The Local Langlands Correspondence and character sheaves

David Roe

Department of Mathematics
University of Calgary/PIMS

University of Washington: Number Theory Seminar
Outline

1. Introduction to Local Langlands
 - Local Langlands for GL_n
 - Beyond GL_n
 - DeBacker-Reeder

2. Local Langlands for Tamely Ramified Unitary Groups
 - The Torus
 - The Character
 - Embeddings and Induction

3. Character Sheaves
 - A Different Induction Process
 - Greenberg of Néron
 - Character Sheaves
What is the Langlands Correspondence?

- A generalization of class field theory to non-abelian extensions.
- A tool for studying L-functions.
- A correspondence between representations of Galois groups and representations of algebraic groups.
The 1-dimensional case of local Langlands is local class field theory.
Conjecture

Irreducible n-dimensional representations of $\mathcal{W}_{\mathbb{Q}_p}$

\downarrow

Irreducible representations of $\text{GL}_n(\mathbb{Q}_p)$

In order to make this conjecture precise, we need to modify both sides a bit.
Smooth Representations

For $n > 1$, the representations of $\text{GL}_n(\mathbb{Q}_p)$ that appear are usually infinite dimensional.

Definition

A *smooth* \mathbb{C}-*representation* of $\text{GL}_n(\mathbb{Q}_p)$ is a pair (π, V), where

- V is a \mathbb{C}-vector space (possibly infinite dimensional),
- $\pi : \text{GL}_n(\mathbb{Q}_p) \to \text{GL}(V)$ is a homomorphism,
- The stabilizer of each $v \in V$ is open in $\text{GL}_n(\mathbb{Q}_p)$.

The only finite-dimensional irreducible smooth π are

$$g \mapsto \chi(\det(g))$$

for some character $\chi : \mathbb{Q}_p^\times \to \mathbb{C}^\times$.
We also need to clarify what kinds of representations of $\mathcal{W}_{\mathbb{Q}_p}$ to focus on.

Definition

A *Langlands parameter* is a pair (φ, V) with

$$\varphi : \mathcal{W}_{\mathbb{Q}_p} \to \text{GL}(V) \quad \text{dim}_\mathbb{C} V = n$$

such that φ is continuous and semisimple.
Parabolic Subgroups

Given a number of Langlands parameters $\varphi_i : W_{Q_p} \to GL(V_i)$, one can form their direct sum. There should be a corresponding operation on the $GL_n(Q_p)$ side.

Definition

A parabolic subgroup of GL_n is a subgroup P conjugate to one consisting of block triangular matrices of a given pattern. For example:

$$
\begin{pmatrix}
* & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & * & * \\
\end{pmatrix}
$$

Such a subgroup has a Levi decomposition $P = M \times N$, where M is conjugate to the corresponding subgroup of block diagonal matrices, and N consists of the subgroup of P with identity blocks on the diagonal.
Parabolic Induction

Since each Levi subgroup M is just a direct product of GL_{n_i}, a collection of representations $\pi_i: GL_{n_i}(\mathbb{Q}_p) \to GL(V_i)$ yields a representation $\boxtimes_i \pi_i$ of M. We can pull this back to P and then induce to obtain

$$\pi = \text{Ind}_P^{GL_n(\mathbb{Q}_p)} \boxtimes_i \pi_i.$$

Definition

We say that π is the *parabolic induction* of the π_i. We say that π is *supercuspidal* if π is not parabolically induced from any proper parabolic subgroup of $GL_n(\mathbb{Q}_p)$.
There is a natural bijection

\[
\text{Supercuspidal representations of } \text{GL}_n(\mathbb{Q}_p) \leftrightarrow \text{n-dimensional irreducible representations of } \mathcal{W}_p.
\]

But the parabolic induction of irreducible representations does not always remain irreducible. To extend this bijection from supercuspidal representations of \(\text{GL}_n(\mathbb{Q}_p) \) to all smooth irreducible representations of \(\text{GL}_n(\mathbb{Q}_p) \), one enlarges the right hand side using the following group:

\[\text{WD}_{\mathbb{Q}_p} := \mathcal{W}_p \times \text{SL}_2(\mathbb{C}). \]
Theorem (Local Langlands for GL$_n$: Harris-Taylor, Henniart)

There is a unique system of bijections

$$\begin{align*}
\text{Irreducible representations} & \quad \text{of } \text{GL}_n(\mathbb{Q}_p) \\
\text{rec}_n & \quad \mapsto \quad \text{n-dimensional irreducible representations of } \text{WD}_{\mathbb{Q}_p}
\end{align*}$$

- rec_1 is induced by the Artin map of local class field theory.
- rec_n is compatible with 1-dimensional characters:
 $$\text{rec}_n(\pi \otimes \chi \circ \det) = \text{rec}_n(\pi) \otimes \text{rec}_1(\chi).$$
- The central character ω_π of π corresponds to $\det \circ \text{rec}_n$:
 $$\text{rec}_1(\omega_\pi) = \det(\text{rec}_n(\pi)).$$
- $\text{rec}_n(\pi^\vee) = \text{rec}_n(\pi)^\vee$
- rec_n respects natural invariants associated to each side, namely L-factors and ϵ-factors of pairs.
Now suppose \mathbf{G} is some other connected reductive group defined over \mathbb{Q}_p, such as SO_n, Sp_n or U_n. We’d like to use a Langlands correspondence to understand representations of $\mathbf{G}(\mathbb{Q}_p)$ in terms of Galois representations. Something like

$$\varphi : \text{WD}_{\mathbb{Q}_p} \rightarrow \mathbf{G}(\mathbb{C}) \iff \text{Irreducible representations of } \mathbf{G}(\mathbb{Q}_p).$$

We need to modify this guess in two ways:

- change $\mathbf{G}(\mathbb{C})$ to a related group, $^L\mathbf{G}(\mathbb{C})$,

- and account for the fact that our correspondence is no longer a bijection.
Root Data

Reductive groups over algebraically closed fields are classified by root data

\[(X^*(S), \Phi(G, S), X_*(S), \Phi^\vee(G, S)),\]

where

- \(S \subset G\) is a maximal torus,
- \(X^*(S)\) is the lattice of characters \(\chi: S \to \mathbb{G}_m\),
- \(X_*(S)\) is the lattice of cocharacters \(\lambda: \mathbb{G}_m \to S\),
- \(\Phi(G, S)\) is the set of roots (eigenvalues of the adjoint action of \(S\) on \(g\)),
- \(\Phi^\vee(G, S)\) is the set of coroots \(\langle \alpha, \alpha^\vee \rangle = 2\).
Given $\mathbf{G} \supset \mathbf{S}$, the connected Langlands dual group $\hat{\mathbf{G}}$ is defined to be the algebraic group over \mathbb{C} with root datum

$$(X_\ast(\mathbf{S}), \Phi^\vee(\mathbf{G}, \mathbf{S}), X^\ast(\mathbf{S}), \Phi(\mathbf{G}, \mathbf{S})).$$

For semisimple groups, this has the effect of exchanging the long and short roots (as well as interchanging the simply connected and adjoint forms).

| \mathbf{G} | GL_n | SL_n | PGL_n | Sp_{2n} | SO_{2n} | U_n |
| $\hat{\mathbf{G}}$ | GL_n | PGL_n | SL_n | SO_{2n+1} | SO_{2n} | GL_n |
For non-split G, such as U_n, we need to work a little harder. Suppose that G is quasi-split with Borel $B \supset S$, splitting over a finite extension E/\mathbb{Q}_p. The fact that B is defined over \mathbb{Q}_p implies that $\text{Gal}(E/\mathbb{Q}_p)$ acts on the root datum. The connected dual group \hat{G} comes equipped with maximal torus \hat{S} canonically dual to S. By choosing basis vectors for each (1-dimensional) root space in the Lie algebra of \hat{G}, we can extend the action of $\text{Gal}(E/\mathbb{Q}_p)$ from the root datum to an action on \hat{G}. Define

\[^L G := \hat{G} \rtimes \text{Gal}(E/\mathbb{Q}_p), \]

the L-group of G.

\[\text{David Roe} \]
Unitary Groups

A unitary group over \mathbb{Q}_p is specified by the following data:

- E/\mathbb{Q}_p a quadratic extension (so for $p \neq 2$ there are three possibilities),
- set $\tau \in \text{Gal}(E/\mathbb{Q}_p)$ the nontrivial element,
- V an n-dimensional E-vector space,
- Non-degenerate Hermitian form \langle , \rangle (so $\langle x, y \rangle = \tau \langle y, x \rangle$).

Then $U(V)$ is the group of automorphisms of V preserving \langle , \rangle. Over $\bar{\mathbb{Q}}_p$, U becomes isomorphic to GL_n, so \hat{U}_n is GL_n, but $^L \mathbf{G}$ is non-connected: τ acts on $GL_n(\mathbb{C})$ by the outer automorphism

$$g \mapsto (g^{-1})^T.$$
A Langlands parameter is now an equivalence class of homomorphisms

\[\varphi : \mathcal{W}_{\mathbb{Q}_p} \to \mathcal{L}\mathcal{G}. \]

- We require that the composition of \(\varphi \) with the projection \(\mathcal{L}\mathcal{G} \to \text{Gal}(E/\mathbb{Q}_p) \) agrees with the standard projection \(\mathcal{W}_{\mathbb{Q}_p} \to \text{Gal}(E/\mathbb{Q}_p) \).

- We consider two parameters to be equivalent they are conjugate by an element of \(\hat{\mathcal{G}} \). This definition of equivalence is chosen to match up with the notion of isomorphic representations on the \(\mathcal{G}(\mathbb{Q}_p) \) side.
There is a natural map

\[\text{Irreducible representations of } G \rightarrow \text{Langlands parameters } \varphi: WD_{\mathbb{Q}_p} \rightarrow {}^L G \]

It is surjective and finite-to-one; the fibers are called \emph{L-packets}.
Moreover, we can naturally parameterize these fibers. Given a Langlands parameter \(\varphi \), let \(Z_{\hat{G}}(\varphi) \) be the centralizer in \(\hat{G} \) of \(\varphi \), and let \({}^LZ \) be the center of \({}^LG \). Define

\[
A_{\varphi} = \pi_0(Z_{\hat{G}}(\varphi)/{}^LZ).
\]

The fibers should be in bijection with

\[
A_{\varphi}^\vee = \{ \text{irreducible representations of } A_{\varphi} \}.
\]

So we get a natural bijection

\[
\text{Irreducible representations of } G \leftrightarrow (\varphi, \rho) \text{ with } \varphi: WD_{Qp} \to {}^LG \quad \text{and } \rho \in A_{\varphi}^\vee.
\]
Approaches to Local Langlands

- One approach to proving the local Langlands correspondence for general G is to try to reduce to the GL_n case: the recent book of Jim Arthur for example.

- Another approach is that of Stephen DeBacker and Mark Reeder, outlined below.
Let G be a connected reductive group defined over \mathbb{Q}_p, and assume that G splits over an unramified extension E/\mathbb{Q}_p.

Let φ be a Langlands parameter vanishing on $\text{SL}_2(\mathbb{C})$.

Assume that φ is *tame*: it vanishes on wild inertia.

Assume that φ is *discrete*: the centralizer of φ in \hat{G} is finite modulo the center of $^L G$.

Assume that φ is *regular*: the image of inertia is generated by a semisimple element of \hat{G} whose centralizer is a maximal torus \hat{S}.

DeBacker-Reeder produce an L-packet that satisfies many of the properties expected of the local Langlands correspondence.
For each $\lambda \in X^*(\hat{S})$ they construct

- F_{λ}, a twisted action of Frobenius on $G(\overline{Q}_p)$, and
- π_{λ}, a representation of $G(\overline{Q}_p)^{F_{\lambda}}$.

They define an equivalence relation on such pairs, and prove that the equivalence class of $(\pi_{\lambda}, F_{\lambda})$ depends only on the class of λ in

$$X^*(\hat{S})/(1 - w\theta)X^*(\hat{S}) \cong A^\vee_\varphi$$

where $w\theta$ is the automorphism of $X^*(\hat{S})$ induced by $\varphi(F) \in N_L G(\hat{S})$. The λ with image in A^\vee_φ are those with $G(\overline{Q}_p)^{F_{\lambda}} \cong G(\overline{Q}_p)$, and the corresponding equivalence classes of π_{λ} form the L-packet associated to φ.

The Construction of π_λ

- Using the Bruhat-Tits building they construct an anisotopic torus T_λ in G,
- apply a canonical modification to φ so that the image lies in a group isomorphic to $^LT_\lambda$,
- obtain a character of $T_\lambda(\mathbb{F}_p)$ using the (depth-preserving) local Langlands correspondence for tori,
- use Deligne-Lusztig theory to produce an irreducible representation of the parahoric subgroup G_λ, and
- compactly induce to $G(\overline{\mathbb{Q}}_p)^{F_\lambda}$, yielding a depth zero supercuspidal representation π_λ.
They then prove that $G(\mathbb{Q}_p)$ acts on the pairs (F_λ, π_λ), and the orbit of a given pair is independent of all choices. Moreover, two such pairs are equivalent if and only if the two λs are equivalent modulo $(1 - w\theta)X^*(\hat{S})$. Much of their paper is then devoted to proving that this construction yields L-packets with desirable properties:

- The ratio of formal degrees $\text{deg}(\pi_\lambda)/\text{deg}(\text{St}_\lambda)$ is independent of λ.
- Generic representations in the L-packet correspond to hyperspecial vertices in the building.
- Their L-packet yields a stable class function on the set of strongly regular semisimple elements of $G(\mathbb{Q}_p)$.
We say that a Langlands parameter φ is

- **discrete** if $Z_{\hat{G}}(\varphi)$ is finite,
- **tame** if φ factors through the maximal tame quotient (and thus $p \neq 2$).
- **regular** if $Z_{\hat{G}}(\varphi(\tilde{\tau}))$ is connected and minimum dimensional (here $\tilde{\tau}$ is a procyclic generator of tame inertia).

We will construct an L-packet of supercuspidal representations of $G(\mathbb{Q}_p)$ given a tame, discrete regular parameter.
Filtrations

$G(\mathbb{Q}_p)$ acts on the Bruhat-Tits building $B(G)$, and we can classify the compact subgroups of $G(\mathbb{Q}_p)$ as stabilizers of convex subsets of $B(G)$.

- Any compact subgroup can be written as $H(\mathbb{Z}_p)$ for some \mathbb{Z}_p-scheme H.
- There is a decreasing filtration on each compact subgroup.
- H^0 is the schematic closure of the identity component on the special fiber and is of finite index in H.
- $H(\mathbb{F}_p)$ is given by H/H^{0+}.
- The filtration on T is the one given by Moy and Prasad, coming from the filtration on \mathbb{Q}_p^\times.

We can thus obtain representations of compact subgroups of G by pulling back representations of reductive groups over finite fields.
Our plan for constructing an L-packet from φ is as follows. We construct:

- A maximal unramified anisotropic torus T, which embeds into G in various ways,
- A character χ_φ on T^0 that vanishes on T^{0+},
- For each $\rho \in A^\vee$, an embedding of T into a maximal compact subgroup $H \subset G$.
- We get a Deligne-Lusztig representation of $H^0(F_p) = H^0/H^{0+}$ associated to the torus $T^0(F_p) = T^0/T^{0+}$ and the character χ_φ.
- We induce this representation up to a representation of G.

David Roe
The Local Langlands Correspondence and character sheaves
The tame Weil group is topologically generated by two elements: an (arithmetic) Frobenius F and a generator $\tilde{\tau}$ of the procyclic group

$$\mathcal{I}_{\mathbb{Q}_p} = \text{Gal}(\lim_{\to} \tilde{K}(p^{1/m})/\tilde{K}) \cong \prod_{\ell \neq p} \mathbb{Z}_\ell.$$

- The assumption that E/\mathbb{Q}_p is totally ramified implies that $\varphi(F) \in \hat{G}$, while $\varphi(\tilde{\tau}) \in L^*G$ projects to $\tau \in \text{Gal}(E/\mathbb{Q}_p)$.
- Recall that we have a specified maximal torus \hat{S} in L^*G. As Langlands parameters are defined only up to conjugacy, we may conjugate so that $\varphi(\tilde{\tau}) \in \hat{S}^{\tau} \rtimes \text{Gal}(E/\mathbb{Q}_p)$.
A Twisted Torus

- The equality
 \[F \tilde{\tau} F = \tilde{\tau}^p \]
 implies that \(\varphi(F) \) lies in the normalizer of \(\varphi(\tilde{\tau}) \), and thus in the normalizer of \(\hat{S} \).
- Composing with the projection onto the Weyl group, we get a cocycle in
 \[H^1(\langle F \rangle, W^I) \hookrightarrow H^1(\mathbb{Q}_p, W). \]
 Such a cocycle is precisely the data needed to define a torus over \(\mathbb{Q}_p \) as a twist of \(S \): here we’ve identified the Weyl groups of \(S \) and \(\hat{S} \). Write \(T \) for this torus.
Unramified and Anisotropic

- T cannot literally be unramified, since no torus in G splits over an unramified extension. But it does become isomorphic to the canonical torus S after an unramified extension: we will call such tori in G *unramified*.

- A torus T is called *anisotropic* if $X_\ast(T)^{\text{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)} = 0$, or equivalently if $T(\mathbb{Q}_p)$ is compact. The action of inertia on T is the same as on \hat{S}, so any invariants in $X_\ast(T)$ would yield invariants in $X_\ast(S^T)$ under the action of $\varphi(F)$. But any such invariants would contradict our assumption that φ is discrete, since

$$\left(\hat{g}^T\right)^F = 0.$$

Thus T is anisotropic.
Since the tame Weil group is topologically generated by F and $\tilde{\tau}$, the image of φ is contained in $N_{\hat{G}}(\hat{S}) \times \text{Gal}(E/\mathbb{Q}_p)$. In fact, it is contained in the subgroup D of L^G generated by $\hat{S} \rtimes \text{Gal}(E/\mathbb{Q}_p)$ and $\varphi(F)$.

The minimal splitting field $M = \mathbb{Q}_p^s \cdot E$ of T has Galois group

$$\text{Gal}(M/\mathbb{Q}_p) \cong \text{Gal}(E/\mathbb{Q}_p) \times \langle w \rangle,$$

where $w \in W^I$ is the image of $\varphi(F)$. Thus D fits into an exact sequence

$$1 \to \hat{S} \to D \to \text{Gal}(M/\mathbb{Q}_p) \to 1.$$
Suppose that this sequence split and $D \cong \hat{T} \rtimes \text{Gal}(M/\mathbb{Q}_p)$. Then φ would yield an element of $H^1(\mathbb{Q}_p, \hat{T})$, and the local Langlands correspondence for tori would give us a character of $T(\mathbb{Q}_p)$:

$$H^1(\mathbb{Q}_p, \hat{T}) \cong \text{Hom}(T(\mathbb{Q}_p), \mathbb{C}^\times).$$

In general the sequence for D does not split. So our next task is to modify the Langlands correspondence for tori to obtain a character in the non-split case. We will get a character χ_φ of $T^0(\mathbb{Q}_p)$.
Constructing χ_φ

- Let D_s be the subgroup of D generated by \hat{T} and $(1, \tau)$; the splitting $\text{Gal}(E/\mathbb{Q}_p) \to ^L\mathbb{G}$ implies $D_s \cong \hat{T} \rtimes \text{Gal}(M/\mathbb{Q}_p^s) \cong ^L\mathbb{T}$. Since $\varphi(\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p^s)) \subset D_s$, the local Langlands correspondence for tori gives a character χ of $T(\mathbb{Q}_p^s)$.

- Let $\Gamma = \text{Gal}(\mathbb{Q}_p^s/\mathbb{Q}_p)$. Since χ was determined by the restriction of a parameter on all of $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$, it factors through the coinvariants $T(\mathbb{Q}_p^s)_{\text{Gal}(\mathbb{Q}_p^s/\mathbb{Q}_p)}$.

- From Tate cohomology we have

$$1 \to \hat{H}^{-1}(\Gamma, T) \to T(\mathbb{Q}_p^s)_{\Gamma} \to T(\mathbb{Q}_p) \to \hat{H}^0(\Gamma, T) \to 1$$

When $T^0(\mathbb{Q}_p) \neq T(\mathbb{Q}_p)$, the outer groups can be nontrivial.
Using Lang’s theorem on the cohomology of connected algebraic groups over finite fields, the corresponding outer terms for T^0 vanish. We define χ_φ as the restriction of χ to $T^0(\mathbb{Q}_p)^\Gamma \cong T^0(\mathbb{Q}_p)$.

Since φ vanished on wild inertia, the depth-preservation properties of the local Langlands correspondence for tori imply that χ_φ vanishes on $T^{0+}(\mathbb{Q}_p)$, and thus induces a character of $T^0(\mathbb{F}_p)$.

The regularity of φ implies that χ_φ is not fixed by any element of W^I: it is in “general position.”
Summary

From a Langlands parameter \(\varphi \) we’ve produced:

- An anisotropic unramified torus \(T \). Note that \(T \) is not yet provided with an embedding into \(G \).
- A character \(\chi_\varphi \) of \(T^0(\mathbb{F}_p) \).

In order to produce representations of \(G(\mathbb{Q}_p) \) we need to understand the embeddings of \(T \) into \(G \).
We classify unramified anisotropic twists of the “quasi-split” torus S. For each $s = 2r$, define $T_s = \{ x \in E_s : \text{Nm}_{E_s/L_r} x = 1 \}$,

![Diagram]

Every anisotropic unramified torus in G is a product of such basic tori, together with at most one copy of U_1.

David Roe
The Local Langlands Correspondence and character sheaves
Embeddings of Basic Tori

In order to get Deligne-Lustig representations, we need to embed T into maximal compacts of G. We do so by building a Hermitian space around each basic torus in the product decomposition of T.

For each $\kappa \in L_r^\times$, we define a Hermitian product on E_s

$$\phi_\kappa(x, y) = \text{Tr}_{E_s/E}(\frac{\kappa}{\pi_L} x \cdot \eta_s(y)).$$

This Hermitian space is quasi-split if and only if $v_L(\kappa)$ is even. By the definition of T_s we have an embedding of T_s into $U(E_s, \phi_\kappa)$.
Embeddings of General Tori

In general, we choose a κ_i for each basic torus in the decomposition of T. This choice corresponds to a choice of $\rho \in A_\varphi^\vee$ as long as the sum of the valuations of the κ_i is even.

We prove T fixes a unique point on the building $B(G)$ and thus embeds in a unique maximal compact $H \subset G$. The reduction of H is

$$O(m) \times \text{Sp}(m'),$$

where m is the sum of the dimensions of basic tori whose κ_i has even valuation and m' is the sum of those with $v(\kappa_i)$ odd.
Modulo p, we have a maximal torus $T^0(\mathbb{F}_p)$ sitting in a connected reductive group $H^0(\mathbb{F}_p)$ and a character χ_φ of $T^0(\mathbb{F}_p)$. This situation was studied by Deligne and Lusztig, and they produce a representation of $H^0(\mathbb{F}_p)$ using étale cohomology. The irreducibility of this representation follows from the regularity condition on φ. We pull back to H^0 and the only wrinkle in the induction process occurs between H^0 and H. Once we have a representation of H, we define a representation on all of $G(\mathbb{Q}_p)$ by compact induction.
A Finite Induction

There are three cases for the induction from H^0 to H.

- n even, $H(\mathbb{F}_p) = \text{Sp}(n)$. Here $H = H^0$ and there is no induction.

- n even, otherwise. The fact that the normalizer of $T^0(\mathbb{F}_p)$ in $H(\mathbb{F}_p)$ contains the normalizer in $H^0(\mathbb{F}_p)$ with index 2 implies that the induction remains irreducible.

- n odd. Now the induction from H^0 to H splits into two irreducible components. We can pick one using a recipe for the central character, together with the fact that in the case that n is odd the center of $O(m)$ is not contained in $SO(m)$.

David Roe

The Local Langlands Correspondence and character sheaves
Two Paths

\[T^0(\mathbb{Q}_p) \xrightarrow{\chi_\varphi} \mathbb{C}^* \]

Deligne-Lustzig representation

sheaf-function dictionary

H^0(F_p) \subseteq DL(\chi_\varphi, T^0/\mathbb{F}_p)

inflation

H^0(\mathbb{Q}_p) \subseteq DL(\chi_\varphi, T^0/\mathbb{F}_p)

finite induction

H(\mathbb{Q}_p) \subseteq \text{Ind} \ DL(\chi_\varphi, T^0/\mathbb{F}_p)

compact induction

G(\mathbb{Q}_p) \subseteq c\text{Ind} \ DL(\chi_\varphi, T^0/\mathbb{F}_p)

distribution on G(\mathbb{Q}_p)

character sheaf on \mathfrak{T}/\mathbb{F}_p

Deligne-Lusztig induction

perverse sheaf on \mathfrak{G}/\mathbb{F}_p

nearby cycles or trace

David Roe
The Local Langlands Correspondence and character sheaves
The remainder of this talk is

- joint with Clifton Cunningham
- a summary of work in progress.

The right hand side of the diagram outlines an alternate construction of a distribution on $G(\mathbb{Q}_p)$ from a depth zero character on $T^0(\mathbb{Q}_p)$ and an embedding $T \hookrightarrow G$.

Warning: no step on the right side is complete

For the remainder of this talk I will discuss the first arrow: the passage from a depth zero character of T to a character sheaf on a related scheme \mathcal{T}.
Now let $T = \mathbb{G}_m$. The Néron model of T is a separated, smooth commutative group scheme $T_{\mathbb{Z}_p}$ locally of finite type over \mathbb{Z}_p with the Néron mapping property. In particular,

$$T_{\mathbb{Z}_p}(\mathbb{Z}_p) = T(\mathbb{Q}_p) = \mathbb{Q}_p^\times.$$

The earlier T^0 is just the identity component of the Néron model, and in the \mathbb{G}_m case the Néron model is a union of copies of $\mathbb{G}_m/\mathbb{Z}_p$, glued along the generic fiber. Set $T_d = T_{\mathbb{Z}_p} \times_{\mathbb{Z}_p} (\mathbb{Z}/p^{d+1}\mathbb{Z})$.
The Greenberg functor

The Greenberg functor Gr takes an affine group scheme over an Artinian local ring A and produces an affine group scheme over the residue field k whose k points are canonically identified with the A-points of the original scheme. We set

$$\mathcal{T}_d = \text{Gr}(\mathcal{T}_d)$$

and

$$\mathcal{T} = \lim_{\leftarrow} \mathcal{T}_d.$$

\mathcal{T} is a commutative group scheme over \mathbb{F}_p with $\mathcal{T}(\mathbb{F}_p) = \mathbb{Q}_p^\times$, but it is neither connected nor locally of finite type.
An \(\ell\)-adic Weil local system on a scheme \(X\) over \(K\) is a pair \((\bar{\mathcal{L}}, \phi_{\mathcal{L}})\), where \(\bar{\mathcal{L}}\) is an \(\ell\)-adic local system on the étale site of \(X_{\bar{K}}\) and \(\phi_{\mathcal{L}}\) is an action of \(\text{Gal}(\bar{K}/K)\) on \(\bar{\mathcal{L}}\) compatible with the action on \(X_{\bar{K}}\).

An \(\ell\)-adic Weil character sheaf on a group scheme \(G\) is an \(\ell\)-adic Weil local system \(\mathcal{L}\) on \(G\) satisfying

\[
m^*(\bar{\mathcal{L}}) \cong \bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}
\]

as well as some compatibility conditions.

An \(\ell\)-adic Weil character sheaf on \(\mathfrak{T}\) is smooth of depth \(d\) if it arises as the pullback from \(\mathfrak{T}_d\) of an \(\ell\)-adic Weil character sheaf (with \(d\) minimal).
Theorem

There is a canonical, depth preserving isomorphism between smooth characters of $\mathbf{T}(\mathbb{Q}_p) = \mathbb{Q}_p^\times$ and smooth ℓ-adic Weil character sheaves on \mathbf{T}.
Summary

$\mathcal{W}_{\mathbb{Q}_p} \xrightarrow{\varphi} D \subset L\mathbf{G}$

a twist T of S

$H^0(\mathbb{F}_p) \preceq \text{DL}(\chi_\varphi, T^0/\mathbb{F}_p)$

$H(\mathbb{Q}_p) \preceq \text{Ind} \text{DL}(\chi_\varphi, T^0/\mathbb{F}_p)$

$G(\mathbb{Q}_p) \preceq \text{clInd} \text{DL}(\chi_\varphi, T^0/\mathbb{F}_p)$

$\mathcal{W}_{\mathbb{Q}_p} \xrightarrow{\varphi} \hat{S} \times \text{Gal}(E/\mathbb{Q}_p)$

$T^0(\mathbb{Q}_p) \xrightarrow{\chi_\varphi} \mathbb{C}^\times$

character sheaf on \mathcal{T}/\mathbb{F}_p

perverse sheaf on \mathcal{G}/\mathbb{F}_p

distribution on $G(\mathbb{Q}_p)$

David Roe
The Local Langlands Correspondence and character sheaves
References

