Greenberg of Néron

Geometrizing Characters of Tori

David Roe Clifton Cunningham

Department of Mathematics University of Calgary/PIMS

Pacific Rim Mathematical Association Congress 2013

Introduction

Character Sheaves

Greenberg of Néron

Character Sheaves

Greenberg of Néron

Objective

- K a finite extension of \mathbb{Q}_p ,
- **T** an algebraic torus over K (e.g. \mathbb{G}_m),
- ℓ a prime different from p,
- X^* for a group X, notation for Hom $(X, \overline{\mathbb{Q}}_{\ell}^{\times})$.

Goal

Construct "geometric avatars" for characters in

 $\mathbf{T}(\mathbf{\textit{K}})^{*}$:

sheaves on some space functorially associated to T.

- Try to push characters forward along maps such as $\mathbf{T} \hookrightarrow \mathbf{G}$;
- Deligne-Lusztig representations → character sheaves;
- Give a new perspective on class field theory.

- For commutative group schemes G, locally of finite type over the residue field k of K we define a category CS(G) of character sheaves on G.
- 2 We show

Main Result

 $\mathcal{CS}(G)_{/\text{iso}}\cong G(k)^*.$

Siven a torus *T* over *K* we construct a commutative group scheme \mathfrak{T} over *k* with $T(K) \cong \mathfrak{T}(k)$.

Character Sheaves (G connected)

Two definitions of character sheaves for a connected (commutative) algebraic groups G over k:

Definition

- An *ℓ*-adic local system is a constructible sheaf of Q_ℓ-vector spaces on the étale site of G that becomes trivial after pulling back along a finite étale map H → G.
- A geometric character sheaf on G is an ℓ-adic local system
 E° on G equipped with an isomorphism m*E° ≅ E° ⊠ E°,
 where m: G × G → G is multiplication.

Greenberg of Néron

Character Sheaves 2 (G connected)

Definition

Alternatively, a character sheaf on G is a short exact sequence

$$1 \to A \to H \to G \to 1$$

together with a character $A \to \overline{\mathbb{Q}}_{\ell}^{\times}$, so that

- $\bigcirc H \to G \text{ is a finite étale cover,}$
- 2 Fr_q acts trivially on A.

Rationality of character sheaves

Base change to \overline{k} yields a pair $(\overline{\mathcal{E}}^{\circ}, \operatorname{Fr}_{\mathcal{E}^{\circ}})$, where $\overline{\mathcal{E}}^{\circ}$ is a character sheaf on \overline{G} and $\operatorname{Fr}_{\mathcal{E}^{\circ}} : \operatorname{Fr}_{a}^{*}\overline{\mathcal{E}}^{\circ} \xrightarrow{\sim} \overline{\mathcal{E}}^{\circ}$.

Proposition

In general this functor is faithful; when G is connected, base change defines an equivalence of categories

 $\left\{\begin{array}{c} \text{character sheaves} \\ \text{on } G \end{array}\right\} \rightarrow \left\{\text{pairs } (\overline{\mathcal{E}}^{\circ}, \mathsf{Fr}_{\mathcal{E}^{\circ}})\right\}$

Greenberg of Néron

Characters in the connected case

Suppose (*ε*[°], Fr_{ε°}) is a character sheaf on *G*. Define a character χ_ε[°] of *G*(*k*) by

$$\chi_{\mathcal{E}}^{\circ}(\mathbf{X}) = \mathsf{Tr}(\mathsf{Fr}_{\mathcal{E}^{\circ}}, \overline{\mathcal{E}}_{\mathbf{X}}^{\circ})$$

for $x \in G(k)$.

 Suppose χ is a character of G(k). Define a character sheaf on G using the Lang isogeny L(x) = x⁻¹ Fr_q(x),

$$1 \to G(k) \to G \xrightarrow{L} G \to 1,$$

together with the character χ of G(k).

Theorem (Deligne, SGA 4.5)

The maps defined above are mutually inverse isomorphisms between character sheaves on G and $G(k)^*$.

Greenberg of Néron

Character Sheaves (G non-connected)

Definition

A character sheaf on *G* is a triple $\mathcal{E} = (\bar{\mathcal{E}}, \mu, F)$, where

• $\overline{\mathcal{E}}$ is a constructible ℓ -adic sheaf on \overline{G} , locally constant of rank 1 on each connected component;

2
$$\mu: m^* \overline{\mathcal{E}} \to \overline{\mathcal{E}} \boxtimes \overline{\mathcal{E}}$$
 is an isomorphism of sheaves on $\overline{\mathcal{G}} \times \overline{\mathcal{G}}$;

③
$$F : \operatorname{Fr}_{G}^{*} \overline{\mathcal{E}} \to \overline{\mathcal{E}}$$
 is an isomorphism of sheaves on \overline{G} .

 μ and *F* are required to satisfy various compatibility diagrams. We write CS(G) for the category of character sheaves on *G*.

Greenberg of Néron

Trace of Frobenius

For any G, trace of Frobenius defines a map

$$\mathcal{CS}(G)_{iso} \to G(k)^*.$$

Pullback then gives a diagram

Character Sheaves 2 (G non-connected)

In the non-connected case, not every character sheaf can be realized in the second manner.

Definition

A bounded character sheaf on G is a short exact sequence

$$1 \rightarrow A \rightarrow H \rightarrow G \rightarrow 1$$

together with a character $A \to \overline{\mathbb{Q}}_{\ell}^{\times}$, so that

- H → G is a finite étale cover, inducing an isomorphism on component groups
- 2 Fr_q acts trivially on A.

Greenberg of Néron

Extending character sheaves

Theorem

Every character sheaf on G° extends to a (bounded) character sheaf on G.

Proof.

Suppose that $1 \to A \to H \to G \to 1$ and $\chi: A \to \overline{\mathbb{Q}}_{\ell}^{\times}$ defines a bounded character sheaf. Suppose that $\operatorname{Gal}(\overline{k}/k)$ acts on H and G through the finite quotient Γ . Restriction to $H^{\circ} \to G^{\circ}$ then defines a character sheaf on G° .

Extending character sheaves

Proof.

On extension classes, this map is the first in

$$\mathsf{Ext}^1_{\mathbb{Z}[\Gamma]}(G,A) \to \mathsf{Ext}^1_{\mathbb{Z}[\Gamma]}(G^{\circ},A) \to \mathsf{Ext}^2_{\mathbb{Z}[\Gamma]}(G/G^{\circ},A).$$

Since $\mathbb{Z}[\Gamma]$ is a product of Dedekind domains it has cohomological dimension 1 and thus $\operatorname{Ext}^2_{\mathbb{Z}[\Gamma]}(G/G^\circ, A)$ vanishes. So $\operatorname{Ext}^1_{\mathbb{Z}[\Gamma]}(G, A) \to \operatorname{Ext}^1_{\mathbb{Z}[\Gamma]}(G^\circ, A)$ is surjective.

Character Sheaves (G étale)

- The category of étale group schemes is equivalent to the category of groups with with Galois action.
- A character sheaf on an étale group scheme G is a collection of 1-dimensional Q
 _ℓ-vectors spaces E_x for x ∈ G(k̄) together with F_x : E_{Fr(x)} → E_x and μ_{x,y} : E_x ⊗ E_y → E_{x+y}.

Proposition

Suppose that G is an étale commutative group scheme and $G(\bar{k})$ is finitely generated. Then there is a canonical isomorphism

 $\mathcal{CS}(\mathbf{G})_{iso} \cong \mathrm{H}^{1}(W_{k}, \mathbf{G}(\bar{k})^{*}).$

Introduction

Character Sheaves

Greenberg of Néron

Trace of Frobenius Diagram

A Galois cohomology result

Theorem

If X is a finitely generated abelian group with a continuous $\operatorname{Gal}(\bar{k}/k)$ action then

$$\begin{aligned} \mathsf{H}^{1}(k, X^{*}) &\xrightarrow{\rho} \mathsf{H}^{0}(k, X)^{*} \\ \rho([z])(x) &= z(\mathsf{Fr})(x) \end{aligned}$$

is an isomorphism

Corollary

If G is a commutative group scheme with finitely generated component group then trace of Frobenius gives an isomorphism

$$\mathcal{CS}(G)_{iso} \cong G(k)^*.$$

Surjectivity of ρ

Proof.

Since $\overline{\mathbb{Q}}_{\ell}^{\times}$ is divisible it is injective as a \mathbb{Z} -module and thus $\text{Ext}_{\mathbb{Z}}^{1}(X/X^{\text{Fr}}, \overline{\mathbb{Q}}_{\ell}^{\times}) = 0$ so restriction

$$X^* \to (X^{\mathrm{Fr}})^*$$

is surjective. Given a character on X^{Fr} we define a cocycle by setting a value on Frobenius and extending via the cocycle relation.

Injectivity of ρ

Proof.

Suppose [z] is in the kernel of ρ and set $\phi = z(Fr)$. By assumption $\phi(x) = 1$ for $x \in X^{Fr}$; it suffices to construct $\psi \in X^*$ with $\phi(x) = \frac{\psi(Fr(x))}{\psi(x)}$ for all $x \in X$. Reduce to the case that $X = \mathbb{Z}[\zeta]/P^s$ as a $\mathbb{Z}[\zeta]$ -module:

- $\mathbb{Z}[\Gamma]$ is a product of Dedekind domains $\mathbb{Z}[\zeta]$,
- Modules over products of Dedekind domains decompose as direct sums of cyclic modules.

Injectivity of ρ

Proof.

Now define ψ on generators ζ^i by

$$\psi(\zeta^i) = \alpha \prod_{j=0}^{i-1} \phi(\zeta^j).$$

Now use properties of cyclotomic polynomials to find an α so that ψ is well-defined and has the property

$$\phi(\mathbf{x}) = \frac{\psi(\zeta \cdot \mathbf{x})}{\psi(\mathbf{x})}.$$

The Néron model of a torus

- **R** ring of integers of K with uniformizer π
- $R_d R/\pi^{d+1}R$
- T_R The Néron model of T: a separated, smooth commutative group scheme over R, locally of finite type with the Néron mapping property.

$$\mathbf{T}_{\boldsymbol{R}}(\boldsymbol{R}) = \mathbf{T}(\boldsymbol{K})$$

In the \mathbb{G}_m case the Néron model is a union of copies of \mathbb{G}_m/R , glued along the generic fiber.

 $\mathbf{T}_d - \mathbf{T}_R \times_R R_d.$

The Greenberg functor

The Greenberg functor Gr takes a group scheme over an Artinian local ring A (locally of finite type) and produces a group scheme over the residue field k whose k points are canonically identified with the A-points of the original scheme. We set

$$\mathbf{t}_d = \operatorname{Gr}(\mathbf{T}_d)$$

and

$$\mathfrak{T} = \lim_{\leftarrow} \mathfrak{T}_d.$$

 $\mathbf{\tau}$ is a commutative group scheme over k with

$$\mathbf{T}(\mathbf{k}) = \mathbf{T}(\mathbf{K}).$$

Introduction

Character Sheaves

Greenberg of Néron

Character sheaves on ${f t}$

We write $CS(\mathbf{T})$ for the projective limit of the categories $CS(\mathbf{T}_d)$.

Theorem

$$T(K)^* \cong \mathcal{CS}(\mathbf{T})_{/iso}$$

and this isomorphism preserves depth.

Thank you.