Quasicharacter Sheaves for Tori

David Roe Clifton Cunningham

Department of Mathematics University of Calgary/PIMS

Quebec-Vermont Number Theory Seminar

Outline

- Introduction
- Quasicharacter Sheaves
- Greenberg of Néron
- Applications and Further Work

Objective

- K a finite extension of \mathbb{Q}_p ,
- T an algebraic torus over K (e.g. \mathbb{G}_m),
- ℓ a prime different from p,
- X^* for a group X, notation for $Hom(X, \overline{\mathbb{Q}}_{\ell}^{\times})$.

Goal

Construct "geometric avatars" for characters in

$$T(K)^*$$
:

Greenberg of Néron

sheaves on some space functorially associated to **T**.

- Try to push characters forward along maps such as T → G;
- Deligne-Lusztig representations ⇒ character sheaves;
- Give a new perspective on class field theory.

Approach

• For commutative group schemes G, locally of finite type over the residue field k of K we define a category $\mathcal{QC}(G)$ of quasicharacter sheaves on G.

Greenberg of Néron

We show

Main Result

$$\mathcal{QC}(G)_{/iso}\cong G(k)^*$$
.

3 Given a torus T over K we construct a commutative group scheme \mathbb{T} over k with $T(K) \cong \mathbb{T}(k)$.

Local Systems

From now on, G will denote a smooth, commutative group scheme, locally of finite type over k with finitely generated geometric component group. We will write $m: G \times G \to G$ for multiplication.

Definition (Local System)

An ℓ -adic local system on G is a constructible sheaf of $\overline{\mathbb{Q}}_{\ell}$ -vector spaces on the étale site of G, locally constant on each connected component.

Quasicharacter Sheaves

Definition (Quasicharacter sheaf)

A quasicharacter sheaf on G is a triple $\mathcal{L} := (\bar{\mathcal{L}}, \mu, \phi)$, where

- lacktriangledown $ar{\mathcal{L}}$ is a rank-one local system on $ar{G}$,
- ② $\mu: \bar{m}^*\bar{\mathcal{L}} \to \bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}$ is an isomorphism of sheaves on $\bar{G} \times \bar{G}$, satisfying an associativity diagram.
- ③ $\phi: \mathsf{F}_G^* \bar{\mathcal{L}} \to \bar{\mathcal{L}}$ is an isomorphism of sheaves on \bar{G} compatible with μ .

A morphism of quasicharacter sheaves is a morphism of constructible ℓ -adic sheaves on \bar{G} commuting with μ and ϕ .

Tensor product makes $\mathcal{QC}(G)$ into a rigid monoidal category and $\mathcal{QC}(G)_{/iso}$ into a group.

Bounded Quasicharacter Sheaves

Definition (Bounded Quasicharacter Sheaf)

A bounded quasicharacter sheaf on G is a pair (\mathcal{L}_0, μ_0) , where

- \bigcirc \mathcal{L}_0 is a rank-one local system on G,
- $2 \mu_0 : m^* \mathcal{L}_0 \to \mathcal{L}_0 \boxtimes \mathcal{L}_0$ is an isomorphism of sheaves on $G \times G$, satisfying the same associativity diagram.

A morphism is a morphism of constructible sheaves on G commuting with μ_0 . Write $\mathcal{QC}_0(G)$ for this category.

- Base change defines a full and faithful functor $B_G: \mathcal{QC}_0(G) \to \mathcal{QC}(G),$
- B_G is an equivalence when G is connected.
- Under the isomorphism $\mathcal{QC}(G)_{/iso} \cong G(k)^*$, bounded quasicharacter sheaves correspond to bounded characters.

Discrete Isogenies

Definition (Discrete Isogeny)

A *discrete isogeny* is a finite, surjective, étale morphism of group schemes $f: H \to G$ so that $\operatorname{Gal}(\bar{k}/k)$ acts trivially on the kernel of f.

Write C(G) for the category whose objects are pairs (f, ψ) , where

- \bullet $f: H \rightarrow G$ is a discrete isogeny,
- ② $\psi: \ker f \to \operatorname{Aut}(V)$ is a representation on a $\overline{\mathbb{Q}}_{\ell}$ -vector space.

A morphism $(f, \psi) \rightarrow (f', \psi')$ is a pair (g, T), where

- \bigcirc $g: H' \rightarrow H$ is a morphism with $f' = f \circ g$,
- ② $T: V \to V'$ is a linear transformation, equivariant for ψ' and $\psi \circ g$.

Finite Quasicharacter Sheaves

Let $C_1(G)$ be the subcategory where V is one-dimensional.

Definition (Finite Quasicharacter Sheaf)

The category $\mathcal{QC}_f(G)$ of *finite quasicharacter sheaves* is the localization of $C_1(G)$ at morphisms where g is surjective and T is an isomorphism.

Write V_H for the constant sheaf V on H.

- Taking the ψ -isotypic component of f_*V_H defines a full and faithful functor $L_G: \mathcal{QC}_f(G) \to \mathcal{QC}_0(G)$.
- *L_G* is an equivalence when *G* is connected.
- Under the isomorphism $\mathcal{QC}(G)_{/iso} \cong G(k)^*$, finite quasicharacter sheaves correspond to characters with finite image.

Characters in the connected case

• Suppose \mathcal{L} is a quasicharacter sheaf on G. Define a character $t_{\mathcal{L}}$ of G(k) by

$$t_{\mathcal{L}}(\boldsymbol{g}) = \mathsf{Tr}(\phi_{\boldsymbol{\bar{g}}}, \bar{\mathcal{L}}_{\boldsymbol{\bar{g}}})$$

for $g \in G(k)$.

• Suppose χ is a character of G(k). Define a quasicharacter sheaf on G using the Lang isogeny $L(\bar{g}) = \bar{g}^{-1} \operatorname{Fr}_q(\bar{g})$,

$$1 \to G(k) \to G \xrightarrow{L} G \to 1$$

together with the character χ of G(k).

Theorem (Deligne, SGA 4.5)

The maps defined above are mutually inverse isomorphisms between quasicharacter sheaves on G and $G(k)^*$.

Trace of Frobenius

For any G, trace of Frobenius defines a map

$$QC(G)_{/iso} \rightarrow G(k)^*$$
.

Pullback then gives a diagram

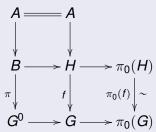
Extending quasicharacter sheaves

Theorem

Every quasicharacter sheaf on G° extends to a (finite) quasicharacter sheaf on G.

Proof.

We will fit any discrete isogeny $\pi: B \to G^{\circ}$ into



To build H, we first show that $H(\bar{k})$ exists as a $\mathbb{Z}[\mathcal{W}]$ -module.

Extending quasicharacter sheaves

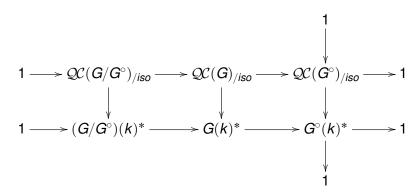
Proof.

On extension classes, this map is the first in

$$\mathsf{Ext}^1_{\mathbb{Z}[\mathcal{W}]}(G,A) \to \mathsf{Ext}^1_{\mathbb{Z}[\mathcal{W}]}(G^\circ,A) \to \mathsf{Ext}^2_{\mathbb{Z}[\mathcal{W}]}(G/G^\circ,A).$$

Since $\mathcal{W}\cong\mathbb{Z}$ has cohomological dimension 1, $\operatorname{Ext}^2_{\mathbb{Z}[\mathcal{W}]}(G/G^\circ,A)$ vanishes. So $\operatorname{Ext}^1_{\mathbb{Z}[\mathcal{W}]}(G,A)\to\operatorname{Ext}^1_{\mathbb{Z}[\mathcal{W}]}(G^\circ,A)$ is surjective. Thus the diagram exists at the level of \bar{k} -points, and we can transport the structure of a group scheme from B to H.

Trace of Frobenius Diagram



Quasicharacter Sheaves (G étale)

- The category of étale k-group schemes is equivalent to the category of groups with with Galois action through the functor $G \mapsto G(\bar{k})$.
- A quasicharacter sheaf on an étale group scheme G is a collection of 1-dimensional $\overline{\mathbb{Q}}_{\ell}$ -vectors spaces $\bar{\mathcal{L}}_{x}$ for $x \in G(\bar{k})$ together with $\phi_{x} : \bar{\mathcal{L}}_{F(x)} \xrightarrow{\sim} \bar{\mathcal{L}}_{x}$ and $\mu_{x,y} : \bar{\mathcal{L}}_{x} \otimes \bar{\mathcal{L}}_{y} \xrightarrow{\sim} \bar{\mathcal{L}}_{x+y}$.

Proposition

Suppose that G is an étale commutative group scheme and $G(\bar{k})$ is finitely generated. Then there is a canonical isomorphism

$$\mathcal{QC}(G)_{/iso} \cong H^1(\mathcal{W}, G(\bar{k})^*).$$

$$\mathcal{QC}(G)_{/iso} \cong H^1(\mathcal{W}_k, G(\bar{k})^*)$$

Greenberg of Néron

Proof.

A *global section* of \mathcal{L} is a function $s: G(\bar{k}) \to \coprod_{x \in G(\bar{k})} \bar{\mathcal{L}}_x$ with $s(x) \in \bar{\mathcal{L}}_x$ and

$$\mu_{x,y}(s(x+y)) = s(x) \otimes s(y).$$

Using a choice of global section, we define a cocycle $\tau_{\mathcal{L}}$ by

$$\phi_{\mathsf{X}}(\mathsf{s}(\mathsf{F}(\mathsf{X}))) = \tau_{\mathcal{L}}(\mathsf{F})(\mathsf{X})\mathsf{s}(\mathsf{X}),$$

where $\phi_X : \bar{\mathcal{L}}_{\mathsf{F}(X)} \to \bar{\mathcal{L}}_X$ is determined by \mathcal{L} . One then checks that everything is well-defined and independent of s.

A Galois cohomology result

Lemma

If X is an abelian group with an action of W, then

$$(X^*)_{\mathsf{F}} \to (X^{\mathsf{F}})^*$$

 $[f] \mapsto f|_{X^{\mathsf{F}}}$

is an isomorphism.

Proof.

Note that X^F is the kernel of $X \xrightarrow{F-1} X$; let Y be the image. We have

$$0 \to Y^* \to X^* \to (X^{\mathsf{F}})^* \to \mathsf{Ext}^1_{\mathcal{W}}(Y, \overline{\mathbb{Q}}_\ell^\times).$$

Since the Ext-group vanishes, we get an isomorphism between the cokernel of $Y^* \xrightarrow{F-1} X^*$ to $(X^F)^*$.

Trace of Frobenius for étale group schemes

Since \mathcal{W} is cyclic, $H^1(\mathcal{W}, G(\bar{k})^*) \cong (G(\bar{k})^*)_{\mathcal{W}}$. We thus see that trace of Frobenius is an isomorphism for étale group schemes. For general G, we use the snake lemma:

Corollary

If G is a commutative group scheme with finitely generated component group then trace of Frobenius gives an isomorphism

$$QC(G)_{/iso} \cong G(k)^*$$
.

The Néron model of a torus

R – ring of integers of K with uniformizer π

$$R_d - R/\pi^{d+1}R$$

T_R – The Néron model of T: a separated, smooth commutative group scheme over R, locally of finite type with the Néron mapping property.

$$\mathbf{T}_R(R) = \mathbf{T}(K)$$

In the \mathbb{G}_m case the Néron model is a union of copies of \mathbb{G}_m/R , glued along the generic fiber.

$$T_d - T_B \times_B R_d$$
.

The Greenberg functor

The Greenberg functor Gr takes a group scheme over an Artinian local ring A (locally of finite type) and produces a group scheme over the residue field k whose k points are canonically identified with the A-points of the original scheme. We set

$$\mathbf{\tau}_d = \mathsf{Gr}(\mathbf{T}_d)$$

and

$$\mathbf{\tau} = \lim_{\leftarrow} \mathbf{\tau}_d$$
.

 τ is a commutative group scheme over k with

$$\mathbf{T}(\mathbf{k}) = \mathbf{T}(\mathbf{K}).$$

Quasicharacter sheaves on T

We write $\mathcal{QC}(\mathbf{T})$ for the projective limit of the categories $\mathcal{QC}(\mathbf{T}_d)$.

Theorem

$$T(K)^* \cong \mathcal{QC}(\mathbf{T})_{/iso}$$

and this isomorphism preserves depth.

Transfer of character sheaves

Suppose T and T' are tori over local fields K and K'. We say that T and T' are N-congruent if there are isomorphisms

$$\alpha: \mathcal{O}_L/\pi_K^N \mathcal{O}_L \to \mathcal{O}L'/\pi_{K'}^N \mathcal{O}L',$$

$$\beta: \operatorname{Gal}(L/K) \to \operatorname{Gal}(L'/K'),$$

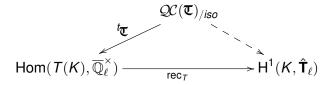
$$\phi: X^*(T) \to X^*(T'),$$

satisfying natural conditions. If T and T' are N-congruent then $\mathsf{Hom}_{< N}(T(K), \overline{\mathbb{Q}}_{\ell}^{\times}) \cong \mathsf{Hom}_{< N}(T'(K'), \overline{\mathbb{Q}}_{\ell}^{\times}).$

- Chai and Yu give an isomorphism of group schemes $\mathbf{T}_n \cong \mathbf{T}'_n$, for *n* depending on *N*.
- This isomorphism induces an equivalence of categories $\mathcal{OC}(\mathbf{T}_n) \to \mathcal{OC}(\mathbf{T}'_n)$.

Class Field Theory

We have constructed the diagram



We hope to be able to construct Langlands parameters directly from quasicharacter sheaves, which would give a different construction of the reciprocity map.

Non-commutative groups

If **G** is a connected reductive group over K, no Néron model. Instead, parahorics correspond to facets in the Bruhat-Tits building and give models for **G** over \mathcal{O}_K . After taking the Greenberg transform, we can glue the resulting k-schemes and try to build sheaves on the resulting space using some form of Lusztig induction from quasicharacter sheaves on a maximal torus. This work is still in progress.

Affine Grassmanians and Geometric Satake **Transforms**

When K has equal characteristic, one may put the structure of an ind-scheme over k on $\mathbf{G}(K)/\mathbf{G}(\mathcal{O}_K)$ and on $\mathbf{G}(K)/\mathbf{I}$, where \mathbf{I} is the Iwahori. The standard constructions rely on the fact that K is a k-algebra, and recover a decomposition into affine Schubert cells afterward. Clifton and I are working to create analogues of these spaces when K has mixed characteristic. Our first test case will be trying to geometrize the Satake transform, but we're not there yet.

Thank you.