Geometrizing Quasi-characters of Tori

David Roe
Clifton Cunningham

Department of Mathematics
University of Calgary/PIMS

Joint Mathematics Meetings: 2013
Outline

1. Introduction

2. Greenberg of Néron

3. Character Sheaves
Objective

- K – a finite extension of \mathbb{Q}_p,
- \mathbf{T} – an algebraic torus over K (e.g. \mathbb{G}_m),
- ℓ – a prime different from p.

Goal

Construct “geometric avatars” for (quasi)-characters in $\text{Hom}(\mathbf{T}(K), \overline{\mathbb{Q}}_\ell)$:

sheaves on some space functorially associated to \mathbf{T}.

- Try to push characters forward along maps such as $\mathbf{T} \hookrightarrow \mathbf{G}$;
- Deligne-Lusztig representations \mapsto character sheaves;
- Give a new perspective on class field theory.
Approach

1. Associate to \mathcal{T} a projective system \mathcal{T} of commutative group schemes \mathcal{T}_d over the residue field k of K.
2. Define *character sheaves* on \mathcal{T} following Deligne.
3. Map from character sheaves on \mathcal{T} to characters on $T(K)$.
The Néron model of \mathbb{G}_m

R – ring of integers of K with uniformizer π

$R_d = R/\pi^{d+1} R$

T_R – The Néron model of T: a separated, smooth commutative group scheme over R, locally of finite type with the Néron mapping property.

$$T_R(R) = T(K)$$

In the \mathbb{G}_m case the Néron model is a union of copies of \mathbb{G}_m/R, glued along the generic fiber.

$T_d = T_R \times_R R_d$.
Components

- The geometric component group of T_R is $X_*(T)_{I_K}$, where I_K is the inertia group of K.
- $\pi_0(T_R)$ is a constant group scheme after base change to the maximal unramified extension of K, but Frobenius may act nontrivially.
- The sequence of commutative R-group schemes

$$1 \to T_R \to T \to \pi_0(T_R) \to 1$$

splits if T is unramified.
The Greenberg functor

The Greenberg functor Gr takes a group scheme over an Artinian local ring A (locally of finite type) and produces a group scheme over the residue field k whose k points are canonically identified with the A-points of the original scheme. We set

$$\mathcal{T}_d = \text{Gr}(\mathcal{T}_d)$$

and

$$\mathcal{T} = \lim \mathcal{T}_d.$$

\mathcal{T} is a commutative group scheme over k with

$$\mathcal{T}(k) = \mathcal{T}(K).$$
Character Sheaves on \mathcal{T}°_d

Definition

A *character sheaf* on \mathcal{T}°_d is an ℓ-adic local system \mathcal{E}° on \mathcal{T}°_d so that $m^* \mathcal{E}^\circ \cong \mathcal{E}^\circ \boxtimes \mathcal{E}$, where $m: \mathcal{T}^\circ_d \times \mathcal{T}^\circ_d \to \mathcal{T}^\circ_d$ is multiplication.

Alternatively, a character sheaf on \mathcal{T}°_d is a short exact sequence

$$1 \to A \to H \to \mathcal{T}^\circ_d \to 1$$

together with a character $A \to \overline{\mathbb{Q}}\ell^\times$, so that

1. $H \to \mathcal{T}^\circ_d$ is a finite étale cover,
2. Fr_q acts trivially on A.

Proposition

Base change to $\overline{\mathcal{T}}^\circ_d$ defines an equivalence of categories

$$\mathcal{E}^\circ \mapsto (\overline{\mathcal{E}}^\circ, \text{Fr}_{\mathcal{E}^\circ})$$
Characters of $\mathfrak{T}_d^\circ(k)$

Let $x \in \mathfrak{T}_d(k)$ and \tilde{E}_x° be the stalk of \tilde{E}° at x. Define a character $\chi_{\tilde{E}}^\circ$ of $\mathfrak{T}_d^\circ(k)$ by

$$\chi_{\tilde{E}}^\circ(x) = \text{Tr}(\text{Fr}_{E^\circ}, \tilde{E}_x^\circ).$$

Theorem (Deligne, SGA 4.5)

The map

$$\{\text{characters sheaves on } \mathfrak{T}_d^\circ\} \rightarrow \text{Hom}(\mathfrak{T}_d^\circ(k), \bar{\mathbb{Q}}_\ell^\times)$$

$$\mathcal{E}^\circ \mapsto \chi_{\mathcal{E}}^\circ$$

is an isomorphism.

Since $\mathfrak{T}_d^\circ(k) = \mathfrak{T}_d^\circ(R)$, this theorem gives a geometrization of depth d characters of \mathfrak{T}_R°.
Character Sheaves on \mathcal{T}_d

Definition

A character sheaf \mathcal{E} on \mathcal{T}_d is a character sheaf \mathcal{E}° on \mathcal{T}_d° plus an action of $\mathcal{X}_*(\mathcal{T})\mathcal{I}_K \times \mathcal{W}_k$ on \mathcal{E}° compatible with $\text{Fr}\mathcal{E}^\circ$.
Characters of $\mathfrak{T}_d(k)$

Suppose now that T is unramified so that

$$1 \to T_R^0 \to T_R \to \pi_0(T_R) \to 1$$

splits. A splitting defines an extension of $\chi_{\mathcal{E}}^\circ$ to

$$\mathfrak{T}_d(k) = T(K)/T_R(R)_{d+}.$$

From the action of $X_*(T)_{I_K}$ on \mathcal{E}° one can produce a character of

$$(X_*(T)_{I_K})^{W_k} = T(K)/T_R^\circ(R).$$

Thus we may associate to \mathcal{E} a depth d character $\chi_{\mathcal{E}}$ of $T(K)$: the product of these two.
We define a character sheaf on \mathcal{T} as the pullback of a character sheaf on \mathcal{T}_d under the projection $\mathcal{T} \to \mathcal{T}_d$ for some d. A character of $\mathbf{T}(K)$ is *admissible* if it has depth d for some d: factors through the quotient $\mathbf{T}(K)/\mathbf{T}(K)_{d^+}$.

Theorem

The map

$$\{\text{character sheaves on } \mathcal{T}\} \to \text{Hom}(\mathbf{T}(K), \bar{\mathbb{Q}}_\ell^\times)$$

defined above is surjective
Extra Character sheaves

Let Y be the cokernel of the composition

$$(X_*(T)_{I_K})^{W_k} \hookrightarrow X_*(T)_{I_K} \twoheadrightarrow (X_*(T)_{I_K})^{W_k}$$

Theorem

The map

$$\{\text{character sheaves on } \mathcal{T}\} \rightarrow \text{Hom}(T(K), \overline{\mathbb{Q}}_\ell)$$

is surjective with fibers parameterized by $\text{Hom}(Y, \overline{\mathbb{Q}}_\ell)$.
Questions

• Is

\[1 \rightarrow T_R^\circ \rightarrow T_R \rightarrow \pi_0(T_R) \rightarrow 1 \]

split for ramified tori?

• Is there some category containing all Néron models of tori on which the Greenberg functor is exact?