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Tori over R

When you hear torus, you probably think < J

Today: an algebraic version. Define three basic tori over R:
@ U, withUR) ={zeC* : zz=1},
@ G, with G,,(R) = RX,
@ S, with S(R) = C*.

Theorem (c.f. [1, Thm 2])
Every algebraic torus over R is a product of these tori.
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Algebraic tori

@ G, is the variety defined by xy — 1: for any ring R its points
are the units R*.

@ U is the variety defined by x? + y? — 1; after tensoring with
C can factor as (x + iy)(x — iy) — 1.

@ Both are in fact group schemes: the set of points has a
group structure.

Definition

An algebraic torus over a field K is a group scheme,
isomorphic to (G,,)" after tensoring with a finite extension.

Can also give T(K) plus a continuous action of Gal(K/K) on it.
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Character lattices

Definition
The character lattice of T is X*(T) = Homg(T,G,,),

X*(T) is a free rank-n Z-module with a Gal(K/K) action.
Can take {x; : (z1,...,2s) = z;} as a basis for X*(G%,).

@ X*(G,,) = Z with trivial action,
@ X*(U) = Z with conjugation acting as x — —x,
@ X*(S) = Zv & Zw with conjugation exchanging v and w.

The functor T — X*(T) defines a contravariant equivalence of
categories K- Tori — Gal(K /K)- Lattices.
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Finding tori

@ Create a database of algebraic tori over p-adic fields
(www. Imfdb. org)

@ Use to study structure of algebraic groups, p-adic
representation theory and local Langlands, especially for
exceptional groups.

Some will apply to other fields and to Galois representations.


www.lmfdb.org
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Strategy

We break up the task of finding tori into two pieces:
@ For each dimension n, list all finite groups G that act
(faithfully) on Z". For fixed n, the set of G is finite.

@ For each G and p, list all Galois extensions L/Q, with
Gal(L/Q,) = G. For fixed G and p, the set of L is finite.
Moreover, when p does not divide |G|, this question is easy.
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Finite Subgroups of GL,(Z)

@ With a choice of basis, a faithful action of G on Z" is the
same as an embedding G c GL,(Z).

@ Two G-lattices are isomorphic if and only if the
corresponding subgroups are conjugate within GL,(Z).

@ Two G-lattices are isogenous if the corresponding
subgroups are conjugate within GL,(Q).

G, x U and S are isogenous but not isomorphic, since ([1) )
and (9 }) are conjugate in GL,(Q) but not in GL,(Z).
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Previous Computations

CARAT [2]

Up to dimension 6, the software package CARAT lists all of the
finite subgroups of GL,(Z), up to Z- and Q-conjugacy.

IMF GAP Library [4]

The group theory software package GAP has a library for
maximal finite subgroups where the corresponding lattice is
irreducible as a G-module. The Q-classes are known for n < 31,
the Z-classes forn <11 and n € {13,17, 19, 23}.

| A

v
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Indecomposible subgroups

@ A G-lattice is indecomposible if it does not split as a direct
sum of G-submodules.

@ For example, X*(8) is not irreducible, since (a + b) is a
stable submodule, as is {(a — b).

@ But it is indecomposible: the sum of these submodules
has index 2.

For n > 6, work remains to recover a list of indecomposible
subgroups. Note that the decomposition into indecomposible
submodules is NOT unique.
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Interlude: p-adic fields

@ For each prime p, define v, : Q — Z U {oo} by v, (pFa) = k
when « is relatively prime to p.

@ Set x|, = p~»¥), and Q, as the completion.

07Z,={xeQ, : v(x) >0)and P, ={x€Z, : v(x)>0}is
the unique maximal ideal in Z,,, with quotient F,, (residue
field). A uniformizer is an element of valuation 1, ie p - u.

® Qy=ZXxp~and Zy =Fs x (1+P)).

For example, 2 +3+5%+2-53+4-5' + ... is an element of Qs.
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Interlude: p-adic extensions

Algebraic extensions of Q, are much richer than those of R.
Let K/Q, be a finite extension. There is a unique extension of v
to a valuation vg : K - Q U {co}.
@ L/K is unramified if the image of vk is the same as v;.
There is a unique unramified extension of each degree
(comes from the residue field).

@ L/K is totally ramified if the corresponding extension of
residue fields is trivial.

@ A totally ramified extension is tame if [L : K] is prime to p.
These are obtained by adjoining roots of uniformizers.

@ A totally ramified extension is wild if [L : K] is a power of p.

Any extension L/K can be splitas L/L,/L,/K, with L,/K
unramified, L,/L, tame and L/L, wild.
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Number of Subgroups (up to GL,(Z)-conjugacy)

Dimension |1 2 3 4 5 6
Real 2 4 6 9 12 16
Unramified | 2 7 16 45 96 240
Tame 2 13 51 298 1300 6661
7-adic 2 10 38 192 802 3767
5-adic 2 11 41 222 890 4286
3-adic 2 13 51 348 1572 9593
2-adic 2 11 60 536 4820 65823
Local 2 13 67 633 5260 69584
All 2 13 73 710 6079 85308

Note that each subgroup corresponds to multiple tori, since
there are multiple field extensions with that Galois group.
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Order of Largest Subgroup

Dimension 1 2 3 4 5 6
Real 2 2 2 2 2 2
Unramified 2 6 6 12 12 30
Tame 2 12 12 40 72 144
7-adic 2 8 12 40 40 120
5-adic 2 12 12 40 72 144
3-adic 2 12 12 72 72 432
2-adic 2 12 48 576 1152 2304
Irreducible 2 12 48 1152 3840 103680
Weyl A1 Go Bs F, B 2 X Eg

Dim | Largest Irreducible Subgroup

7 | 2903040 (E7)
8 | 696729600 (Es)
31 | 17658411549989416133671730836395786240000000 (B31)
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Inverse Galois Problem

@ Classic Problem: determine if a finite G is a Galois group.
@ Depends on base field: every G is a Galois group over C(t).

@ Most work focused on L/Q: S, and A,, every solvable
group, every sporadic group except possibly Mg, ...

@ Generic polynomials fg(11,. ..., X) are known for some
(G,K): every L/K with group G is a specialization.

Computational Problem

Give an algorithm to find all of the field extensions of K = Q,
with a specified Galois group.
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Database of p-adic Fields

Jones and Roberts [3] have created a database of p-adic fields.

@ Lists all L/Q, with a given degree, including non-Galois;
@ Includes up to degree 10;

@ Gives Galois group and other data about the extension;
@ Biggest table is [L : Q2] = 8, of which there are 1823.

@ We need G in degree up to 96 (tame) or 14, 60, 144, 144
(wild, p =7,5,3,2 resp.)

Their database solves the problem for small G, but most of the
target G fall outside it.
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Structure of p-adic Galois groups

The splitting of L/K into unramified, tame and wild pieces
induces a filtration on Gal(L/K). We can refine this filtration to

G>Go>2Gi 2G> G, = 1.

@ Forevery i, G; 4 G;

@ G/Gy = (F) is cyclic, and L% /K is maximal unramified;
@ G(o/Gy = {(7) is cyclic, order prime to p and FrF~1 = 17;
@ For0<i<r,Gi/Git1 =Fy.

Finding such filtrations on an abstract group is not difficult.
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Inductive Approach

For tame extensions: lift irreducible polynomials from residue
field for unramified, then adjoin nt" roots of p-u.

Thus, it suffices to solve:

Problem

Fix a Galois extension L/K, set H = Gal(L/K) and suppose G
is an extension of H:

1-A->G—->H->I1,

with A = F’;, Find all M/L s.t. M/K Galois and Gal(M/K) = G.

v
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Interlude: Local Class Field Theory
Let M/L/Q, with [M : L] =mand I" = Gal(M/L).

Theorem (Local Class Field Theory [6, Part 1V])
o H*(I, M*) = (uyyr) = 12/2

o _UuM/L : Fab = |:|_2(F,Z) - HO(F,MX) = LX/NmM/LMX.
@ The map M — Nm,,,;, M* gives a bijection between
abelian extensions M /L and finite index subgroups of L*.

Pauli [5] gives algorithms for finding a defining polynomial of
the extension associated to a given norm subgroup.

Since A = Fj‘, abelian, can use LCFT to find possible M/L in
terms of subgroups of L*.
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A Mod-p Representation

Given
1-A->G—-H-—>1
and L/K,let V= (1+%.)/(1+PL)?, an F,[H|-module.

@ Since A = Gal(M/L) has exponent p, it corresponds to a
subgp N2 (1+Pr)? and L*/N = (1 +Pr)/(NN (1 + PL)).

o LetW=(Nn(1+%PL))/(1+PL)?, asubspace of V.

@ M/K is Galois iff W is stable under H = Gal(L/K).

@ The MeatAxe algorithm finds such subrepresentations.

@ For each W, check V/W = A as F,[H|-modules.

@ The corresponding M/K are candidates for Gal(M/K) = G.
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Extension Classes

There may be multiple extensions

15A->G -H->1
yielding the same action of H on A. Use group cohomology to
distinguish them.

@ Choosing a section s : H — G’, define a 2-cocycle by
(g.h) = s(g)s(h)s(gh)™" € A.
@ Get bijection H*(H,A) & {1 5 A > G’ — H — 1}/ ~.

Two approaches to picking out G:
@ Just compute Gal(M/K),
@ Try to find the extension class, given W.
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A Conjecture on the Fundamental Class

Conjecture

Let N c L* correspond to M /L under LCFT and set
G =Gal(M/K), H=Gal(L/K) and A = Gal(M/L).
Then the image of u; x under the natural map

H*(H,L*) - H*(H,L*/N) = H*(H, A)

is the extension class for

1 - Gal(M/L) - Gal(M/K) — Gal(L/K) — 1.

If this conjecture holds, can compute a 2-cocycle representing
ur/x and use it for each W.
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Summary of Algorithm

Data: G>Gy>G1>2Go> -G, =1
Result: List of all Galois F/Q,, with Gal(F/Q,) = G
Find tame extensions L,/Q, with Gal(L,/Q,) = G/G;
forO<i<rdo
Find class o; of 1 — Gi/GH—l - G/Gi+1 - G/G, - 1;
foreach L =L; do
Compute a 2-cocycle representing u.q,;
Find all stable submodules W with L*/W = G;/G41;
for each W do
if u g, — oy € H(L/Q,,L*/W) then
| Add the M/L matching W to the list of L, 1;
end
end
end
end
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Future Work

Flesh out details of algorithm and implement it,
Extend group theoretic analysis to dimension 7 and 8,

000

Compute additional data for each torus: cohomology
groups, embeddings into induced tori, Moy-Prasad
filtrations, conductors, component groups of Néron
models...

© Put data online at www.1mfdb.org.
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Thanks

Thank you for your attention!
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