Overconvergent Modular Symbols in Sage

David Roe (with Rob Pollack, Rob Harron, Ander Steele and others)

> Department of Mathematics University of Pittsburgh

> > Sage Days 71 Oxford, UK

Outline

Modular Symbols

Overconvergent Modular Symbols

3 *p*-adic *L*-functions

Modular Symbols

For k > 1, computation of modular forms made possible by *modular symbols*.

$$\Delta_0 - \mathrm{Div}^0(\mathbb{P}^1(\mathbb{Q}))$$
: formal sums $\sum_{\alpha \in \mathbb{Q} \cup \{\infty\}} a_\alpha \alpha$ with $\sum_\alpha a_\alpha = 0$.

$$S_0(p) - \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid (a, p) = 1, p \mid c \text{ and } ad - bc \neq 0 \right\}.$$

V – a \mathbb{Z} -module (e.g. \mathbb{C} or $\mathrm{Sym}^{k-2}(\mathbb{C})$) with right actions of Γ and $S_0(p)$.

$$\Gamma$$
 – acts on $\operatorname{Hom}(\Delta_0, V)$ by $(\varphi|\gamma)(D) = \varphi(\gamma D)|\gamma$.

$$\mathrm{Smb}_{\Gamma}(V) - \{ \varphi \in \mathrm{Hom}(\Delta_0, V) \mid \varphi = \varphi | \gamma \}.$$

$$T_{\ell}$$
 - acts by $\varphi | T_{\ell} = \varphi | \begin{pmatrix} \ell & 0 \\ 0 & 1 \end{pmatrix} + \sum_{a=0}^{\ell-1} \varphi | \begin{pmatrix} 1 & a \\ 0 & \ell \end{pmatrix}$ for $\ell \nmid N$.

$$U_q$$
 - acts by $\varphi | U_q = \sum_{a=0}^{q-1} \varphi | \begin{pmatrix} 1 & a \\ 0 & q \end{pmatrix}$ for $q | N$.

Manin Relations

$$G - \mathrm{PSL}_2(\mathbb{Z})$$

$$[\gamma] - \frac{b}{d} - \frac{a}{c} \in \Delta_0 \text{ when } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G.$$

 $\sigma - \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, a two-torsion element.

$$\tau - \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$$
, a three-torsion element.

I – the left ideal
$$\mathbb{Z}[G](1+\sigma) + \mathbb{Z}[G](1+\tau+\tau^2)$$
.

$$\{g_i\}$$
 – right coset reps for $\Gamma \backslash G$, generate $\mathbb{Z}[G]$ as a free $\mathbb{Z}[\Gamma]$ -module.

Using continued fractions, every element of Δ_0 is the sum of elements $[\gamma]$, so get surjective map

$$\mathbb{Z}[G] \to \Delta_0.$$

Manin showed that the kernel is I. Therefore Δ_0 is generated by the g_i , with relations given by I. For instance,

$$g_i(1+\sigma) = g_i + g_i\sigma = g_i + \gamma_{ij}g_i$$

Modular Symbols to Modular Forms

Theorem (Eichler-Shimura)

 $\mathrm{Smb}_{\Gamma}(\mathrm{Sym}^{k-2}(\mathbb{C}))\cong M_k(\Gamma)\oplus S_k(\Gamma) \ as \ Hecke-modules.$

So to compute $M_k(\Gamma)$, we

- Using Manin relations, write down a basis for $\operatorname{Smb}_{\Gamma}(\operatorname{Sym}^{k-2}(\mathbb{C}))$.
- ② Compute matrices for action of U_q and T_ℓ for small ℓ .
- **5** Diagonalize to get *systems of Hecke eigenvalues* $\{a_{\ell}\}$.
- **1** These systems provide the Fourier coefficients for a basis of eigenforms in $M_k(\Gamma)$.

p-adic Distributions

$$A - \left\{ f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathbb{Q}_p[\![z]\!] : |a_n| \to 0 \right\}; ||f|| = \sup_{z \in \mathbb{Z}_p} |f(z)|.$$

$$D - \operatorname{Hom}(A, \mathbb{Q}_p); ||\mu|| = \sup_{0 \neq f \in A} \frac{|\mu(f)|}{||f||}.$$

$$A_k - A \text{ with } (\gamma \cdot_k f)(z) = (a + cz)^k \cdot f\left(\frac{b + dz}{a + cz}\right) \text{ for } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in S_0(p).$$

$$D_k - D \text{ with } (\mu|_k \gamma)(f) = \mu(\gamma \cdot_k f).$$

$$V_k - \operatorname{Sym}^k(\mathbb{Q}_p^2) = \mathbb{Q}_p[X, Y]_k \text{ with } (P|\gamma)(X, Y) = P(dX - cY, -bX + aY).$$

Moments

The map

$$M: \mathbf{D} \to \prod_{j=0}^{\infty} \mathbb{Q}_p$$

$$\mu \mapsto \left(\mu(z^j)\right)_{j=0}^{\infty}$$

is injective, with image the bounded sequences.

The map

$$\rho_k : \mathcal{D}_k \to V_k$$

$$\mu \mapsto \int (Y - zX)^k d\mu(z) = \sum_{j=0}^k (-1)^j \binom{k}{j} \mu(z^j) X^j Y^{k-j}$$

is $S_0(p)$ -equivariant.

Computing with Distributions

```
D^0 - \{\mu \in D : \mu(z^j) \in \mathbb{Z}_p \text{ for all } j\}.

Fil^m - \{\mu \in D^0 : v_p(\mu(z^j)) \ge m - j\}.

\mathcal{F}^m - D^0 / Fil^m, a finite \mathbb{Z}_p-module.
```

We will define Hecke operators via the action of $S_0(p)$ and Fil^m is chosen to be stable under this action.

Overconvergent Modular Symbols

- Let *N* be prime to *p* and $\Gamma = \Gamma_0(Np) \subset S_0(p)$.
- An overconvergent modular symbol is an element of $\mathrm{Smb}_{\Gamma}(\mathrm{D}_k)$. Have Hecke operators.
- Approximate by elements of $\mathrm{Smb}_{\Gamma}(\mathcal{F}_k^m)$, Hecke operators descend.
- The *slope* of an eigensymbol φ is the valuation of the U_p -eigenvalue.
- Specialization map $\rho^* : \mathrm{Smb}_{\Gamma}(\mathrm{D}_k) \to \mathrm{Smb}_{\Gamma}(V_k)$ is surjective, isomorphism on the slope < (k+1) piece.

Overconvergent Modular Symbols in Sage

Sage

Break for Sage demo: https://cloud.sagemath.com

Application: *p*-adic *L*-functions

Classically, $\zeta(1-k)$ *p-adically interpolates* for positive integers k. Kummer congruences:

if
$$h \equiv k \pmod{\phi(p^m)}$$
 then $\frac{B_h}{h} \equiv \frac{B_k}{k} \pmod{p^m}$.

Can do the same for other *L*-functions. For example, if $f \in S_{k+2}(\Gamma, \bar{\mathbb{Q}})$ is a slope h < k+1 eigenform, define the *p*-adic *L*-function of f to be the unique distribution μ_f on \mathbb{Z}_p^{\times} so that if χ is a character of \mathbb{Z}_p^{\times} with conductor p^n and $0 \le j \le k$, then

$$\mu_f(z^j \cdot \chi) = \frac{1}{\alpha^n} \cdot \frac{p^{n(j+1)}}{(-2\pi i)^j} \cdot \frac{j!}{\tau(\chi^{-1})} \cdot \frac{L(f, \chi^{-1}, j+1)}{\Omega_f^{\pm}}.$$

Here α is the U_p -eigenvalue of f, $\tau(\chi^{-1})$ is a Gauss sum and Ω_f^{\pm} are complex periods.

Computation of *p*-adic *L*-functions

The classical construction of μ_f involves an integral, the computation of which requires a Riemann sum. The resulting algorithm for computing μ_f is exponential in the desired precision.

Pollack and Stevens show that there is an overconvergent eigensymbol Φ_f , lifting the symbol φ_f , so that

$$\mu_f = \Phi_f(\{\infty\} - \{0\})|_{\mathbb{Z}_p^{\times}}.$$

The resulting algorithm for computing μ_f is polynomial in the desired precision.

p-adic *L*-functions in Sage

Sage

Break for Sage demo: https://cloud.sagemath.com