Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

A function–sheaf dictionary for tori over local fields

David Roe joint with Clifton Cunningham

Department of Mathematics University of Calgary/PIMS

Canadian Number Theory Association Meetings June 17, 2014

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

Objective

Goal

Bring a *geometric, categorical* perspective to the study of the local Langlands correspondence for *p*-adic groups.

We approach this task from two directions:

- Find geometric avatars for objects in local Langlands,
- Ind p-adic analogues of objects in geometric Langlands.

Key Idea

The representation theory of $G(\mathbb{Q}_p)$ depends on its structure as a topological group, not as a scheme. A scheme \mathfrak{G} over \mathbb{F}_p with $\mathfrak{G}(\mathbb{F}_p) = G(\mathbb{Q}_p)$ offers a new perspective.

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

Quasicharacters to sheaves

- K a non-archimedean local field with residue field k,
- R the ring of integers of K with uniformizer π ,
- T an algebraic torus over K,
- X^* for a group X, notation for Hom $(X, \overline{\mathbb{Q}}_{\ell}^{\times})$.
- We construct a commutative group scheme τ over k with $\tau(k) \cong T(K)$.
- For any smooth commutative group scheme G over k we define a category QC(G) of quasicharacter sheaves on G and show

Theorem (Cunningham-R.)

Trace of Frobenius defines an isomorphism of groups

$$\mathcal{QC}(G)_{/iso}\cong G(k)^*.$$

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

The Néron model of a torus

The Néron model T_R of T is a separated, smooth commutative group scheme over R so that

Néron mapping property

For any smooth *R*-scheme *Z* and morphism $f : Z_K \to T$, *f* extends uniquely to $Z \to T_R$.

As a consequence,

 $T_R(R)=T(K).$

Note that T_R is not necessarily finite type.

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

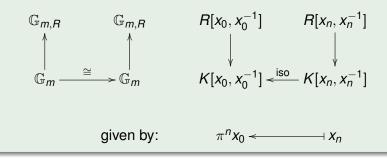
Examples of Néron models

Example (\mathbb{G}_m)

If $T = \mathbb{G}_m$, then the Néron model for T is

$$T_R=\bigcup_{n\in\mathbb{Z}}\mathbb{G}_{m,R},$$

with gluing along generic fibers:



Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

Examples of Néron models

Example (SO₂)

Let $T = SO_2$ over K, split over $E = K(\sqrt{\pi})$. Then

$$K[T] = K[x, y]/(x^2 - \pi y^2 - 1).$$

The Néron model for T is given by

$$R[T_R] = R[x, y]/(x^2 - \pi y^2 - 1).$$

Here T_R is finite type, but not connected: the special fiber T_k of T_R is given by

$$k[T_k] = k[x, y]/(x^2 - 1),$$

two disjoint lines.

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

The Greenberg functor

Greenberg defines a functor

$$(\operatorname{Sch}/R) o (\operatorname{Sch}/k).
onumber \ X o \operatorname{Gr}(X)$$

Proposition (Greenberg)

• If X is separated and locally of finite type then

 $\operatorname{Gr}(X)(k) = X(R).$

- This functor respects open and closed immersions, étale and smooth morphisms and geometric components.
- There are finite level Greenberg functors Gr_n with $Gr(X) = \lim_{\leftarrow} Gr_n(X)$.

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

Greenberg of Néron

Definition

$$\mathbf{\tau} := \operatorname{Gr}(T_R).$$

Proposition

$$\bullet \ \mathbf{T}(k) = T(K)$$

$${f 2}\,\,{f {\Bbb C}}$$
 is a smooth commutative group scheme over k

$$\ \, \mathbf{3} \ \, \pi_{\mathbf{0}}(\mathbf{T}) = X_{*}(T)_{\mathcal{I}}$$

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

Greenberg of Néron for \mathbb{G}_m

Set \mathbb{W}_k^{\times} as the group of units in the Witt ring scheme \mathbb{W}_k .

Example

If $T = \mathbb{G}_m$, then

$${\tt L}=\coprod_{n\in\mathbb{Z}}\mathbb{W}_k^{ imes}.$$

The component group for ${f \tau}$ is

$$X_*(T)_{\mathcal{I}} = \mathbb{Z},$$

with the trivial $Gal(\bar{k}/k)$ action.

Local Systems

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

From now on, *G* will denote a smooth, commutative group scheme over *k*. We will write $m : G \times G \rightarrow G$ for multiplication.

Definition (Local System)

An ℓ -adic local system on G is a constructible sheaf of $\overline{\mathbb{Q}}_{\ell}$ -vector spaces on the étale site of G, locally constant on each connected component.

Applications and Further Work

Rigid Quasicharacter Sheaves

Definition (Rigid quasicharacter sheaf)

A rigid quasicharacter sheaf on G is a triple $\mathcal{L} := (\bar{\mathcal{L}}, \mu, \phi)$.

- $\bar{\mathcal{L}}$ is a rank-one local system on \bar{G} ,
- ② $\mu: \overline{m}^*\overline{\mathcal{L}} \to \overline{\mathcal{L}} \boxtimes \overline{\mathcal{L}}$ is an isomorphism of sheaves on $\overline{G} \times \overline{G}$, satisfying an associativity diagram.
- $\phi: F_G^* \overline{\mathcal{L}} \to \overline{\mathcal{L}}$ is an isomorphism of sheaves on \overline{G} compatible with μ .

A morphism of quasicharacter sheaves is a morphism of constructible ℓ -adic sheaves on \overline{G} commuting with μ and ϕ .

Tensor product makes $\mathcal{QC}_{rig}(G)$ into a rigid monoidal category and $\mathcal{QC}_{rig}(G)_{/iso}$ into a group.

Applications and Further Work

Bounded and Finite Rigid Quasicharacter Sheaves

Definition

- A bounded rigid quasicharacter sheaf on G is a pair (L₀, μ₀), where L₀ is a rank-one local system on G and μ₀ is as before.
- A finite rigid quasicharacter sheaf on G is a pair (f, ψ), where f : H → G is a finite, surjective, étale morphism of group schemes and ψ : ker f → Q[×]_ℓ.
- Have full and faithful functors $\mathcal{QC}_f(G) \to \mathcal{QC}_0(G) \to \mathcal{QC}_{rig}(G)$,
- these are equivalences when G is connected,
- Bounded rigid quasicharacter sheaves will correspond to bounded characters, and finite to ones with finite image.

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

Étale Group Schemes

 $\mathcal{L} \iff$ (stalks $\overline{\mathcal{L}}_x$ and indexed isomorphisms $\mu_{x,y}$ and ϕ_x). Choice of basis for $\overline{\mathcal{L}}_x \rightsquigarrow a \in C^2(\overline{G}, \overline{\mathbb{Q}}_{\ell}^{\times})$ and $b \in C^1(\overline{G}, \overline{\mathbb{Q}}_{\ell}^{\times})$.

$$\begin{array}{c} \bar{\mathcal{L}}_{x+y+z} & \xrightarrow{\mu_{x+y,z}} \bar{\mathcal{L}}_{x+y} \otimes \bar{\mathcal{L}}_{z} \\ \downarrow \\ \mu_{x,y+z} & \downarrow \\ \bar{\mathcal{L}}_{x} \otimes \bar{\mathcal{L}}_{y+z} & \xrightarrow{\mathrm{id} \otimes \mu_{y,z}} \bar{\mathcal{L}}_{x} \otimes \bar{\mathcal{L}}_{y} \otimes \bar{\mathcal{L}}_{z} \\ \hline \bar{\mathcal{L}}_{\mathsf{F}}(x) + \mathsf{F}(y) & \xrightarrow{\mu_{\mathsf{F}}(x),\mathsf{F}(y)} \bar{\mathcal{L}}_{\mathsf{F}}(x) \otimes \bar{\mathcal{L}}_{\mathsf{F}}(y) \\ \end{array} \right. \Rightarrow a \in Z^{2}(\bar{G}, \overline{\mathbb{Q}}_{\ell}^{\times})$$

$$\begin{array}{c|c} \varphi_{X+Y} \downarrow & & \downarrow \varphi_X \otimes \varphi_Y \\ \bar{\mathcal{L}}_{X+Y} \xrightarrow{\mu_{X,Y}} & & \bar{\mathcal{L}}_X \otimes \bar{\mathcal{L}}_Y \end{array} \xrightarrow{\mu_{X,Y}} \bar{\mathcal{L}}_X \otimes \bar{\mathcal{L}}_Y \end{array} \xrightarrow{\mu_{X,Y}} \overline{\mathcal{L}}_X \otimes \bar{\mathcal{L}}_Y$$

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

Hochschild-Serre Spectral Sequence

$$\begin{split} & \mathcal{W} - \text{the Weil group of } k, \\ & \boldsymbol{a} \rightsquigarrow \alpha \in C^0(\mathcal{W}, Z^2(\bar{G}, \overline{\mathbb{Q}}_{\ell}^{\times})), \\ & \boldsymbol{b} \rightsquigarrow \beta \in Z^1(\mathcal{W}, C^1(\bar{G}, \overline{\mathbb{Q}}_{\ell}^{\times})) \text{ with } \beta(\mathsf{F}) = \boldsymbol{b}, \\ & \mathsf{E}_0^{i,j} = C^i(\mathcal{W}, C^j(\bar{G}, \overline{\mathbb{Q}}_{\ell}^{\times})). \end{split}$$

Proposition

- The map QC_{rig}(G)_{iso} → H²(E₀) to the cohomology of the total complex given by L → (α, β, 0) is an isomorphism.
- The spectral sequence yields an exact sequence

$$1 \to \mathsf{H}^0(\mathcal{W},\mathsf{H}^2(\bar{G},\overline{\mathbb{Q}}_\ell^{\times})) \to \mathsf{H}^2(E_0^{\bullet}) \to \mathsf{H}^1(\mathcal{W},\mathsf{H}^1(\bar{G},\overline{\mathbb{Q}}_\ell^{\times})) \to 1.$$

 $\mathsf{H}^1(\mathcal{W},\mathsf{H}^1(ar{G},\overline{\mathbb{Q}}_\ell^{ imes})) o (G(ar{k})^*)_\mathcal{W} o G(k)^*$

is an isomorphism compatible with trace of Frobenius.

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

Quasicharacter Sheaves

So $\mathcal{QC}_{rig}(G)_{/iso} \twoheadrightarrow G(k)^*$ has kernel $H^2(G(\bar{k}), \overline{\mathbb{Q}}_{\ell}^{\times})^{\mathsf{F}}$ for étale G.

Definition (Quasicharacter sheaf)

For any smooth, commutative, group scheme *G*, a *quasicharacter sheaf* on *G* is a Weil sheaf $\mathcal{L} := (\bar{\mathcal{L}}, \phi)$ so that $(\bar{\mathcal{L}}, \mu, \phi)$ is a rigid quasicharacter sheaf for some μ .

Proposition

For étale G, trace of Frobenius induces an isomorphism

$$\mathcal{QC}(G)_{/iso}
ightarrow G(k)^*.$$

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

Snake Lemma

For any G, trace of Frobenius defines a map

$$t_G:\mathcal{QC}(G)_{/iso}
ightarrow G(k)^*.$$

Pullback then gives the rows of

- *t*_{G°} is an isomorphism by the classic function–sheaf dictionary (Deligne),
- $t_{\pi_0(G)}$ is an isomorphism as above,
- the snake lemma finishes the job.

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

Transfer of quasicharacter sheaves

Suppose *T* and *T'* are tori over local fields *K* and *K'*. We say that *T* and *T'* are *N*-congruent if there are isomorphisms

$$\begin{split} \alpha &: \mathcal{O}_L / \pi_K^N \mathcal{O}_L \to \mathcal{O}_{L'} / \pi_{K'}^N \mathcal{O}_{L'}, \\ \beta &: \operatorname{Gal}(L/K) \to \operatorname{Gal}(L'/K'), \\ \phi &: X^*(T) \to X^*(T'), \end{split}$$

satisfying natural conditions. If T and T' are N-congruent then $\operatorname{Hom}_{< N}(T(K), \overline{\mathbb{Q}}_{\ell}^{\times}) \cong \operatorname{Hom}_{< N}(T'(K'), \overline{\mathbb{Q}}_{\ell}^{\times}).$

- Chai and Yu give an isomorphism of group schemes $T_n \cong T'_n$, for *n* depending on *N*.
- This isomorphism induces an equivalence of categories $\mathcal{QC}(\mathbf{T}_n) \rightarrow \mathcal{QC}(\mathbf{T}'_n)$.

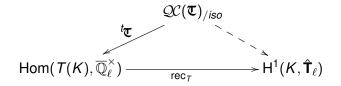
Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

Class Field Theory

We have constructed the diagram



We are working with Takashi Suzuki to construct Langlands parameters directly from quasicharacter sheaves, which would give a different construction of the reciprocity map.

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

Non-commutative groups

If **G** is a connected reductive group over K, no Néron model. Instead, parahorics correspond to facets in the Bruhat-Tits building and give models for **G** over \mathcal{O}_K . After taking the Greenberg transform, we can glue the resulting *k*-schemes and try to build sheaves on the resulting space using some form of Lusztig induction from quasicharacter sheaves on a maximal torus. This work is still in progress.

Applications and Further Work

Affine Grassmanians and Flag Varieties

• K equal characteristic

Starting with **G** over *k*, the affine Grassmanian $\mathbf{G}(K)/\mathbf{G}(\mathcal{O}_K)$ and affine flag variety $\mathbf{G}(K)/\mathbf{I}$ (**I** is the lwahori) are ind-schemes over *k*. They play a large role in the geometric Langlands program.

• K mixed characteristic

Now we need to start with a **G** defined over *K*, and can no longer construct these directly as quotients. Martin Kreidl considers representability of $\mathbf{G}(K)/\mathbf{G}(\mathcal{O}_K)$ for $\mathbf{G} = \mathrm{SL}_n$ but runs into complications with non-perfect rings. Again with Takashi Suzuki, we are working on representing this functor in a slightly modified category.