
. . . . .
Algebraic Tori

. . . . . . .
Finite Subgroups of GLn(Z)

. . . . . . . . .
The Inverse Galois Problem for p-adic Fields

.

......

Algebraic tori and a
computational inverse Galois problem

David Roe

Department of Mathematics
University of Pittsburgh

Jan 26, 2016



. . . . .
Algebraic Tori

. . . . . . .
Finite Subgroups of GLn(Z)

. . . . . . . . .
The Inverse Galois Problem for p-adic Fields

Outline

...1 Algebraic Tori

...2 Finite Subgroups of GLn(Z)

...3 The Inverse Galois Problem for p-adic Fields



. . . . .
Algebraic Tori

. . . . . . .
Finite Subgroups of GLn(Z)

. . . . . . . . .
The Inverse Galois Problem for p-adic Fields

Tori over R

When you hear torus, you probably think

Today: an algebraic version. Define three basic tori over R:
U, with U(R) = {z ∈ C× : zz̄ = 1},
Gm, with Gm(R) = R

×,
S, with S(R) = C×.

.
Theorem (c.f. [1, Thm 2])..
......Every
algebraic
torus
over R is
a
product
of
these
tori.
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Algebraic tori

Gm is the variety defined by xy − 1: for any ring R its points
are the units R×.
U is the variety defined by x2 + y2 − 1; after tensoring with
C can factor as (x + iy)(x − iy) − 1.
Both are in fact group
schemes: the set of points has a
group structure.

.
Definition..

......
An algebraic
torus over a field K is a group scheme,
isomorphic to (Gm)

n after tensoring with a finite extension.

Can also give T (K̄) plus a continuous action of Gal(K̄/K) on it.
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Character lattices

.
Definition..
......The character
lattice of T is X∗(T ) = HomK̄(T,Gm),

X∗(T ) is a free rank-n Z-module with a Gal(K̄/K) action.
Can take {χi : (z1, . . . , zn) 7→ zi} as a basis for X∗(Gn

m).
X∗(Gm) = Z with trivial action,
X∗(U) = Z with conjugation acting as x 7→ −x,
X∗(S) = Zv ⊕ Zw with conjugation exchanging v and w.

.
Theorem..

......
The
functor T 7→ X∗(T ) defines
a
contravariant
equivalence
of
categories K-Tori→ Gal(K̄/K)-Lattices.
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Finding tori

.
Goal..

......

...1 Create
a
database
of
algebraic
tori
over p-adic
fields
(www.lmfdb.org)

...2 Use
to
study
structure
of
algebraic
groups, p-adic
representation
theory
and
local
Langlands, especially
for
exceptional
groups.

Some will apply to other fields and to Galois representations.

www.lmfdb.org
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Strategy

We break up the task of finding tori into two pieces:
...1 For each dimension n, list all finite groups G that act

(faithfully) on Zn. For fixed n, the set of G is finite.
...2 For each G and p, list all Galois extensions L/Qp with

Gal(L/Qp) � G. For fixed G and p, the set of L is finite.
Moreover, when p does not divide |G|, this question is easy.
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Finite Subgroups of GLn(Z)

With a choice of basis, a faithful action of G on Zn is the
same as an embedding G ⊂ GLn(Z).
Two G-lattices are isomorphic if and only if the
corresponding subgroups are conjugate within GLn(Z).
Two G-lattices are isogenous if the corresponding
subgroups are conjugate within GLn(Q).

Gm × U and S are isogenous but not isomorphic, since ( 1 0
0 −1 )

and ( 0 1
1 0 ) are conjugate in GLn(Q) but not in GLn(Z).
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Previous Computations

.
CARAT [2]..

......
Up to dimension 6, the software package CARAT lists all of the
finite subgroups of GLn(Z), up to Z- and Q-conjugacy.

.
IMF GAP Library [4]..

......

The group theory software package GAP has a library for
maximal finite subgroups where the corresponding lattice is
irreducible as a G-module. The Q-classes are known for n ≤ 31,
the Z-classes for n ≤ 11 and n ∈ {13, 17, 19, 23}.
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Indecomposible subgroups

A G-lattice is indecomposible if it does not split as a direct
sum of G-submodules.
For example, X∗(S) is not irreducible, since ⟨a + b⟩ is a
stable submodule, as is ⟨a − b⟩.
But it is indecomposible: the sum of these submodules
has index 2.

For n > 6, work remains to recover a list of indecomposible
subgroups. Note that the decomposition into indecomposible
submodules is NOT unique.
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Interlude: p-adic fields

For each prime p, define vp : Q→ Z ∪ {∞} by vp(pkα) = k
when α is relatively prime to p.
Set |x|p = p−vp(x), and Qp as the completion.
Zp = {x ∈ Qp : v(x) ≥ 0} and Pp = {x ∈ Zp : v(x) > 0} is
the unique maximal ideal in Zp, with quotient Fp (residue
field). A uniformizer is an element of valuation 1, ie p · u.
Q×p � Z

×
p × pZ and Z×p � F×p × (1 + Pp).

For example, 2
5 +3+52 +2 · 53 +4 · 54 + · · · is an element of Q5.
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Interlude: p-adic extensions

Algebraic extensions of Qp are much richer than those of R.
Let K/Qp be a finite extension. There is a unique extension of v
to a valuation vK : K → Q ∪ {∞}.

L/K is unramified if the image of vK is the same as vL.
There is a unique unramified extension of each degree
(comes from the residue field).
L/K is totally
ramified if the corresponding extension of
residue fields is trivial.
A totally ramified extension is tame if [L : K] is prime to p.
These are obtained by adjoining roots of uniformizers.
A totally ramified extension is wild if [L : K] is a power of p.

Any extension L/K can be split as L/Lt/Lu/K, with Lu/K
unramified, Lt/Lu tame and L/Lt wild.



. . . . .
Algebraic Tori

. . . . . . .
Finite Subgroups of GLn(Z)

. . . . . . . . .
The Inverse Galois Problem for p-adic Fields

Number of Subgroups (up to GLn(Z)-conjugacy)

Dimension 1 2 3 4 5 6

Real 2 4 6 9 12 16
Unramified 2 7 16 45 96 240
Tame 2 13 51 298 1300 6661
7-adic 2 10 38 192 802 3767
5-adic 2 11 41 222 890 4286
3-adic 2 13 51 348 1572 9593
2-adic 2 11 60 536 4820 65823
Local 2 13 67 633 5260 69584
All 2 13 73 710 6079 85308

Note that each subgroup corresponds to multiple tori, since
there are multiple field extensions with that Galois group.



. . . . .
Algebraic Tori

. . . . . . .
Finite Subgroups of GLn(Z)

. . . . . . . . .
The Inverse Galois Problem for p-adic Fields

Order of Largest Subgroup

Dimension 1 2 3 4 5 6

Real 2 2 2 2 2 2
Unramified 2 6 6 12 12 30
Tame 2 12 12 40 72 144
7-adic 2 8 12 40 40 120
5-adic 2 12 12 40 72 144
3-adic 2 12 12 72 72 432
2-adic 2 12 48 576 1152 2304
Irreducible 2 12 48 1152 3840 103680
Weyl A1 G2 B3 F4 B5 2 × E6

Dim Largest Irreducible Subgroup
7 2903040 (E7)
8 696729600 (E8)
31 17658411549989416133671730836395786240000000 (B31)
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Inverse Galois Problem

Classic Problem: determine if a finite G is a Galois group.
Depends on base field: every G is a Galois group over C(t).
Most work focused on L/Q: S n and An, every solvable
group, every sporadic group except possibly M23, . . .

Generic polynomials fG(t1, . . . , tr, X) are known for some
(G,K): every L/K with group G is a specialization.

.
Computational Problem..

......
Give an algorithm to find all of the field extensions of K = Qp

with a specified Galois group.
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Database of p-adic Fields

Jones and Roberts [3] have created a database of p-adic fields.

Lists all L/Qp with a given degree, including non-Galois;
Includes up to degree 10;
Gives Galois group and other data about the extension;
Biggest table is [L : Q2] = 8, of which there are 1823.
We need G in degree up to 96 (tame) or 14, 60, 144, 144
(wild, p = 7, 5, 3, 2 resp.)

Their database solves the problem for small G, but most of the
target G fall outside it.
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Structure of p-adic Galois groups

The splitting of L/K into unramified, tame and wild pieces
induces a filtration on Gal(L/K). We can refine this filtration to

G ⊵ G0 ⊵ G1 ⊵ G2 ⊵ · · · ⊵ Gr = 1.

For every i, Gi ⊴ G;
G/G0 = ⟨F⟩ is cyclic, and LG0/K is maximal unramified;
G0/G1 = ⟨τ⟩ is cyclic, order prime to p and FτF−1 = τp;
For 0 < i < r, Gi/Gi+1 � F

ki
p .

Finding such filtrations on an abstract group is not difficult.
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Inductive Approach

For tame extensions: lift irreducible polynomials from residue
field for unramified, then adjoin nth roots of p · u.

Thus, it suffices to solve:
.
Problem..

......

Fix a Galois extension L/K, set H = Gal(L/K) and suppose G
is an extension of H:

1→ A→ G → H → 1,

with A � Fk
p. Find all M/L s.t. M/K Galois and Gal(M/K) � G.
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Interlude: Local Class Field Theory
Let M/L/Qp with [M : L] = m and Γ = Gal(M/L).
.
Theorem (Local Class Field Theory [6, Part IV])..

......

H2(Γ,M×) = ⟨uM/L⟩ � 1
mZ/Z

–∪ uM/L : Γab = Ĥ−2(Γ,Z) ∼−→ Ĥ0
(Γ,M×) = L×/NmM/L M×.

The
map M 7→ NmM/L M× gives
a
bijection
between
abelian
extensions M/L and
finite
index
subgroups
of L×.

Pauli [5] gives algorithms for finding a defining polynomial of
the extension associated to a given norm subgroup.

.
Upshot..

......
Since A = Fk

p abelian, can use LCFT to find possible M/L in
terms of subgroups of L×.



. . . . .
Algebraic Tori

. . . . . . .
Finite Subgroups of GLn(Z)

. . . . . . . . .
The Inverse Galois Problem for p-adic Fields

A Mod-p Representation

Given
1→ A→ G → H → 1

and L/K, let V = (1 + PL)/(1 + PL)
p, an Fp[H]-module.

Since A = Gal(M/L) has exponent p, it corresponds to a
subgp N ⊇ (1 + PL)

p and L×/N � (1 + PL)/(N ∩ (1 + PL)).
Let W = (N ∩ (1 + PL))/(1 + PL)

p, a subspace of V.
M/K is Galois iff W is stable under H = Gal(L/K).
The MeatAxe algorithm finds such subrepresentations.
For each W, check V/W � A as Fp[H]-modules.
The corresponding M/K are candidates for Gal(M/K) � G.
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Extension Classes

There may be multiple extensions

1→ A→ G′ → H → 1

yielding the same action of H on A. Use group cohomology to
distinguish them.

Choosing a section s : H → G′, define a 2-cocycle by
(g, h) 7→ s(g)s(h)s(gh)−1 ∈ A.
Get bijection H2(H, A)↔ {1→ A→ G′ → H → 1}/∼.

Two approaches to picking out G:
...1 Just compute Gal(M/K),
...2 Try to find the extension class, given W.
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A Conjecture on the Fundamental Class

.
Conjecture..

......

Let N ⊂ L× correspond
to M/L under
LCFT and
set
G = Gal(M/K), H = Gal(L/K) and A = Gal(M/L).
Then
the
image
of uL/K under
the
natural
map

H2(H, L×)→ H2(H, L×/N) � H2(H, A)

is
the
extension
class
for

1→ Gal(M/L)→ Gal(M/K)→ Gal(L/K)→ 1.

If this conjecture holds, can compute a 2-cocycle representing
uL/K and use it for each W.
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Summary of Algorithm

Data: G ⊵ G0 ⊵ G1 ⊵ G2 ⊵ · · · ⊵ Gr = 1
Result: List of all Galois F/Qp with Gal(F/Qp) � G
Find tame extensions L1/Qp with Gal(L1/Qp) � G/G1;
for 0 < i < r do

Find class σi of 1→ Gi/Gi+1 → G/Gi+1 → G/Gi → 1;
for each L = Li do

Compute a 2-cocycle representing uL/Qp ;
Find all stable submodules W with L×/W � Gi/Gi+1;
for each W do

if uL/Qp 7→ σi ∈ H2(L/Qp, L×/W) then
Add the M/L matching W to the list of Li+1;

end
end

end
end
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Future Work

...1 Flesh out details of algorithm and implement it,

...2 Extend group theoretic analysis to dimension 7 and 8,

...3 Compute additional data for each torus: cohomology
groups, embeddings into induced tori, Moy-Prasad
filtrations, conductors, component groups of Néron
models...

...4 Put data online at www.lmfdb.org.

www.lmfdb.org
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Thank you for your attention!
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