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Classical Modular Forms

H – upper half plane: complex numbers z = x + iy with y > 0.

Γ0(N) ⊆ SL2(Z) consists of γ =
(

a b
c d

)
with N | c.

Acts onH by γ · z = az+b
cz+d . Example of a level Γ.

k – an integer, the weight.

Mk(Γ) – holomorphic functions f : H → C with
f (γ · z) = (cz + d)k f (z) for γ ∈ Γ. These are modular forms.

Since ( 1 1
0 1 ) ∈ Γ0(N), f (z + 1) = f (z). Get a Fourier expansion

around i∞: if q = e2πiz,

f (z) =
∞∑

n=0

anqn.

Note: an = 0 for n < 0 is an additional condition on f .
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Examples: Eisenstein Series

For k > 2 even, Gk(z) =
∑

(m,n),(0,0)
1

(mz+n)k ∈ Mk(SL2(Z)).

Gk(z) = 2ζ(k)

1 + 2

ζ(1 − k)

∞∑
n=1

σk−1(n)qn

 ,
where σk−1(n) =

∑
0<d|n dk−1.

For other Γ, a cusp is a Γ-orbit on Q ∪ {∞}.
Basis for Eisenstein series of forms that take value 1 on one cusp
and zero on others.

Cusp forms S k(Γ) ⊂ Mk(Γ) are those vanishing on all cusps.
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Examples: Modular Forms from Elliptic Curves

If E is an elliptic curve y2 = x3 + ax + b over Q with discriminant
−16(4a3 + 27b2) and conductor N (same prime factors),

ap = (p + 1) −#E(Fp) if p ∤ N

ap = 0 if E has additive reduction

ap = 1 if E has split multiplicative reduction

ap = −1 if E has non-split multiplicative reduction

apr = apr−1 · ap − p · apr−2 if p ∤ N

apr = ar
p if p | N

amn = am · an if (m, n) = 1.

fE =
∞∑

n=1

anqn ∈ M2(Γ0(N)).
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Hecke Operators

For fixed k and Γ, the space Mk(Γ) is finite dimensional (with
explicit dimensions via Riemann-Roch).

For each n ≥ 1 there is a linear operator Tn on Mk(Γ), and the Tn

commute with each other.

An eigenform is a simultaneous eigenvector for these operators
(e.g. fE).
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LMFDB

.
L-functions and Modular Forms Database..
......Break for demo of http://beta.lmfdb.org.

http://beta.lmfdb.org
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Modular Symbols

For k > 1, computation made possible by modular symbols.

∆0 – Div0(P1(Q)): formal sums
∑
α∈Q∪{∞} aαα with

∑
α aα = 0.

S 0(p) –
{(

a b
c d

)
| (a, p) = 1, p | c and ad − bc , 0

}
.

V – a Z-module (e.g. C or Symk−2(C)) with right actions of Γ and
S 0(p).

Γ – acts on Hom(∆0,V) by (φ|γ)(D) = φ(γD)|γ.
SmbΓ(V) – {φ ∈ Hom(∆0,V) | φ = φ|γ}.

Tℓ – acts by φ|Tℓ = φ|
(
ℓ 0
0 1

)
+

∑ℓ−1
a=0 φ|

(
1 a
0 ℓ

)
for ℓ ∤ N.

Uq – acts by φ|Uq =
∑q−1

a=0 φ|
(
1 a
0 q

)
for q | N.
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Manin Relations

G – PSL2(Z)

[γ] – b
d −

a
c ∈ ∆0 when γ =

(
a b
c d

)
∈ G.

σ – ( 0 −11 0 ), a two-torsion element.
τ – ( 0 −11 −1 ), a three-torsion element.
I – the left ideal Z[G](1 + σ) + Z[G](1 + τ+ τ2).

{gi} – right coset reps for Γ\G, generate Z[G] as a free Z[Γ]-module.

Using continued fractions, every element of ∆0 is the sum of
elements [γ], so get surjective map

Z[G]→ ∆0.

Manin showed that the kernel is I. Therefore ∆0 is generated by the
gi, with relations given by I. For instance,

gi(1 + σ) = gi + giσ = gi + γi jg j.
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Modular Symbols to Modular Forms

.
Theorem (Eichler-Shimura)
..
......SmbΓ(Symk−2(C)) � Mk(Γ) ⊕ S k(Γ) as Hecke-modules.

So to compute Mk(Γ), we
...1 Using Manin relations, write down a basis for

SmbΓ(Symk−2(C)).
...2 Compute matrices for action of Uq and Tℓ for small ℓ.
...3 Diagonalize to get systems of Hecke eigenvalues {aℓ}.
...4 These systems provide the Fourier coefficients for a basis of

eigenforms in Mk(Γ).
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p-adic Numbers

Fix p prime. Recall:

vp – For a, b prime to p, set vp
(
pv · a

b

)
= v and

∣∣∣pv · a
b

∣∣∣
p = p−v.

Qp – Completion of Q with norm |·|p. Then Zp = {z ∈ Qp : |z| ≤ 1}.
Zp – Alternately, Zp = lim←m Z/pmZ and Qp = Zp

[
1
p

]
.

Concretely, of the form
∑∞

m=v am pm with am ∈ {0, . . . , p − 1}.
Computationally, represent as pv · u, where u ∈ (Z/pmZ)×.
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p-adic Distributions

A –
{
f (z) =

∑∞
n=0 anzn ∈ Qp⟦z⟧ : |an| → 0

}
; ∥ f ∥ = supz∈Zp

| f (z)|.

D – Hom(A,Qp); ∥µ∥ = sup0, f∈A
|µ( f )|
∥ f ∥ .

Ak – A with (γ ·k f )(z) = (a+ cz)k · f
(

b+dz
a+cz

)
for γ =

(
a b
c d

)
∈ S 0(p).

Dk – D with (µ|kγ)( f ) = µ(γ ·k f ).

Vk – Symk(Q2
p) = Qp[X, Y]k with

(P|γ)(X, Y) = P(dX − cY,−bX + aY).
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Moments

The map

M : D→
∞∏

j=0

Qp

µ 7→
(
µ(z j)

)
j = 0∞

is injective, with image the bounded sequences.

The map

ρk : Dk → Vk

µ 7→
∫

(Y − zX)kdµ(z) =
k∑

j=0

(−1) j
(
k
j

)
µ(z j)X jYk− j

is S 0(p)-equivariant.
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Computing with Distributions

D0 – {µ ∈ D : µ(z j) ∈ Zp for all j}.
Film – {µ ∈ D0 : vp(µ(z j)) ≥ m − j}.
F m – D0/Film, a finite Zp-module.

We will define Hecke operators via the action of S 0(p) and Film is
chosen to be stable under this action.
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Overconvergent Modular Symbols

Let N be prime to p and Γ = Γ0(N p) ⊂ S 0(p).

An overconvergent modular symbol is an element of SmbΓ(Dk).
Have Hecke operators.

Approximate by elements of SmbΓ(F m
k ), Hecke operators

descend.

The slope of an eigensymbol φ is the valuation of the
Up-eigenvalue.

Specialization map ρ∗ : SmbΓ(Dk)→ SmbΓ(Vk) is surjective,
isomorphism on the slope < (k + 1) piece.
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Overconvergent Modular Symbols in Sage

.
Sage
..
......Break for Sage demo: https://cloud.sagemath.com

https://cloud.sagemath.com
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Application: p-adic L-functions

Classically, ζ(1 − k) p-adically interpolates for positive integers k.
Kummer congruences:
if h ≡ k (mod ϕ(pm)) then Bh

h ≡
Bk
k (mod pm).

Can do the same for other L-functions. For example, if
f ∈ S k+2(Γ, Q̄) is a slope h < k + 1 eigenform, define the p-adic
L-function of f to be the unique distribution µ f on Z×p so that if χ is a
character of Z×p with conductor pn and 0 ≤ j ≤ k, then

µ f (z j · χ) = 1

αn ·
pn( j+1)

(−2πi) j ·
j!

τ(χ−1)
· L( f , χ−1, j + 1)

Ω±f
.

Here α is the Up-eigenvalue of f , τ(χ−1) is a Gauss sum and Ω±f are
complex periods.
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Computation of p-adic L-functions

The classical construction of µ f involves an integral, the computation
of which requires a Riemann sum. The resulting algorithm for
computing µ f is exponential in the desired precision.

Pollack and Stevens show that there is an overconvergent
eigensymbol Φ f , lifting the symbol φ f , so that

µ f = Φ f ({∞} − {0})|Z×p .

The resulting algorithm for computing µ f is polynomial in the desired
precision.
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p-adic L-functions in Sage

.
Sage
..
......Break for Sage demo: https://cloud.sagemath.com

https://cloud.sagemath.com
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Hida Families

LetW = lim←m (Z/ϕ(pm)Z) � Z/(p − 1)Z × Zp.
Hida constructed families of overconvergent modular forms with
varying weight. These families

consisted of ordinary forms: slope 0,

extended over all of weight spaceW,

have constant rank over weight space.

These families form a part of the eigencurve, a rigid analytic object
parameterizing overconvergent modular forms.
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Ongoing work: positive slope families

The remainder of the eigencurve corresponds to families of
overconvergent forms with positive slope. Want to compute power
series that give the Hecke eigenvalues as a function of varying weight.
These power series will be valid only in subsets of weight space (discs
and annuli).
.
Idea..

......
Use overconvergent modular symbols to find eigenvalues at specific
weights and interpolate.

Overconvergent modular symbols are crucial since the weights will be
large.
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More details: positive slope families

.
Solved Problem..

......

Need to match corresponding eigenvalues between different weights.
Solution: since eigenvalues vary p-adically, their reduction modulo p
is constant over small discs. Can use reductions for varying Tℓ as a
signature to match between different weights.

.
Unsolved Problem..

......

In higher slope, finding eigenvalues at a fixed weight involves
iterating Up

ph . For positive h, we have been unable to avoid devastating
precision loss.
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