Algebraic tori and a computational inverse Galois problem

David Roe

Department of Mathematics University of Pittsburgh

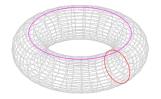
Jan 26, 2016

Outline

- Algebraic Tori
- 2 Finite Subgroups of $GL_n(\mathbb{Z})$
- \bigcirc The Inverse Galois Problem for p-adic Fields

Tori over R

When you hear torus, you probably think



Today: an algebraic version. Define three basic tori over \mathbb{R} :

- **U**, with $\mathbf{U}(\mathbb{R}) = \{z \in \mathbb{C}^{\times} : z\overline{z} = 1\},$
- ullet \mathbb{G}_m , with $\mathbb{G}_m(\mathbb{R}) = \mathbb{R}^{\times}$,
- S, with $S(\mathbb{R}) = \mathbb{C}^{\times}$.

Theorem (c.f. [1, Thm 2])

Every algebraic torus over \mathbb{R} is a product of these tori.

Algebraic tori

- \mathbb{G}_m is the variety defined by xy 1: for any ring R its points are the units R^{\times} .
- **U** is the variety defined by $x^2 + y^2 1$; after tensoring with \mathbb{C} can factor as (x + iy)(x iy) 1.
- Both are in fact group schemes: the set of points has a group structure.

Definition

An algebraic torus over a field K is a group scheme, isomorphic to $(\mathbb{G}_m)^n$ after tensoring with a finite extension.

Can also give $T(\bar{K})$ plus a continuous action of $Gal(\bar{K}/K)$ on it.

Character lattices

Definition

The character lattice of T is $X^*(T) = \operatorname{Hom}_{\bar{K}}(T, \mathbb{G}_m)$,

 $X^*(T)$ is a free rank-n \mathbb{Z} -module with a $Gal(\bar{K}/K)$ action.

Can take $\{\chi_i: (z_1,\ldots,z_n)\mapsto z_i\}$ as a basis for $X^*(\mathbb{G}_m^n)$.

- $X^*(\mathbb{G}_m) = \mathbb{Z}$ with trivial action,
- $X^*(\mathbf{U}) = \mathbb{Z}$ with conjugation acting as $x \mapsto -x$,
- $X^*(S) = \mathbb{Z}v \oplus \mathbb{Z}w$ with conjugation exchanging v and w.

Theorem

The functor $T\mapsto X^*(T)$ defines a contravariant equivalence of categories K-**Tori** \to $\mathrm{Gal}(\bar{K}/K)$ -**Lattices**.

Finding tori

Goal

- Create a database of algebraic tori over p-adic fields (www.lmfdb.org)
- Use to study structure of algebraic groups, p-adic representation theory and local Langlands, especially for exceptional groups.

Some will apply to other fields and to Galois representations.

Strategy

We break up the task of finding tori into two pieces:

- For each dimension n, list all finite groups G that act (faithfully) on \mathbb{Z}^n . For fixed n, the set of G is finite.
- ② For each G and p, list all Galois extensions L/\mathbb{Q}_p with $\operatorname{Gal}(L/\mathbb{Q}_p) \cong G$. For fixed G and p, the set of L is finite. Moreover, when p does not divide |G|, this question is easy.

Finite Subgroups of $GL_n(\mathbb{Z})$

- With a choice of basis, a faithful action of G on \mathbb{Z}^n is the same as an embedding $G \subset GL_n(\mathbb{Z})$.
- Two G-lattices are isomorphic if and only if the corresponding subgroups are conjugate within GL_n(Z).
- Two G-lattices are *isogenous* if the corresponding subgroups are conjugate within $GL_n(\mathbb{Q})$.

 $\mathbb{G}_m \times \mathbf{U}$ and **S** are isogenous but not isomorphic, since $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ are conjugate in $GL_n(\mathbb{Q})$ but not in $GL_n(\mathbb{Z})$.

Previous Computations

CARAT [2]

Up to dimension 6, the software package CARAT lists all of the finite subgroups of $GL_n(\mathbb{Z})$, up to \mathbb{Z} - and \mathbb{Q} -conjugacy.

IMF GAP Library [4]

The group theory software package GAP has a library for maximal finite subgroups where the corresponding lattice is irreducible as a G-module. The \mathbb{Q} -classes are known for $n \leq 31$, the \mathbb{Z} -classes for $n \leq 11$ and $n \in \{13, 17, 19, 23\}$.

Indecomposible subgroups

- A G-lattice is indecomposible if it does not split as a direct sum of G-submodules.
- For example, $X^*(\mathbf{S})$ is not irreducible, since $\langle a+b \rangle$ is a stable submodule, as is $\langle a-b \rangle$.
- But it is indecomposible: the sum of these submodules has index 2.

For n > 6, work remains to recover a list of indecomposible subgroups. Note that the decomposition into indecomposible submodules is NOT unique.

Interlude: p-adic fields

- For each prime p, define $v_p : \mathbb{Q} \to \mathbb{Z} \cup \{\infty\}$ by $v_p(p^k\alpha) = k$ when α is relatively prime to p.
- Set $|x|_p = p^{-\nu_p(x)}$, and \mathbb{Q}_p as the completion.
- $\mathbb{Z}_p = \{x \in \mathbb{Q}_p : v(x) \ge 0\}$ and $\mathcal{P}_p = \{x \in \mathbb{Z}_p : v(x) > 0\}$ is the unique maximal ideal in \mathbb{Z}_p , with quotient \mathbb{F}_p (residue field). A *uniformizer* is an element of valuation 1, ie $p \cdot u$.
- $\bullet \ \mathbb{Q}_p^\times \cong \mathbb{Z}_p^\times \times p^\mathbb{Z} \text{ and } \mathbb{Z}_p^\times \cong \mathbb{F}_p^\times \times (1+\mathcal{P}_p).$

For example, $\frac{2}{5} + 3 + 5^2 + 2 \cdot 5^3 + 4 \cdot 5^4 + \cdots$ is an element of \mathbb{Q}_5 .

Interlude: p-adic extensions

Algebraic extensions of \mathbb{Q}_p are much richer than those of \mathbb{R} . Let K/\mathbb{Q}_p be a finite extension. There is a unique extension of v to a valuation $v_K: K \to \mathbb{Q} \cup \{\infty\}$.

- L/K is unramified if the image of v_K is the same as v_L . There is a unique unramified extension of each degree (comes from the residue field).
- L/K is totally ramified if the corresponding extension of residue fields is trivial.
- A totally ramified extension is tame if [L : K] is prime to p.
 These are obtained by adjoining roots of uniformizers.
- A totally ramified extension is wild if [L:K] is a power of p.

Any extension L/K can be split as $L/L_t/L_u/K$, with L_u/K unramified, L_t/L_u tame and L/L_t wild.

Number of Subgroups (up to $GL_n(\mathbb{Z})$ -conjugacy)

Dimension	1	2	3	4	5	6
Real	2	4	6	9	12	16
Unramified	2	7	16	45	96	240
Tame	2	13	51	298	1300	6661
7-adic	2	10	38	192	802	3767
5-adic	2	11	41	222	890	4286
3-adic	2	13	51	348	1572	9593
2-adic	2	11	60	536	4820	65823
Local	2	13	67	633	5260	69584
All	2	13	73	710	6079	85308

Note that each subgroup corresponds to multiple tori, since there are multiple field extensions with that Galois group.

Order of Largest Subgroup

Dimension	1	2	3	4	5	6
Real	2	2	2	2	2	2
Unramified	2	6	6	12	12	30
Tame	2	12	12	40	72	144
7-adic	2	8	12	40	40	120
5-adic	2	12	12	40	72	144
3-adic	2	12	12	72	72	432
2-adic	2	12	48	576	1152	2304
Irreducible	2	12	48	1152	3840	103680
Weyl	A_1	G_2	B_3	F_4	B_5	$2 \times E_6$

Dim	Largest Irreducible Subgroup
7	2903040 (E ₇)
8	696729600 (E ₈)
31	17658411549989416133671730836395786240000000 (<i>B</i> ₃₁)

Inverse Galois Problem

- Classic Problem: determine if a finite G is a Galois group.
- Depends on base field: every G is a Galois group over $\mathbb{C}(t)$.
- Most work focused on L/\mathbb{Q} : S_n and A_n , every solvable group, every sporadic group except possibly M_{23}, \ldots
- Generic polynomials $f_G(t_1, ..., t_r, X)$ are known for some (G, K): every L/K with group G is a specialization.

Computational Problem

Give an algorithm to find all of the field extensions of $K = \mathbb{Q}_p$ with a specified Galois group.

Database of p-adic Fields

Jones and Roberts [3] have created a database of *p*-adic fields.

- Lists all L/\mathbb{Q}_p with a given degree, including non-Galois;
- Includes up to degree 10;
- Gives Galois group and other data about the extension;
- Biggest table is $[L : \mathbb{Q}_2] = 8$, of which there are 1823.
- We need G in degree up to 96 (tame) or 14, 60, 144, 144 (wild, p = 7, 5, 3, 2 resp.)

Their database solves the problem for small G, but most of the target G fall outside it.

Structure of *p*-adic Galois groups

The splitting of L/K into unramified, tame and wild pieces induces a filtration on Gal(L/K). We can refine this filtration to

$$G \trianglerighteq G_0 \trianglerighteq G_1 \trianglerighteq G_2 \trianglerighteq \cdots \trianglerighteq G_r = 1.$$

- For every i, $G_i \leq G$;
- $G/G_0 = \langle F \rangle$ is cyclic, and L^{G_0}/K is maximal unramified;
- $G_0/G_1 = \langle \tau \rangle$ is cyclic, order prime to p and $F \tau F^{-1} = \tau^p$;
- For 0 < i < r, $G_i/G_{i+1} \cong \mathbb{F}_p^{k_i}$.

Finding such filtrations on an abstract group is not difficult.

Inductive Approach

For tame extensions: lift irreducible polynomials from residue field for unramified, then adjoin n^{th} roots of $p \cdot u$.

Thus, it suffices to solve:

Problem

Fix a Galois extension L/K, set H = Gal(L/K) and suppose G is an extension of H:

$$1 \to A \to G \to H \to 1$$
,

with $A \cong \mathbb{F}_p^k$. Find all M/L s.t. M/K Galois and $Gal(M/K) \cong G$.

Interlude: Local Class Field Theory

Let $M/L/\mathbb{Q}_p$ with [M:L]=m and $\Gamma=\operatorname{Gal}(M/L)$.

Theorem (Local Class Field Theory [6, Part IV])

- $\mathsf{H}^2(\Gamma, M^{\times}) = \langle u_{M/L} \rangle \cong \frac{1}{m} \mathbb{Z}/\mathbb{Z}$
- $\bullet \cup u_{M/L} : \Gamma^{\mathsf{ab}} = \hat{\mathsf{H}}^{-2}(\Gamma, \mathbb{Z}) \xrightarrow{\sim} \hat{\mathsf{H}}^{0}(\Gamma, M^{\times}) = L^{\times} / \operatorname{Nm}_{M/L} M^{\times}.$
- The map M → Nm_{M/L} M[×] gives a bijection between abelian extensions M/L and finite index subgroups of L[×].

Pauli [5] gives algorithms for finding a defining polynomial of the extension associated to a given norm subgroup.

Upshot

Since $A = \mathbb{F}_p^k$ abelian, can use LCFT to find possible M/L in terms of subgroups of L^{\times} .

A Mod-*p* Representation

Given

$$1 \to A \to G \to H \to 1$$

and L/K, let $V=(1+\mathcal{P}_L)/(1+\mathcal{P}_L)^p$, an $\mathbb{F}_p[H]$ -module.

- Since $A = \operatorname{Gal}(M/L)$ has exponent p, it corresponds to a subgp $N \supseteq (1 + \mathcal{P}_L)^p$ and $L^{\times}/N \cong (1 + \mathcal{P}_L)/(N \cap (1 + \mathcal{P}_L))$.
- Let $W = (N \cap (1 + \mathcal{P}_L))/(1 + \mathcal{P}_L)^p$, a subspace of V.
- M/K is Galois iff W is stable under H = Gal(L/K).
- The MeatAxe algorithm finds such subrepresentations.
- For each W, check $V/W \cong A$ as $\mathbb{F}_p[H]$ -modules.
- The corresponding M/K are candidates for $Gal(M/K) \cong G$.

Extension Classes

There may be multiple extensions

$$1 \to A \to G' \to H \to 1$$

yielding the same action of H on A. Use group cohomology to distinguish them.

- Choosing a section $s: H \to G'$, define a 2-cocycle by $(g,h) \mapsto s(g)s(h)s(gh)^{-1} \in A$.
- Get bijection $H^2(H, A) \leftrightarrow \{1 \to A \to G' \to H \to 1\}/\sim$.

Two approaches to picking out G:

- Just compute Gal(M/K),

A Conjecture on the Fundamental Class

Conjecture

Let $N \subset L^{\times}$ correspond to M/L under LCFT and set $G = \operatorname{Gal}(M/K)$, $H = \operatorname{Gal}(L/K)$ and $A = \operatorname{Gal}(M/L)$. Then the image of $u_{L/K}$ under the natural map

$$\mathsf{H}^2(H, L^{\times}) \to \mathsf{H}^2(H, L^{\times}/N) \cong \mathsf{H}^2(H, A)$$

is the extension class for

$$1 \to \operatorname{Gal}(M/L) \to \operatorname{Gal}(M/K) \to \operatorname{Gal}(L/K) \to 1.$$

If this conjecture holds, can compute a 2-cocycle representing $u_{L/K}$ and use it for each W.

Summary of Algorithm

```
Data: G \trianglerighteq G_0 \trianglerighteq G_1 \trianglerighteq G_2 \trianglerighteq \cdots \trianglerighteq G_r = 1
Result: List of all Galois F/\mathbb{Q}_p with Gal(F/\mathbb{Q}_p) \cong G
Find tame extensions L_1/\mathbb{Q}_p with Gal(L_1/\mathbb{Q}_p) \cong G/G_1;
for 0 < i < r do
     Find class \sigma_i of 1 \to G_i/G_{i+1} \to G/G_{i+1} \to G/G_i \to 1;
     for each L = L_i do
          Compute a 2-cocycle representing u_{L/\mathbb{Q}_n};
          Find all stable submodules W with L^{\times}/W \cong G_i/G_{i+1};
          for each W do
               if u_{L/\mathbb{Q}_p} \mapsto \sigma_i \in H^2(L/\mathbb{Q}_p, L^{\times}/W) then
                    Add the M/L matching W to the list of L_{i+1};
               end
          end
     end
```

Future Work

- Flesh out details of algorithm and implement it,
- Extend group theoretic analysis to dimension 7 and 8,
- Ompute additional data for each torus: cohomology groups, embeddings into induced tori, Moy-Prasad filtrations, conductors, component groups of Néron models...
- Put data online at www.lmfdb.org.

Thank you for your attention!

References

- [1] B. Casselman. *Computations in real tori*, Representation theory of real groups, Contemporary Mathematics **472**, A.M.S. (2007).
- [2] C. Cid, J. Opgenorth, W. Plesken, T. Schulz. CARAT. wwwb.math.rwth-aachen.de/carat/.
- [3] J. Jones, D. Roberts. A database of local fields, J. Symbolic Comput 41 (2006), 80-97.
- [4] G. Nebe, W. Pleskin, M. Pohst, B. Souvignier. Irreducible maximal finite integral matrix groups. GAP Library.
- [5] S. Pauli. Constructing class fields over local fields, J. Théor. Nombres Bordeaux 18 (2006), 627-652.
- [6] J.-P. Serre. Local fields. Springer, New York, 1979.