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Objective

Goal
Bring a geometric, categorical perspective to the study of the
local Langlands correspondence for p-adic groups.

We approach this task from two directions:
1 Find geometric avatars for objects in local Langlands,
2 Find p-adic analogues of objects in geometric Langlands.

Key Idea

The representation theory of G(Qp) depends on its structure as
a topological group, not as a scheme. A scheme G over Fp with
G(Fp) = G(Qp) offers a new perspective.
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Quasicharacters to sheaves

K – a non-archimedean local field with residue field k ,
R – the ring of integers of K with uniformizer π,
T – an algebraic torus over K ,

X ∗ – for a group X , notation for Hom(X ,Q×` ).

1 We construct a commutative group scheme T over k with
T(k) ∼= T (K ).

2 For any smooth commutative group scheme G over k we
define a category QC(G) of quasicharacter sheaves on G
and show

Theorem (Cunningham-R.)

Trace of Frobenius defines an isomorphism of groups

QC(G)/iso
∼= G(k)∗.
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The Néron model of a torus

The Néron model TR of T is a separated, smooth commutative
group scheme over R so that

Néron mapping property

For any smooth R-scheme Z and morphism f : ZK → T ,
f extends uniquely to Z → TR.

As a consequence,
TR(R) = T (K ).

Note that TR is not necessarily finite type.
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Examples of Néron models

Example (Gm)
If T = Gm, then the Néron model for T is

TR =
⋃
n∈Z

Gm,R,

with gluing along generic fibers:

Gm,R Gm,R R[x0, x−1
0 ]

��

R[xn, x−1
n ]

��
Gm

OO

∼= // Gm

OO

K [x0, x−1
0 ] K [xn, x−1

n ]
isooo

given by: πnx0 xn
�oo
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Examples of Néron models

Example (SO2)

Let T = SO2 over K , split over E = K (
√
π). Then

K [T ] = K [x , y ]/(x2 − πy2 − 1).

The Néron model for T is given by

R[TR] = R[x , y ]/(x2 − πy2 − 1).

Here TR is finite type, but not connected: the special fiber Tk of
TR is given by

k [Tk ] = k [x , y ]/(x2 − 1),

two disjoint lines.
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The Greenberg functor

Greenberg defines a functor

(Sch /R)→ (Sch /k).

X → Gr(X )

Proposition (Greenberg)

If X is separated and locally of finite type then

Gr(X )(k) = X (R).

This functor respects open and closed immersions, étale
and smooth morphisms and geometric components.
There are finite level Greenberg functors Grn with
Gr(X ) = lim←Grn(X ).
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Greenberg of Néron

Definition

T := Gr(TR).

Proposition
1 T(k) = T (K )

2 T is a smooth commutative group scheme over k
3 π0(T) = X∗(T )I
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Greenberg of Néron for Gm

Set W×k as the group of units in the Witt ring scheme Wk .

Example
If T = Gm, then

T =
∐
n∈Z

W×k .

The component group for T is

X∗(T )I = Z,

with the trivial Gal(k̄/k) action.
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Local Systems

From now on, G will denote a smooth, commutative group
scheme over k . We will write m : G ×G→ G for multiplication.

Definition (Local System)
An `-adic local system on G is a constructible sheaf of
Q`-vector spaces on the étale site of G, locally constant on
each connected component.
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Rigid Quasicharacter Sheaves

Definition (Rigid quasicharacter sheaf)

A rigid quasicharacter sheaf on G is a triple L := (L̄, µ, φ).
1 L̄ is a rank-one local system on Ḡ,
2 µ : m̄∗L̄ → L̄� L̄ is an isomorphism of sheaves on Ḡ × Ḡ,

satisfying an associativity diagram.
3 φ : F∗G L̄ → L̄ is an isomorphism of sheaves on Ḡ

compatible with µ.
A morphism of quasicharacter sheaves is a morphism of
constructible `-adic sheaves on Ḡ commuting with µ and φ.

Tensor product makes QCrig(G) into a rigid monoidal category
and QCrig(G)/iso into a group.
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Bounded and Finite Rigid Quasicharacter Sheaves

Definition
A bounded rigid quasicharacter sheaf on G is a pair
(L0, µ0), where L0 is a rank-one local system on G and µ0
is as before.
A finite rigid quasicharacter sheaf on G is a pair (f , ψ),
where f : H → G is a finite, surjective, étale morphism of
group schemes and ψ : ker f → Q×` .

Have full and faithful functors
QCf (G)→ QC0(G)→ QCrig(G),
these are equivalences when G is connected,
Bounded rigid quasicharacter sheaves will correspond to
bounded characters, and finite to ones with finite image.
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Étale Group Schemes

L! (stalks L̄x and indexed isomorphisms µx ,y and φx ).
Choice of basis for L̄x  a ∈ C2(Ḡ,Q×` ) and b ∈ C1(Ḡ,Q×` ).

L̄x+y+z L̄x+y ⊗ L̄z

L̄x ⊗ L̄y+z L̄x ⊗ L̄y ⊗ L̄z

µx+y,z

µx,y+z µx,y⊗id

id⊗µy,z

⇒ a ∈ Z 2(Ḡ,Q×` )

L̄F(x)+F(y) L̄F(x) ⊗ L̄F(y)

L̄x+y L̄x ⊗ L̄y

φx+y

µF(x),F(y)

φx⊗φy

µx,y

⇒ a(F(x),F(y))
a(x ,y) = b(x+y)

b(x)b(y)
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Hochschild-Serre Spectral Sequence

W – the Weil group of k ,
a  α ∈ C0(W,Z 2(Ḡ,Q×` )),
b  β ∈ Z 1(W,C1(Ḡ,Q×` )) with β(F) = b,

E i,j
0 = C i(W,C j(Ḡ,Q×` )).

Proposition

The map QCrig(G)/iso → H2(E•0 ) to the cohomology of the
total complex given by L 7→ (α, β,0) is an isomorphism.
The spectral sequence yields an exact sequence

1→ H0(W,H2(Ḡ,Q×` ))→ H2(E•0 )→ H1(W,H1(Ḡ,Q×` ))→ 1.

H1(W,H1(Ḡ,Q×` ))→ (G(k̄)∗)W → G(k)∗

is an isomorphism compatible with trace of Frobenius.
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Quasicharacter Sheaves

So QCrig(G)/iso � G(k)∗ has kernel H2(G(k̄),Q×` )F for étale G.

Definition (Quasicharacter sheaf)
For any smooth, commutative, group scheme G, a
quasicharacter sheaf on G is a Weil sheaf L := (L̄, φ) so that
(L̄, µ, φ) is a rigid quasicharacter sheaf for some µ.

Proposition
For étale G, trace of Frobenius induces an isomorphism

QC(G)/iso → G(k)∗.
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Snake Lemma

For any G, trace of Frobenius defines a map

tG : QC(G)/iso → G(k)∗.

Pullback then gives the rows of

QC(π0(G))/iso
//

��

QC(G)/iso
//

��

QC(G◦)/iso

��

// 1

1 // (π0(G))(k)∗ // G(k)∗ // G◦(k)∗ // 1

tG◦ is an isomorphism by the classic function–sheaf
dictionary (Deligne),
tπ0(G) is an isomorphism as above,
the snake lemma finishes the job.
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Transfer of quasicharacter sheaves

Suppose T and T ′ are tori over local fields K and K ′. We say
that T and T ′ are N-congruent if there are isomorphisms

α : OL/π
N
KOL → OL′/π

N
K ′OL′ ,

β : Gal(L/K )→ Gal(L′/K ′),
φ : X ∗(T )→ X ∗(T ′),

satisfying natural conditions. If T and T ′ are N-congruent then
Hom<N(T (K ),Q×` ) ∼= Hom<N(T ′(K ′),Q×` ).

Chai and Yu give an isomorphism of group schemes
Tn ∼= T ′n, for n depending on N.
This isomorphism induces an equivalence of categories
QC(Tn)→ QC(T′n).
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Class Field Theory

We have constructed the diagram

QC(T)/iso
tT

ww &&
Hom(T (K ),Q×` ) recT

// H1(K , T̂`)

We are working with Takashi Suzuki to construct Langlands
parameters directly from quasicharacter sheaves, which would
give a different construction of the reciprocity map.
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Non-commutative groups

If G is a connected reductive group over K , no Néron model.
Instead, parahorics correspond to facets in the Bruhat-Tits
building and give models for G over OK . After taking the
Greenberg transform, we can glue the resulting k -schemes and
try to build sheaves on the resulting space using some form of
Lusztig induction from quasicharacter sheaves on a maximal
torus. This work is still in progress.
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Affine Grassmanians and Flag Varieties

K equal characteristic
Starting with G over k , the affine Grassmanian
G(K )/G(OK ) and affine flag variety G(K )/I (I is the
Iwahori) are ind-schemes over k . They play a large role in
the geometric Langlands program.
K mixed characteristic
Now we need to start with a G defined over K , and can no
longer construct these directly as quotients. Martin Kreidl
considers representability of G(K )/G(OK ) for G = SLn but
runs into complications with non-perfect rings. Again with
Takashi Suzuki, we are working on representing this
functor in a slightly modified category.
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