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Characteristic polynomials in Magma

Disclaimer: I develop p-adics in Sage, an open source
competitor to Magma. Moreover, I haven’t run either of the
following experiments personally, but rely on the experience of
Kiran Kedlaya and Justin Walker. I give this example not to
denigrate Magma but rather to motivate the solutions I propose
in the remainder of the talk.

Suppose you create a random 50 × 50 matrix A over Zp in
Magma 2.15 and ask for its characteristic polynomial. Even if
the entries of A have precision 100, the resulting polynomial will
have very few digits of precision remaining.
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Characteristic polynomials in Magma

In order to resolve this precision loss, Magma’s characteristic
polynomial algorithm appears to have changed in the most
recent version (2.18). While the precision behavior has
improved dramatically, the runtime has regressed. In the
following timing graph, the horizontal axis gives the size of the
matrix and the vertical axis gives the log of the time to compute
the characteristic polynomial.
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Karatsuba

Consider the Karatsuba algorithm for multiplying polynomials.
Given input polynomials of degree 2n

F = F0 + xnF1

G = G0 + xnG1,

we set

H0 = F0 ·G0

H2 = F1 ·G1

H1 = (F0 + F1) · (G0 + G1) − H0 − H2.

Then
F ·G = H0 + H1xn + H2x2n

but we have only used three polynomial multiplications of
degree n rather than four, at the cost of two additions.
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Numerical stability

But suppose that the coefficients of F and G are p-adic and
known to finite precision. For example, if

F = G = (1 + O(p4)) + (p4 + O(p8)) · x ,

we would set

H1 =
(
1 + O(p4) + p4 + O(p8)

)2
−
(
1 + O(p4)

)2
−
(
p4 + O(p8)

)2
=
(
1 + O(p4)

)
−
(
1 + O(p4)

)
−
(
p8 + O(p12)

)
= O(p4).

But the actual coefficient of x in the product has more precision:

2 ·
(
1 + O(p4)

)
·
(
p4 + O(p8)

)
= 2p4 + O(p8).
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Precision versus speed

We’re thus presented with a choice:
Use faster algorithms, but sacrifice precision on some (or
all) inputs,
Use naive algorithms in order to retain as much precision
as possible, but sacrifice speed, making computations with
large inputs infeasible.

Of course, some non-naive algorithms will have better precision
behavior than others. Over archimedian fields, a lot of effort
has been devoted to finding fast algorithms that are numerically
stable; many of these approaches can be adapted to the
non-archimedian context. But even numerically stable
algorithms frequently involve more precision loss than the naive
algorithms.
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Why we track precision

Recording the precision at each step of an algorithm imposes
an overhead to computations with p-adics. We track precision
for two main reasons:

As a convenience to the user, so that they know the
accuracy of the output of the algorithm.
So that the algorithm can perform inexact operations (such
as inversion, p-adic logarithms and exponentials) to an
appropriate working precision so that the final answer has
sufficient accuracy.
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Separation

Separate the approximation from the precision
By separating the precision of compound p-adic data types
from the approximation, algorithms can break the dichotomy of
precision vs speed by using fast algorithms to compute an
approximation and computing the precision of the result
separately.

This separation is possible because precision in the
non-archimedian world behaves far better than in archimedian
computations: the ultrametric gives us far better precision
control than the triangle inequality.
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Notation

OK – complete discrete valuation ring. We will occasionally
suppose that OK has finite residue field.
π – a uniformizer of OK .
K – the field of fractions of OK .
v – the valuation on K , normalized so that v(π) = 1.

In order to store elements of K in a finite amount of space, we
require that K contain a dense subring k whose elements are
simpler to represent.

If K = Qp then we may choose k = Q.
If K = Fq((t)) then k = Fq(t) is dense in K .
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Precision

Suppose that a ∈ k is an approximation to x ∈ K . We say that a
has absolute precision n if

v(x − a) ≥ n.

We say that a has relative precision n if

v(a/x − 1) ≥ n.

If a is an approximation of x with absolute precision n and
b of y with absolute precision m then a + b is an
approximation of x + y with absolute precision min(n,m).
If a is an approximation of x with relative precision n and b
of y with relative precision m then ab is an approximation
of xy with relative precision min(n,m).
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Imprecise elements

An approximate element of K is a pair (a,m), where a ∈ k and
m ∈ Z. We think of (a,m) as representing all possible elements
x ∈ K with v(x − a) ≥ m, and write

a + O(πm).

Geometrically, this approximate element is a ball of radius p−m

around a. While there is no distinguished center of such a ball,
in practice we can fix for each precision m a set of
distinguished elements of k that are inequivalent modulo πm.
For example, if K = Qp and k = Q, then we may choose

{a/pn : n ≥ 0 and 0 ≤ a < pm+n}.

David Roe (joint with Xavier Caruso) Precision models for arithmetic in local fields



Motivation
Precision types

Algorithms

Precision in basic arithmetic
Precision in compound structures

Precision loss in basic arithmetic

Precision loss occurs when addition and multiplication are
mixed for elements with different valuations. For example, for
odd p

((
1 + p99 + O(p100)

)
+
(
−1 + p99 + O(p100)

))
p99 + O(p1000)

= 2 + O(p).

Unfortunately, mixing addition and multiplication is necessary
for solving most problems.
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Different precision models

For Zp and Qp, Sage currently supports three different
precision models (capped relative, capped absolute and
fixed modulus). But in reality these different models
correspond more closely to the underlying data structure
rather than the precision tracking, since there’s only one
shape of disc in Qp.
For more complicated structures such as vectors, matrices,
polynomials and power series, there are many different
precision shapes possible. Different precision shapes have
different tradeoffs between speed and accuracy.
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Vector Precision

An element of K n could be represented as
a list of n approximate elements of K (together with the
specification of a distinguished basis),
a ball of radius p−m around an element of kn,
an element of kn together with an OK -lattice P ⊂ K n.

Note that the third option generalizes the first two, and that we
can always choose a basis for P consisting of vectors in kn. In
fact, P is determined exactly, without need for approximation.
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Polynomial Precision

If we fix the degree n then {1, x , . . . , xn} provides a distinguished
basis for the space of polynomials of degree n as a K vector
space. Some additional precision shapes have particular utility
for polynomials:

Newton polygons. If we consider a polynomial as a
function from K to K , then having lots of extra precision in
an “interior” coefficient does not add to the precision of any
evaluation. Moreover, one can determine the Newton
polygon of a product easily from the slopes of the input
polygons, simplifying computation of the precision.
Lagrange precision. We can give the precision of f (ai) for
some fixed set of ai ∈ K .
A mixture, involving the specification of various derivatives
at various points.

David Roe (joint with Xavier Caruso) Precision models for arithmetic in local fields



Motivation
Precision types

Algorithms

Precision in basic arithmetic
Precision in compound structures

Matrix Precision

Similarly, the space of m × n matrices is isomorphic to K mn, so
precision types for vectors apply to matrices as well. We have
extra precision shapes as well.

If we consider a matrix as representing a linear map
K n → K m then the image vectors will be defined with some
precision lattice in K m. This yields a “column precision” on
our matrix, where each column has the same precision.
Similarly, we can consider a “row precision,” where the
rows of a matrix all have the same precision.
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Power series

The space K~x� is no longer finite dimensional over K , so
additional complications arise: you need to truncate series
both in the x and p “variables.” Precision types similar to
those for finite dimensional vector spaces make sense
however.
Some precision structures for power series may specify an
infinite Newton polygon symbolically. When this Newton
polygon has positive slope in the limit then it allows a
rigorous computation of the precision of power series
evaluation. Information about all coefficients is necessary
in order to ensure convergence, and needs to be stored
separately from the finite list of approximate coefficients. A
precision structure gives a natural place to reason with this
information.
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Precision on varieties

If V is a variety defined over K then points on V are another
type of inexact object we might want to work with. The
Grassmanian G(m,n) of m-dimensional subspaces of K n and
an elliptic curve E defined over K provide illustrative examples.

The Grassmanian G(m,n) is covered by affine charts,
each isomorphic to K m(n−m). To specify a point we need to
specify a chart, and then a point in the relevant vector
space.
An elliptic curve, on the other hand, is usually given as a
subvariety of projective space, and we specify points in
projective space that are supposed to lie on the curve. We
can give the precision of such an approximate point as a
lattice in the tangent space.
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Applying Functions to Precisions

Theorem
Suppose x ∈ K n and f : K n → K m is differentiable at x with
surjective differential dfx . For any OK -submodule P ⊂ K n there
exists r ∈ Z with the following property. If a ∈ K with v(a) > r
then

f (x + aP) = f (x) + a dfx(P).
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Practical approach

Since all of the precisions we’ve considered can be described
as OK -modules, this theorem gives us an approach to
computing with p-adics.

1 For a given function f : K n → K m find a method for
determining r from P ⊂ K n.

2 Given an approximate element (x ,P) ∈ K n, compute
dfx(P) (possibly “rounding” back to a lattice of the same
precision type).

3 Compute f (x), (mostly) ignoring precision.
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Working exactly

In the description on the previous slide, the computation of the
approximation and of the precision of the result are completely
separate. For some problems this approach is reasonable. For
example, in the multiplication of polynomials over Zp you can
indeed just multiply over Z and then reduce modulo the
precision of the result.

Even if the evaluation of f involves division you can work over Q
(for example), and then apply only a single reduction at the end.
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Intermediate rounding

On the other hand, if the computation of f involves approximate
functions such as exponential and logarithm maps then you
need to determine a working precision in computing f .
Moreover, even if the computation of f only involves basic
arithmetic, it can be valuable to reduce modulo a power of p in
order to avoid intermediate coefficient blowup. For this reason
it’s still valuable to understand the precision behavior of the
algorithms, and to use p-adically numerically stable ones.
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Determinants

As an application, we determine the precision of the
determinant of a matrix. Suppose A is an approximation matrix
with precision lattice dA. The differential of the determinant at
the identity is the trace function, so as long as dA is small
enough, the precision of det(A) is given by

trace(det(A)A−1dA).

We can therefore compute the determinant of a p-adic matrix
by computing the determinant of an appropriate approximation,
and then computing the precision separately.
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LU Decomposition

We can compute precisions for the LU decomposition similarly.
Let f : Mn×m(K )→ Mn(K ) ×Mm(K ) map A to its LU
decomposition (L,U). Since

A + dA = (L + dL)(U + dU),

we have

dA = dL · U + L · dU + higher order terms.

Since dL is lower triangular and dU is upper triangular, we can
solve for them from dA, L and U.
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Further applications

One can apply similar reasoning to determine precisions for
evaluation of polynomials, Euclidean division, root finding and
factorization, images and kernels, inverse matrices and
characteristic polynomials.
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Precision Tradeoffs

There are a spectrum of precision types to choose from for
polynomials and matrices.

On one end lies the “flat precision,” specified by a single
integer. Computations with flat precision tend to be quite
simple, but one may have to sacrifice precision in a long
computation.
Conversely, working directly with OK -lattices offers the
greatest flexibility and preservation of precision, but at the
cost of expensive Hermite form computations, with running
times on the order of O(n2.3).

In between lie other precision types such as Newton
polygons for polynomials, which offer a compromise
between speed and flexibility.
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Questions?
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