The ABC Conjecture

David Roe

Department of Mathematics University of Calgary/PIMS

University of Calgary: Colloquium

イロン イボン イヨン イヨン

3

Hodge-Arakelov Theory/Inter-universal Teichmüller Theory

・ロト ・聞 ト ・ ヨト ・ ヨトー

ъ

Integer Powers

Goal

Understand additive relationships between integer powers.

For example, we might ask

Question

Let m, n, k be positive integers and find all solutions to

$$y^m = x^n + k$$

Question

Fix integers A, B, C. Find all solutions to

$$Ax^r + By^s = Cz^t$$
.

David Roe The ABC Conjecture

ヘロト 人間 とくほ とくほう

ABC Triples

Question

Find relationships of the form

$$A + B = C$$

where A, B and C contain large powers.

$$3^{2} + 4^{2} = 5^{2}$$

$$7^{2} + 2^{6} \cdot 3^{2} = 5^{4}$$

$$3 + 5^{3} = 2^{7}$$

$$1 + 2 \cdot 3^{7} = 5^{4} \cdot 7$$

$$11^{2} + 3^{2} \cdot 5^{6} \cdot 7^{3} = 2^{21} \cdot 23$$

$$x^{n} + x^{n} = z^{n}$$
The ABC Conjecture

Interesting Triples

Idea

We can measure how interesting such a relationship is by comparing the **size** of the numbers to the **product of the primes** dividing them.

	radical	size
$3^2 + 4^2 = 5^2$	30	25
$7^2 + 24^2 = 25^2$	210	625
$3 + 5^3 = 2^7$	30	128
$1+2\cdot 3^7=5^4\cdot 7$	210	4375
$11^2 + 3^2 \cdot 5^6 \cdot 7^3 = 2^{21} \cdot 23$	53130	48234496
$x^n + y^n = z^n$	$\leq xyz$	z ⁿ

イロト イポト イヨト イヨト

ъ

The ABC Conjecture

Definition

An abc-triple is a triple of relatively prime positive integers with

a + b = c and rad(abc) < c.

The quality of an abc-triple is

$$q(a, b, c) = \frac{\log(c)}{\log(\operatorname{rad}(abc))}.$$

ABC Conjecture (Masser (1985), Oesterlé (1988))

Suppose $\epsilon > 0$. Then there are finitely many abc-triples with quality greater than $1 + \epsilon$.

ヘロト ヘアト ヘビト ヘビト

3

Highest quality abc-triples

а	b	C	quality
2	3 ¹⁰ · 109	23 ⁵	1.62991
11 ²	$3^2 \cdot 5^6 \cdot 7^3$	2 ²¹ · 23	1.62599
19 · 1307	$7\cdot 29^2\cdot 31^8$	$2^8\cdot 3^{22}\cdot 5^4$	1.62349
283	$5^{11} \cdot 13^2$	$2^8 \cdot 3^8 \cdot 17^3$	1.58076
1	$2 \cdot 3^7$	$5^4 \cdot 7$	1.56789
7 ³	3 ¹⁰	2 ¹¹ · 29	1.54708
$7^2 \cdot 41^2 \cdot 311^3$	$11^{16} \cdot 13^2 \cdot 79$	$2 \cdot 3^3 \cdot 5^{23} \cdot 953$	1.54443
5 ³	$2^9 \cdot 3^{17} \cdot 13^2$	$11^5 \cdot 17 \cdot 31^3 \cdot 137$	1.53671
13 · 19 ⁶	2 ³⁰ · 5	$3^{13} \cdot 11^2 \cdot 31$	1.52700
$3^{18}\cdot 23\cdot 2269$	$17^3 \cdot 29 \cdot 31^8$	$2^{10} \cdot 5^2 \cdot 7^{15}$	1.52216

David Roe The ABC Conjecture

ヘロト 人間 とくほとくほとう

New proof of FLT

Suppose we had an explicit upper bound on quality, e.g. 2. The quality of $x^n + y^n = z^n$ is

$$q \ge \frac{n\log(z)}{\log(xyz)}$$
$$\ge \frac{n}{3}$$

So *n* ≤ 6.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Catalan's Conjecture

Theorem (Tijdeman (1976), Mihăilescu (2002))

There are finitely many solutions to

$$y^m = x^n + 1$$

with x, y, m, n > 1. In fact, there is only one.

ABC Consequence

There are finitely many solutions to

$$y^m = x^n + k$$

for x, y, m, n > 1 and k > 0 fixed.

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Hall's Conjecture

Conjecture (Hall)

Suppose

$$y^2 = x^3 + k$$

with $k \neq 0$. Then there is a constant C (independent of k) with

$$\sqrt{|\mathbf{x}|} < \mathbf{C} \cdot |\mathbf{k}|$$

k	X	$\sqrt{ \mathbf{x} }/ \mathbf{k} $		
17	5234	4.26		
24	8158	3.76		
225	720114	3.77		
-307	939787	3.16		
1090	28187351	4.87		
	I	I →	(日) (日) (日)	2

Weak form of Hall's Conjecture

ABC Consequence

Suppose $\epsilon > 0$ and

$$y^2 = x^3 + k$$

with $k \neq 0$. Then there is a constant C_{ϵ} (independent of k) with

$$|x|^{1/2-\epsilon} < C_{\epsilon}|k|.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Fix A, B, C and consider

$$Ax^r + By^s = Cz^t.$$

Want **primitive solutions**: *x*, *y*, *z* are relatively prime.

Expected number of solutions

Suppose T large and consider **all** inputs x, y, z with

$$|x| \leqslant T^{1/r} \qquad |y| \leqslant T^{1/s} \qquad |z| \leqslant T^{1/t}$$

Then the value $Ax^r + By^s - Cz^t$ is distributed on an interval of length a constant multiple of *T*. If this distribution were **uniform** then we would expect

$$T^{(1/r+1/s+1/t)-1}$$

occurrences where $Ax^r + By^s - Cz^t = 0$.

Generalized Fermat Equation

Suppose that
$$\frac{1}{r} + \frac{1}{s} + \frac{1}{t} < 1$$
.

Theorem (Darmon-Granville (1995))

If r, s, t are **fixed** then there are only finitely many primitive solutions to

$$Ax^r + By^s = Cz^t.$$

ABC Consequence

There are only finitely many primitive solutions to

$$Ax^r + By^s = Cz^t$$

as r, s, t vary.

ヘロト ヘアト ヘビト ヘビト

ъ

Mordell's Conjecture

Theorem (Faltings (1984))

Suppose that C is a nonsingular curve of genus g over a number field K. Then C(K) is finite.

ABC Consequence

Suppose the maximum quality of any abc-triple is known. Then we can find explicit bounds for the heights of points in C(K).

ヘロト ヘ戸ト ヘヨト ヘヨト

Szpiro's Conjecture

ABC Consequence

Suppose *E* is an elliptic curve over \mathbb{Q} with conductor *N* and minimal discriminant Δ . Then for every $\epsilon > 0$ there is a constant C_{ϵ} with

 $|\Delta| \leqslant C_{\epsilon} N^{6+\epsilon}$

David Roe The ABC Conjecture

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Discriminants

Recall that the discriminant $D_{F/\mathbb{Q}}$ of a number field F/\mathbb{Q} is defined as

$$D_{F/\mathbb{Q}} = \det \begin{pmatrix} \sigma_1(\alpha_1) & \cdots & \sigma_1(\alpha_n) \\ \vdots & \ddots & \vdots \\ \sigma_n(\alpha_1) & \cdots & \sigma_n(\alpha_n) \end{pmatrix},$$

where $\sigma_1, \ldots, \sigma_n$ are the embeddings of *F* into \mathbb{C} , and $\alpha_1, \ldots, \alpha_n$ are a basis for the ring of integers *R*. The **logarithmic discriminant** is

$$d(F) = \frac{1}{[F:\mathbb{Q}]} |D_{F/\mathbb{Q}}|.$$

Heights

Suppose X is a regular arithmetic surface over R with generic fiber a geometrically irreducible curve. Let D be a divisor on X_F . Then there is a **height function**

$$h_D: X_F(\bar{\mathbb{Q}}) \to R$$

well defined modulo bounded functions. Write F(P) for the field of definition of P.

If X_F is a curve in \mathbb{P}^2 , *D* is the restriction of a hyperplane section to X_F and P = [x : y : z], then

$$h_D(P) = \frac{1}{[F(P):\mathbb{Q}]} \sum_{v} \log \max(\|x\|_v, \|y\|_v, \|z\|_v).$$

イロト イポト イヨト イヨト

Vojta's Conjecture

Conjecture (Vojta)

Let X be a smooth projective curve defined over a number field F. Let K denote the canonical divisor of X, and $\epsilon > 0$. Then for $P \in X(\overline{\mathbb{Q}})$,

$$h_{\mathcal{K}}(\mathcal{P}) \leq (1+\epsilon)d(\mathcal{F}(\mathcal{P})) + \mathcal{C}_{\mathcal{X},\epsilon}.$$

This is equivalent to the ABC conjecture.

ヘロト ヘアト ヘビト ヘビト

ъ

Hodge-Arakelov theory

Suppose *E* is an elliptic curve over a field *F* of characteristic 0. Write E^{\dagger} for the "universal" extension of *E*: the moduli space of pairs (x, ∇_x) of a point *x* on *E* and a logarithmic connection on a certain line bundle associated to *x*.

- E[†] is a torsor under the sheaf ω_E of invariant differentials on E.
- Zariski locally, E[†] is the spectrum of a polynomial algebra in one variable over O_E, so it makes sense to talk about the relative degree of a function on E[†].
- The *d*-torsion points $E^{\dagger}[d]$ map isomorphically to E[d].

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem (Mochizuki)

Let d be a positive integer and $\eta \in E(F)$ a torsion point of order not dividing d. Define

$$\mathcal{L} = \mathcal{O}_{\boldsymbol{E}}(\boldsymbol{d} \cdot [\eta]).$$

The natural map

$$\Gamma(E,\mathcal{L})^{< d} \to \mathcal{L}|_{E^{\dagger}[d]}$$

given by restricting sections of degree less than d is a bijection between F-vector spaces of dimension d^2 .

We need to modify the **integral structure** of $\Gamma(E, \mathcal{L})^{<d}$ to get an isomorphism for degenerating elliptic curves and curves over the finite and infinite places of a number field.

イロト イポト イヨト イヨト

Near infinity on the moduli stack of elliptic curves (ie over a completed base \hat{S}) and for a degenerating elliptic curve *E*,

$$E|_{\hat{S}} \cong \mathbb{G}_m \qquad E^{\dagger}|_{\hat{S}} \cong \mathbb{G}_m \times \mathbb{A}^1.$$

The "standard" integral structure on E^{\dagger} is

$$\bigoplus_{r \ge 0} \mathcal{O}_{\mathbb{G}_m} \cdot T'$$

(*T* a coordinate on \mathbb{A}^1). To get an isomorphism at finite places:

$$\bigoplus_{r\geq 0}\mathcal{O}_{\mathbb{G}_m}\cdot\left(\frac{d\cdot\{T-i_\chi/n\}}{r}\right),$$

where i_{χ}/n is an invariant determined by η . Near infinity we need to modify this further by scaling by a term asymptotic to

$$q^{-r^{2}/8d}$$
,

where *q* is the Tate parameter of the curve $(E(\mathbb{Q}_p) \cong \mathbb{Q}_p^{\times}/q^{\mathbb{Z}})$. Mochizuki refers to these terms as "Gaussian poles."

Theorem (Mochizuki)

After modifying the integral structure of $\Gamma(E, \mathcal{L})^{<d}$ as described above, the restriction isomorphism

$$\Gamma(E,\mathcal{L})^{< d} \to \mathcal{L}|_{E^{\dagger}[d]}$$

extends to an isomorphism over the log whole moduli stack of log elliptic curves over \mathbb{Z} , with the possible exception of a subscheme determined by η .

Mochizuki then gives an argument for how to use Arakelov theory to prove Vojta's conjecture if one could get rid of these Gaussian poles [3, §1.5.1]

ヘロン 人間 とくほ とくほ とう

1

Inter-universal Teichmüller Theory

In [4], Mochizuki develops Interuniversal Teichmüller theory as a way to eliminate these Gaussian poles. The approach is based upon classical and *p*-adic Teichmüller theory, where the real analytic structure on a manifold is deformed by

$$x + iy \mapsto x + iKy$$
,

yielding numerous holomorphic structures. He begins by fixing **initial** Θ**-data**, consisting of

- a number field F
- an elliptic curve E over F
- a prime $l \ge 5$
- various additional technical data.

ヘロト 人間 とくほ とくほ とう

From this initial data, he considers hyperbolic orbicurves related by étale covers to $E_F - \{0\}$, with symmetries of the additive and multiplicative structures of \mathbb{F}_I acting on the *I*-torsion points of *E*. These yield $\Theta^{\pm ell}$ **NF-Hodge theaters**, which can be thought of as "miniature models of scheme theory surrounding the number field and theta function". A $\Theta^{\pm ell}$ NF-Hodge theater is a collection of categories and auxiliary data, indexed by places of *F*. From an initial Θ -data one can construct a $\Theta^{\pm ell}$ NF-Hodge theater via certain categories of étale covers of $E_F - \{0\}$.

(日)

He then takes a two dimensional lattice of (equivalent) $\Theta^{\pm ell}$ NF-Hodge theaters by defining (horizontal) Θ -links and (vertical) log-links between Hodge theaters.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- the ⊖-links allow the removal of the Gaussian poles, but do so at the cost of destroying the underlying ring/scheme structure
- the log-links come from *p*-adic logarithms, and allow the construction of log-shells (containing the images of the local units) that are preserved by the log-link
- These log shells eventually yield bounds on logarithmic volume of certain monoids, which translate to bounds on Arakelov-theoretic heights.

イロト イポト イヨト イヨト

э.

Confused?

Me too.

David Roe The ABC Conjecture

・ロト ・聞ト ・ヨト ・ヨト

₹ 990

ABC@home.http://www.abcathome.com.

- Mazur, Barry. Questions About Number. From: New Directions in Mathematics.
- Mochizuki, Shinichi. Survey of Hodge-Arakelov Theory.
- Mochizuki, Shinichi. Inter-universal Teichmüller Theory I-IV.

ヘロト 人間 ト ヘヨト ヘヨト

э.