong G$.
Interlude: Local Class Field Theory

Let $M/L/\mathbb{Q}_p$ with $[M : L] = m$ and $\Gamma = \text{Gal}(M/L)$.

Theorem (Local Class Field Theory [8, Part IV])

- $H^2(\Gamma, M^\times) = \langle u_{M/L} \rangle \cong \frac{1}{m}\mathbb{Z}/\mathbb{Z}$
- $\cup u_{M/L} : \Gamma^{\text{ab}} = \hat{H}^{-2}(\Gamma, \mathbb{Z}) \supseteq \hat{H}^0(\Gamma, M^\times) = L^\times / \text{Nm}_{M/L} M^\times$.
- The map $M \mapsto \text{Nm}_{M/L} M^\times$ gives a bijection between abelian extensions M/L and finite index subgroups of L^\times.

Monge [5] gives algorithms for finding a defining polynomial of the extension associated to a given norm subgroup.

Upshot

Since $A = \mathbb{F}_p^k$ abelian, can use LCFT to find possible M/L in terms of subgroups of L^\times.
A Mod-p Representation

Given

\[1 \to A \to G \to H \to 1 \]

and \(L/K \), let \(V = (1 + \mathcal{P}_L)/(1 + \mathcal{P}_L)^p \), an \(\mathbb{F}_p[H] \)-module.

- Since \(A = \text{Gal}(M/L) \) has exponent \(p \), it corresponds to a subgp \(N \supseteq (1 + \mathcal{P}_L)^p \) and \(L^\times/N \cong (1 + \mathcal{P}_L)/(N \cap (1 + \mathcal{P}_L)) \).
- Let \(W = (N \cap (1 + \mathcal{P}_L))/(1 + \mathcal{P}_L)^p \), a subspace of \(V \).
- \(M/K \) is Galois iff \(W \) is stable under \(H = \text{Gal}(L/K) \).
- The MeatAxe algorithm finds such subrepresentations.
- For each \(W \), check \(V/W \cong A \) as \(\mathbb{F}_p[H] \)-modules.
- Given \(W \), easy to find a list of \(N \).
- The corresponding \(M/K \) are candidates for \(\text{Gal}(M/K) \cong G \).
Extension Classes

There may be multiple extensions

\[1 \to A \to G' \to H \to 1 \]

yielding the same action of \(H \) on \(A \). Use group cohomology to distinguish them.

- Choosing a section \(s : H \to G' \), define a 2-cocycle by
 \[(g, h) \mapsto s(g)s(h)s(gh)^{-1} \in A. \]

- Get bijection \(H^2(H, A) \leftrightarrow \{ 1 \to A \to G' \to H \to 1 \}/\sim \).

Two approaches to picking out \(G \):

1. Try to find the extension class, given \(W \),
2. Use \(W \) to attempt to construct an action of \(G \) on \(M \), failing if extension class wrong.
A Theorem of Shafarevich and Weil

Theorem ([1, Ch. 14, Thm. 6])

Let $N \subset L^\times$ correspond to M/L under LCFT and set $G = \text{Gal}(M/K)$, $H = \text{Gal}(L/K)$ and $A = \text{Gal}(M/L)$. Then the image of $u_{L/K}$ under the natural map

$$H^2(H, L^\times) \to H^2(H, L^\times/N) \cong H^2(H, A)$$

is the extension class for

$$1 \to \text{Gal}(M/L) \to \text{Gal}(M/K) \to \text{Gal}(L/K) \to 1.$$

We can compute a 2-cocycle representing $u_{L/K}$ and use it for each W.
Summary of Algorithm

Data: $G \succeq G_0 \succeq G_1 \succeq G_2 \succeq \cdots \succeq G_r = 1$
Result: List of all Galois F/\mathbb{Q}_p with $\text{Gal}(F/\mathbb{Q}_p) \cong G$

Find tame extensions L_1/\mathbb{Q}_p with $\text{Gal}(L_1/\mathbb{Q}_p) \cong G/G_1$;

for $0 < i < r$ do
 Find class σ_i of $1 \to G_i/G_{i+1} \to G/G_{i+1} \to G/G_i \to 1$;
 for each $L = L_i$ do
 Compute a 2-cocycle representing u_{L/\mathbb{Q}_p};
 Find all stable submodules W with $L^\times/W \cong G_i/G_{i+1}$;
 for each W do
 if $u_{L/\mathbb{Q}_p} \mapsto \sigma_i \in H^2(L/\mathbb{Q}_p, L^\times/W)$ then
 Add the M/L matching W to the list of L_{i+1};
 end
 end
 end
end
Tori over \(\mathbb{R} \)

Definition

An *algebraic torus* over a field \(K \) is a group scheme, isomorphic to \((\mathbb{G}_m)^n \) after tensoring with a finite extension.

We use tori over \(\mathbb{R} \) as an example, since classification is easy:

- \(U \), with \(U(\mathbb{R}) = \{ z \in \mathbb{C}^\times : z\bar{z} = 1 \} \),
- \(\mathbb{G}_m \), with \(\mathbb{G}_m(\mathbb{R}) = \mathbb{R}^\times \),
- \(S \), with \(S(\mathbb{R}) = \mathbb{C}^\times \).

Theorem (c.f. [2, Thm 2])

Every algebraic torus over \(\mathbb{R} \) is a product of these tori.

Over \(\mathbb{Q}_p \), different field extensions help create a much wider variety of tori.
Character lattices

Definition

The *character lattice* of T is $X^*(T) = \text{Hom}_{\bar{K}}(T, \mathbb{G}_m)$,

$X^*(T)$ is a free rank-n \mathbb{Z}-module with a $\text{Gal}(\bar{K}/K)$ action. Can take $\{\chi_i : (z_1, \ldots, z_n) \mapsto z_i\}$ as a basis for $X^*(\mathbb{G}_m^n)$.

- $X^*(\mathbb{G}_m) = \mathbb{Z}$ with trivial action,
- $X^*(U) = \mathbb{Z}$ with conjugation acting as $x \mapsto -x$,
- $X^*(S) = \mathbb{Z}v \oplus \mathbb{Z}w$ with conjugation exchanging v and w.

Theorem

The functor $T \mapsto X^(T)$ defines a contravariant equivalence of categories $K\text{-Tori} \rightarrow \text{Gal}(\bar{K}/K)-\text{Lattices}$.***
Finding p-adic tori

Goal

Create a database of algebraic tori over p-adic fields.

We can break up the task of finding tori into two pieces:

1. For each dimension n, list all finite groups G that act (faithfully) on \mathbb{Z}^n. For fixed n, the set of G is finite.

2. For each G and p, list all Galois extensions L/\mathbb{Q}_p with $\text{Gal}(L/\mathbb{Q}_p) \cong G$. For fixed G and p, the set of L is finite. Moreover, when p does not divide $|G|$, this question is easy.
Finite Subgroups of $\text{GL}_n(\mathbb{Z})$

- With a choice of basis, a faithful action of G on \mathbb{Z}^n is the same as an embedding $G \subset \text{GL}_n(\mathbb{Z})$.
- Two G-lattices are isomorphic if and only if the corresponding subgroups are conjugate within $\text{GL}_n(\mathbb{Z})$.
- Two G-lattices are \textit{isogenous} if the corresponding subgroups are conjugate within $\text{GL}_n(\mathbb{Q})$.

$\mathbb{G}_m \times \textbf{U}$ and \textbf{S} are isogenous but not isomorphic, since $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ are conjugate in $\text{GL}_n(\mathbb{Q})$ but not in $\text{GL}_n(\mathbb{Z})$.
Previous Computations

CARAT [3]
Up to dimension 6, the software package CARAT lists all of the finite subgroups of $GL_n(\mathbb{Z})$, up to \mathbb{Z}- and \mathbb{Q}-conjugacy.

IMF GAP Library [6]
The group theory software package GAP has a library for maximal finite subgroups where the corresponding lattice is irreducible as a G-module. The \mathbb{Q}-classes are known for $n \leq 31$, the \mathbb{Z}-classes for $n \leq 11$ and $n \in \{13, 17, 19, 23\}$.
A G-lattice is *indecomposable* if it does not split as a direct sum of G-submodules.

For example, $X^*(S)$ is not irreducible, since $\langle v + w \rangle$ is a stable submodule, as is $\langle v - w \rangle$.

But it is indecomposable; the sum of these submodules has index 2.

For $n > 6$, work remains to recover a list of indecomposable subgroups. Note that the decomposition into indecomposable submodules is NOT unique.
Number of Subgroups (up to $\text{GL}_n(\mathbb{Z})$-conjugacy)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Unramified</td>
<td>2</td>
<td>7</td>
<td>16</td>
<td>45</td>
<td>96</td>
<td>240</td>
</tr>
<tr>
<td>Tame</td>
<td>2</td>
<td>13</td>
<td>51</td>
<td>298</td>
<td>1300</td>
<td>6661</td>
</tr>
<tr>
<td>7-adic</td>
<td>2</td>
<td>10</td>
<td>38</td>
<td>192</td>
<td>802</td>
<td>3767</td>
</tr>
<tr>
<td>5-adic</td>
<td>2</td>
<td>11</td>
<td>41</td>
<td>222</td>
<td>890</td>
<td>4286</td>
</tr>
<tr>
<td>3-adic</td>
<td>2</td>
<td>13</td>
<td>51</td>
<td>348</td>
<td>1572</td>
<td>9593</td>
</tr>
<tr>
<td>2-adic</td>
<td>2</td>
<td>11</td>
<td>60</td>
<td>536</td>
<td>4820</td>
<td>65823</td>
</tr>
<tr>
<td>Local</td>
<td>2</td>
<td>13</td>
<td>67</td>
<td>633</td>
<td>5260</td>
<td>69584</td>
</tr>
<tr>
<td>All</td>
<td>2</td>
<td>13</td>
<td>73</td>
<td>710</td>
<td>6079</td>
<td>85308</td>
</tr>
</tbody>
</table>

Note that each subgroup corresponds to multiple tori, since there are multiple field extensions with that Galois group.
Order of Largest Subgroup

<table>
<thead>
<tr>
<th>Dimension</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Unramified</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>Tame</td>
<td>2</td>
<td>12</td>
<td>12</td>
<td>40</td>
<td>72</td>
<td>144</td>
</tr>
<tr>
<td>7-adic</td>
<td>2</td>
<td>8</td>
<td>12</td>
<td>40</td>
<td>40</td>
<td>120</td>
</tr>
<tr>
<td>5-adic</td>
<td>2</td>
<td>12</td>
<td>12</td>
<td>40</td>
<td>72</td>
<td>144</td>
</tr>
<tr>
<td>3-adic</td>
<td>2</td>
<td>12</td>
<td>12</td>
<td>72</td>
<td>72</td>
<td>432</td>
</tr>
<tr>
<td>2-adic</td>
<td>2</td>
<td>12</td>
<td>48</td>
<td>576</td>
<td>1152</td>
<td>2304</td>
</tr>
<tr>
<td>Irreducible</td>
<td>2</td>
<td>12</td>
<td>48</td>
<td>1152</td>
<td>3840</td>
<td>103680</td>
</tr>
<tr>
<td>Weyl</td>
<td>A_1</td>
<td>G_2</td>
<td>B_3</td>
<td>F_4</td>
<td>B_5</td>
<td>$2 \times E_6$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dim</th>
<th>Largest Irreducible Subgroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>$2903040 \ (E_7)$</td>
</tr>
<tr>
<td>8</td>
<td>$696729600 \ (E_8)$</td>
</tr>
<tr>
<td>31</td>
<td>$176584115499894161336717308363957862400000000 \ (B_{31})$</td>
</tr>
</tbody>
</table>
Database of \(p \)-adic Fields

Jones and Roberts [4] have created a database of \(p \)-adic fields.

- Lists all \(L/\mathbb{Q}_p \) with a given degree, including non-Galois;
- Includes up to degree 10;
- Gives Galois group and other data about the extension;
- Biggest table is \([L : \mathbb{Q}_2] = 8\), of which there are 1823.
- I want \(G \) in degree up to 96 (tame) or 14, 60, 144, 144 (wild, \(p = 7, 5, 3, 2 \) resp.)

Their database solves the problem for small \(G \), but most of the target \(G \) fall outside it.
Future Work

1. Flesh out details of algorithm and implement it,
2. Extend group theoretic analysis to dimension 7 and 8,
3. Compute additional data for each torus: cohomology groups, embeddings into induced tori, Moy-Prasad filtrations, conductors, component groups of Néron models...
Thank you for your attention!
References

