Greenberg of Néron

Character Sheaves

Applications

Geometrizing Characters of Tori

David Roe Clifton Cunningham

Department of Mathematics University of Calgary/PIMS

UCSC Algebra/Number Theory Seminar

Greenberg of Néron

Character Sheaves

Applications

Greenberg of Néron

Character Sheaves

Greenberg of Néron

Character Sheaves

Applications

Objective

- K a finite extension of \mathbb{Q}_p ,
- **T** an algebraic torus over K (e.g. \mathbb{G}_m),
- ℓ a prime different from *p*.

Goal

Construct "geometric avatars" for characters in

 $\text{Hom}(\textbf{T}(\textbf{\textit{K}}),\overline{\mathbb{Q}}_{\ell}^{\times})$:

sheaves on some space functorially associated to T.

- Try to push characters forward along maps such as $\textbf{T} \hookrightarrow \textbf{G};$
- Deligne-Lusztig representations ⇒ character sheaves;
- Give a new perspective on class field theory.

Greenberg of Néron

Character Sheaves

Applications

Approach

- Associate to **T** a projective system \mathfrak{T} of commutative group schemes \mathfrak{T}_d over the residue field *k* of *K*.
- 2 Define *character sheaves* on \mathbf{T} following Deligne.
- Solution Map from character sheaves on \mathfrak{T} to characters on T(K).

Character Sheaves

Applications

The Néron model of \mathbb{G}_m

- **R** ring of integers of K with uniformizer π
- $R_d R/\pi^{d+1}R$
- T_R The Néron model of T: a separated, smooth commutative group scheme over R, locally of finite type with the Néron mapping property.

$$\mathbf{T}_{\boldsymbol{R}}(\boldsymbol{R}) = \mathbf{T}(\boldsymbol{K})$$

In the \mathbb{G}_m case the Néron model is a union of copies of \mathbb{G}_m/R , glued along the generic fiber.

 $\mathbf{T}_d - \mathbf{T}_R \times_R R_d.$

- The geometric component group of \mathbf{T}_R is $X_*(\mathbf{T})_{\mathcal{I}_K}$, where \mathcal{I}_K is the inertia group of K.
- π₀(**T**_R) is a constant group scheme after base change to the maximal unramified extension of *K*, but Frobenius may act nontrivially.
- The sequence of commutative *R*-group schemes

$$\mathbf{1} \to \mathbf{T}_R^\circ \to \mathbf{T}_R \to \pi_0(\mathbf{T}_R) \to \mathbf{1}$$

splits if **T** is unramified.

Greenberg of Néron

Character Sheaves

Applications

The Greenberg functor

The Greenberg functor Gr takes a group scheme over an Artinian local ring A (locally of finite type) and produces a group scheme over the residue field k whose k points are canonically identified with the A-points of the original scheme. We set

$$\mathbf{v}_d = \operatorname{Gr}(\mathbf{T}_d)$$

and

$$\mathfrak{T} = \lim_{\leftarrow} \mathfrak{T}_d.$$

 τ is a commutative group scheme over *k* with

$$\mathbf{T}(\mathbf{k}) = \mathbf{T}(\mathbf{K}).$$

Greenberg of Néron

Character Sheaves

Applications

Character Sheaves

Two definitions of character sheaves for a connected (commutative) algebraic groups G over k.

Definition

- An *ℓ*-adic local system is a constructible sheaf of Q_ℓ-vector spaces on the étale site of G that becomes trivial after pulling back along a finite étale map H → G.
- A character sheaf on G is an ℓ-adic local system E° on G equipped with an isomorphism m*E° ≅ E° ⊠ E°, where m: G × G → G is multiplication.

Greenberg of Néron

Character Sheaves

Applications

Character Sheaves (definition 2)

Definition

Alternatively, a character sheaf on G is a short exact sequence

$$1 \rightarrow A \rightarrow H \rightarrow G \rightarrow 1$$

together with a character $A \to \overline{\mathbb{Q}}_{\ell}^{\times}$, so that

- $H \rightarrow G$ is a finite étale cover,
- 2 Fr_q acts trivially on A.

Remark

One can replace the character of A with a higher dimensional representation. This adds little for tori, but may prove useful when considering other algebraic groups.

Frobenius

Greenberg of Néron

Character Sheaves

Applications

Base change to \overline{k} yields a pair $(\overline{\mathcal{E}}^{\circ}, \operatorname{Fr}_{\mathcal{E}^{\circ}})$, where $\overline{\mathcal{E}}^{\circ}$ is a character sheaf on \overline{G} and $\operatorname{Fr}_{\mathcal{E}^{\circ}} : \operatorname{Fr}_{a}^{*}\overline{\mathcal{E}}^{\circ} \xrightarrow{\sim} \overline{\mathcal{E}}^{\circ}$.

Proposition

When $G = \mathfrak{T}_d^\circ$, base change defines an equivalence of categories

$$\left\{\begin{array}{c} \text{character sheaves} \\ \text{on } \mathbf{\mathfrak{C}}_{d}^{\circ} \end{array}\right\} \rightarrow \left\{\text{pairs } (\overline{\mathcal{E}}^{\circ}, \mathsf{Fr}_{\mathcal{E}^{\circ}})\right\}$$

Greenberg of Néron

Character Sheaves

Applications

Characters of the *k*-rational points

Suppose (*ε*[°], Fr_{ε°}) is a character sheaf on *G*. Define a character χ_ε[°] of *G*(*k*) by

$$\chi^{\circ}_{\mathcal{E}}(\mathbf{x}) = \mathsf{Tr}(\mathsf{Fr}_{\mathcal{E}^{\circ}}, \overline{\mathcal{E}}^{\circ}_{\mathbf{x}})$$

for $x \in G(k)$.

 Suppose χ is a character of G(k). Define a character sheaf on G using the Lang isogeny L(x) = x⁻¹ Fr_q(x),

$$1 \to G(k) \to G \xrightarrow{L} G \to 1,$$

together with the character χ of G(k).

Theorem (Deligne, SGA 4.5)

The maps defined above are mutually inverse isomorphisms between character sheaves on G and $\text{Hom}(G(k), \overline{\mathbb{Q}}_{\ell}^{\times})$.

Greenberg of Néron

Character Sheaves

Applications

Character Sheaves on $\mathbf{\tau}_d$

Definition

A character sheaf \mathcal{E} on \mathbf{T}_d is a character sheaf

$$\mathcal{E}^{\circ} = (\overline{\mathcal{E}}^{\circ}, \mathsf{Fr}_{\mathcal{E}^{\circ}})$$

on ${\mathfrak T}_d^\circ$ plus an action of

$$X_*(\mathbf{T})_{\mathcal{I}_K} \rtimes W_k$$

on $\overline{\mathcal{E}}^{\circ}$, compatible with $Fr_{\mathcal{E}^{\circ}}$.

Greenberg of Néron

Character Sheaves

Applications

Characters of $\mathbf{T}_d(\mathbf{k})$

Suppose now that T is unramified so that

$$1 \to \mathbf{T}_R^{\circ} \to \mathbf{T}_R \to \pi_0(\mathbf{T}_R) \to 1$$

splits. A splitting defines an extension of $\chi_{\mathcal{E}}^{\circ}$ from $\mathbf{T}_{d}^{\circ}(k)$ to

$$\mathbf{T}_{d}(k) = \mathbf{T}(K)/\mathbf{T}_{R}(R)_{d+}.$$

From the action of $X_*(\mathbf{T})_{\mathcal{I}_K}$ on \mathcal{E}° one can produce a character of

$$(X_*(\mathbf{T})_{\mathcal{I}_K})^{W_k} = \mathbf{T}(K)/\mathbf{T}_R^{\circ}(R).$$

Thus we may associate to \mathcal{E} a depth *d* character $\chi_{\mathcal{E}}$ of **T**(\mathcal{K}): the product of these two.

Greenberg of Néron

Character Sheaves

Applications

Characters of $\pi_0(\mathbf{T}_d)$

$$\pi_0(\mathbf{T}_d) = \coprod_{a \in X_*(\mathbf{T})_{\mathcal{I}_K}} \operatorname{Spec}(\overline{k}) + \operatorname{Gal}(\overline{k}/k) \operatorname{-action}.$$

Given a character sheaf \mathcal{E} on \mathfrak{T}_d , we construct a Weil sheaf \mathcal{E}_0 on $\pi_0(\mathfrak{T}_d)$ by setting the stalk at any geometric point to be the stalk of $\overline{\mathcal{E}}^\circ$ at the identity, and defining an action of Frobenius via the action of $X_*(\mathbf{T})_{\mathcal{I}_K} \rtimes W_k$ given with \mathcal{E} . Trace of Frobenius then defines a character of

$$\pi_{\mathbf{0}}(\mathbf{T}_{d})(\mathbf{k}) = \mathbf{X}_{*}(\mathbf{T})_{\mathcal{I}_{K}}^{\mathbf{W}_{k}}.$$

Greenberg of Néron

Character Sheaves

Applications

Invisible Character Sheaves

The orbits of W_k on $\pi_0(\mathbf{T}_d)(\overline{k})$ are given by $(X_*(\mathbf{T})_{\mathcal{I}_K})_{W_k}$ and character sheaves on $\pi_0(\mathbf{T}_d)$ correspond to characters of $(X_*(\mathbf{T})_{\mathcal{I}_K})_{W_k}$. The passage to characters is then given by pullback along the composition

$$X_*(\mathbf{T})_{\mathcal{I}_{\mathcal{K}}}^{W_k} \hookrightarrow X_*(\mathbf{T})_{\mathcal{I}_{\mathcal{K}}} \twoheadrightarrow (X_*(\mathbf{T})_{\mathcal{I}_{\mathcal{K}}})_{W_k}.$$

Definition

We say that a character sheaf \mathcal{E}_0 on $\pi_0(\mathbf{t}_d)$ is *invisible* if the corresponding character is trivial.

Character Sheaves

Applications

Existence of Invisible Character Sheaves

Let *Y* be the cokernel of the composition

$$(X_*(\mathsf{T})_{\mathcal{I}_{\mathcal{K}}})^{W_k} \hookrightarrow X_*(\mathsf{T})_{\mathcal{I}_{\mathcal{K}}} \twoheadrightarrow (X_*(\mathsf{T})_{\mathcal{I}_{\mathcal{K}}})_{W_k}.$$

A character sheaf on $\pi_0(\mathbf{t}_d)$ is invisible if and only if it factors through *Y*.

Remark

Y is trivial if **T** is split or totally ramified. But $Y \cong \mathbb{Z}/2\mathbb{Z}$ when **T** is an unramified U₁ for example.

Greenberg of Néron

Character Sheaves

Applications

Characters of $\mathbf{T}(\mathbf{K})$

We define a character sheaf on \mathbf{T} as the pullback of a character sheaf on \mathbf{T}_d under the projection $\mathbf{T} \to \mathbf{T}_d$ for some *d*. A character of $\mathbf{T}(K)$ is *smooth* if it has depth *d* for some *d*: it factors through the quotient $\mathbf{T}(K)/\mathbf{T}(K)_{d+}$.

Theorem

The map

 $\{\text{character sheaves on } \mathbf{t}\} \to \operatorname{Hom}_{\operatorname{sm}}(\mathbf{T}(K), \overline{\mathbb{Q}}_{\ell}^{\times})$

is surjective with fibers parameterized by $Hom(Y, \overline{\mathbb{Q}}_{\ell}^{\times})$.

Greenberg of Néron

Character Sheaves

Applications

Local class field theory

Suppose that L/K is a totally ramified abelian extension of local fields and we're given a character of Gal(L/K). The Artin reciprocity map gives a character of K^{\times} vanishing on $\text{Nm}_{L/K}(L^{\times})$. We'd like to give a different description of this map, passing through character sheaves. Let $\mathbf{T} = \mathbb{G}_m$ and $\boldsymbol{\tau}$ the Greenberg transform of \mathbf{T}_R .

Greenberg of Néron

Character Sheaves

Applications

An Isogeny

- U_K the connected Néron model of \mathbb{G}_m .
- U_L the connected Néron model of $\operatorname{Res}_{L/K} \mathbb{G}_m$.
 - H the kernel of $\operatorname{Nm}_{L/K}$: $U_L \to U_K$.
- H_0 the subgroup of H generated by $\frac{\sigma(u)}{u}$ for $\sigma \in \text{Gal}(L/K)$ and $u \in U_L$.

Greenberg of Néron

Character Sheaves

Applications

A Character of \mathcal{O}_{K}^{\times}

The Greenberg transform is exact on commutative algebraic groups, so we get a finite étale cover of \mathfrak{T}° . Write \mathfrak{T}_{L}° for the Greenberg transform of U_{L}/H_{0} , and note that $H/H_{0} \cong \operatorname{Gal}(L/K)$. Then the sequence

$$1 \to \operatorname{Gal}(L/K) \to \mathbf{T}_L^\circ \to \mathbf{T}^\circ \to \mathbf{1},$$

together with a character of Gal(L/K), yields a character sheaf on \mathfrak{T}° . From this character sheaf, we can recover a character of \mathcal{O}_{K}^{\times} .

Character Sheaves

Local Langlands

- G connected quasi-split reductive group over K
- E splitting field of **G**
- $\hat{\mathbf{G}}$ dual group over $\overline{\mathbb{Q}}_{\ell}$
- ${}^{L}\mathbf{G} \hat{\mathbf{G}} \rtimes \operatorname{Gal}(E/K)$
 - φ a tame discrete Langlands parameter $W_K \rightarrow {}^L \mathbf{G}$

A construction of DeBacker and Reeder produces from φ an unramified anisotropic torus **T** in **G** and a depth 0 character χ of **T**(*K*). They then describe supercuspidal representations of **G**(*K*) as compact inductions of Deligne-Lusztig representations determined by **T** and χ . Greenberg of Néron

Character Sheaves

Applications

Geometrizing Local Langlands

In contrast to the Néron model of **T**, there's no canonical integral model of **G**. Instead there are many models, parameterized by the Bruhat-Tits building of **G**. We hope to obtain "representation sheaves" on the Greenberg transforms of these models from character sheaves on \mathbf{T} by an analogue of Lusztig induction. Ideally, this process would allow

- the generalization of DeBacker and Reeder's methods beyond the depth 0 case,
- better understanding of the functoriality of the local Langlands correspondence,
- new descriptions of L-packets.

Clifton and I are currently pursuing these questions.

Greenberg of Néron

Character Sheaves

Applications

Questions

Is

$$\mathbf{1} \to \mathbf{T}_R^\circ \to \mathbf{T}_R \to \pi_0(\mathbf{T}_R) \to \mathbf{1}$$

split for ramified tori? Is there a natural description of the splittings?

• Do you have questions for me?