Overconvergent Modular Symbols in Sage

David Roe
(with Rob Pollack, Rob Harron, Ander Steele and others)

Department of Mathematics
University of Pittsburgh

Sage Days 71
Oxford, UK
Outline

1. Modular Symbols
2. Overconvergent Modular Symbols
3. p-adic L-functions
Modular Symbols

For $k > 1$, computation of modular forms made possible by *modular symbols*.

Δ_0 – $\text{Div}^0(\mathbb{P}^1(\mathbb{Q}))$: formal sums $\sum_{\alpha \in \mathbb{Q} \cup \{\infty\}} a_\alpha \alpha$ with $\sum_\alpha a_\alpha = 0$.

$S_0(p)$ – $\{\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid (a, p) = 1, p \mid c \text{ and } ad - bc \neq 0\}$.

V – a \mathbb{Z}-module (e.g. \mathbb{C} or $\text{Sym}^{k-2}(\mathbb{C})$) with right actions of Γ and $S_0(p)$.

Γ – acts on $\text{Hom}(\Delta_0, V)$ by $(\varphi|\gamma)(D) = \varphi(\gamma D)|\gamma$.

$\text{Smb}_\Gamma(V)$ – $\{\varphi \in \text{Hom}(\Delta_0, V) \mid \varphi = \varphi|\gamma\}$.

T_ℓ – acts by $\varphi|T_\ell = \varphi|\begin{pmatrix} \ell & 0 \\ 0 & 1 \end{pmatrix} + \sum_{a=0}^{\ell-1} \varphi|\begin{pmatrix} 1 & a \\ 0 & \ell \end{pmatrix}$ for $\ell \nmid N$.

U_q – acts by $\varphi|U_q = \sum_{a=0}^{q-1} \varphi|\begin{pmatrix} 1 & a \\ 0 & q \end{pmatrix}$ for $q \mid N$.
Manin Relations

\[G = \text{PSL}_2(\mathbb{Z}) \]

\[[\gamma] - \frac{b}{d} - \frac{a}{c} \in \Delta_0 \text{ when } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G. \]

\[\sigma - \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} , \text{ a two-torsion element.} \]

\[\tau - \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} , \text{ a three-torsion element.} \]

\[I - \text{the left ideal } \mathbb{Z}[G](1 + \sigma) + \mathbb{Z}[G](1 + \tau + \tau^2). \]

\[\{g_i\} - \text{right coset reps for } \Gamma\backslash G, \text{ generate } \mathbb{Z}[G] \text{ as a free } \mathbb{Z}[\Gamma]-\text{module.} \]

Using continued fractions, every element of \(\Delta_0 \) is the sum of elements \([\gamma]\), so get surjective map

\[\mathbb{Z}[G] \to \Delta_0. \]

Manin showed that the kernel is \(I \). Therefore \(\Delta_0 \) is generated by the \(g_i \), with relations given by \(I \). For instance,

\[g_i(1 + \sigma) = g_i + g_i\sigma = g_i + \gamma_{ij} g_j. \]
Modular Symbols to Modular Forms

Theorem (Eichler-Shimura)

\[\text{Smb}_\Gamma(\text{Sym}^{k-2}(\mathbb{C})) \cong M_k(\Gamma) \oplus S_k(\Gamma) \text{ as Hecke-modules}. \]

So to compute \(M_k(\Gamma) \), we

1. Using Manin relations, write down a basis for \(\text{Smb}_\Gamma(\text{Sym}^{k-2}(\mathbb{C})) \).
2. Compute matrices for action of \(U_q \) and \(T_\ell \) for small \(\ell \).
3. Diagonalize to get \textit{systems of Hecke eigenvalues} \(\{a_\ell\} \).
4. These systems provide the Fourier coefficients for a basis of eigenforms in \(M_k(\Gamma) \).
p-adic Distributions

$A - \{ f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathbb{Q}_p[[z]] : |a_n| \to 0 \}; \|f\| = \sup_{z \in \mathbb{Z}_p} |f(z)|.$

$D - \text{Hom}(A, \mathbb{Q}_p); \|\mu\| = \sup_{0 \neq f \in A} \frac{\|\mu(f)\|}{\|f\|}.$

$A_k - A$ with $(\gamma \cdot_k f)(z) = (a + cz)^k \cdot f \left(\frac{b+dz}{a+cz} \right)$ for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}_p).$

$D_k - D$ with $(\mu|_k \gamma)(f) = \mu(\gamma \cdot_k f).$

$V_k - \text{Sym}^k(\mathbb{Q}_p^2) = \mathbb{Q}_p[X, Y]_k$ with $(P|\gamma)(X, Y) = P(dX - cY, -bX + aY).$
Moments

The map

\[M : D \to \prod_{j=0}^{\infty} \mathbb{Q}_p \]

\[\mu \mapsto (\mu(z^j))_{j=0}^{\infty} \]

is injective, with image the bounded sequences.

The map

\[\rho_k : D_k \to V_k \]

\[\mu \mapsto \int (Y - zX)^k d\mu(z) = \sum_{j=0}^{k} (-1)^j \binom{k}{j} \mu(z^j) X^j Y^{k-j} \]

is \(S_0(p) \)-equivariant.
Computing with Distributions

\[D^0 = \{ \mu \in D : \mu(z^j) \in \mathbb{Z}_p \text{ for all } j \}. \]

\[\text{Fil}^m = \{ \mu \in D^0 : v_p(\mu(z^j)) \geq m - j \}. \]

\[\mathcal{F}^m = D^0 / \text{Fil}^m, \text{ a finite } \mathbb{Z}_p\text{-module}. \]

We will define Hecke operators via the action of \(S_0(p) \) and \(\text{Fil}^m \) is chosen to be stable under this action.
Overconvergent Modular Symbols

- Let N be prime to p and $\Gamma = \Gamma_0(Np) \subset S_0(p)$.
- An overconvergent modular symbol is an element of $\text{Smb}_\Gamma(D_k)$. Have Hecke operators.
- Approximate by elements of $\text{Smb}_\Gamma(\mathcal{F}_k^m)$, Hecke operators descend.
- The slope of an eigensymbol φ is the valuation of the U_p-eigenvalue.
- Specialization map $\rho^* : \text{Smb}_\Gamma(D_k) \to \text{Smb}_\Gamma(V_k)$ is surjective, isomorphism on the slope $< (k + 1)$ piece.
Overconvergent Modular Symbols in Sage

Break for Sage demo: https://cloud.sagemath.com
Application: \(p \)-adic \(L \)-functions

Classically, \(\zeta(1 - k) \) \(p \)-adically interpolates for positive integers \(k \). Kummer congruences:

if \(h \equiv k \pmod{\phi(p^m)} \) then \(\frac{B_h}{h} \equiv \frac{B_k}{k} \pmod{p^m} \).

Can do the same for other \(L \)-functions. For example, if \(f \in S_{k+2}(\Gamma, \bar{\mathbb{Q}}) \) is a slope \(h < k + 1 \) eigenform, define the \(p \)-adic \(L \)-function of \(f \) to be the unique distribution \(\mu_f \) on \(\mathbb{Z}_p^\times \) so that if \(\chi \) is a character of \(\mathbb{Z}_p^\times \) with conductor \(p^n \) and \(0 \leq j \leq k \), then

\[
\mu_f(z^j \cdot \chi) = \frac{1}{\alpha^n} \cdot \frac{p^{n(j+1)}}{(-2\pi i)^j} \cdot \frac{j!}{\tau(\chi^{-1})} \cdot \frac{L(f, \chi^{-1}, j + 1)}{\Omega_f^\pm}.
\]

Here \(\alpha \) is the \(U_p \)-eigenvalue of \(f \), \(\tau(\chi^{-1}) \) is a Gauss sum and \(\Omega_f^\pm \) are complex periods.
Computation of p-adic L-functions

The classical construction of μ_f involves an integral, the computation of which requires a Riemann sum. The resulting algorithm for computing μ_f is exponential in the desired precision.

Pollack and Stevens show that there is an overconvergent eigensymbol Φ_f, lifting the symbol φ_f, so that

$$\mu_f = \Phi_f(\{\infty\} - \{0\})|_{\mathbb{Z}_p^\times}.$$

The resulting algorithm for computing μ_f is polynomial in the desired precision.
p-adic L-functions in Sage

Break for Sage demo: https://cloud.sagemath.com