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Abstract. The last decade has seen a proliferation of online mathematical
resources. We discuss some of the technical challenges involved in creating
and maintaining a mathematical database. In particular, we report on the
transition of the L-functions and Modular Forms Database (LMFDB) between
two database systems. We also highlight some of the improvements to the
LMFDB that we have made as part of this transition.

1. Introduction

Mathematics has a long history of using computations to aid in forming con-
jectures and searching for counterexamples. In the past few decades, computers
have taken on a central role, both in performing many calculations and in hosting
the results. As computational and storage capacity has increased, the size of these
results has grown to the point where the task of searching and maintaining the
data requires specialized knowledge. We discuss some of the challenges involved,
as well as the main tools available to address them. We focus on one particular
case study: the effort to migrate the database system supporting L-functions and
Modular Forms Database (LMFDB) [29] from MongoDB [31] to PostgreSQL [38]

We hope that this article will be useful to mathematicians aspiring to create or
improve their own databases, to database engineers who are considering switch-
ing from MongoDB to PostgreSQL, and to mathematicians participating in large
software projects for whom some of the LMFDB’s lessons might prove useful.

We begin with a survey of existing mathematical databases to highlight the
diversity of approaches used to disseminate mathematical data. While some focus
on communicating theorems and propositions, we pay more attention to those which
center on examples. Among these, we observe a range of search functionality.
Since the LMFDB prioritizes the ability to search by properties of each object, we
hope that our experience working with MongoDB and PostgreSQL will help other
mathematical resources improve their capabilities in this area.

Next, we consider some of the important choices involved in setting up and
maintaining such a database. We divide this discussion into three parts: how to
encode and manipulate the data, how the user interacts with the database, and
where it is physically stored. In each category, we present several options and a
brief analysis of their pros and cons.

The technical core of the article is the comparison of MongoDB and PostgreSQL,
along with our experience in switching between them. We were motivated to change
systems primarily for performance reasons: many searches that we wanted to sup-
port stalled on common inputs. We did not see a way to resolve the issue within
MongoDB. Several missing features in MongoDB also pushed us toward shifting:
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support for arbitrary precision integers and transactions that allow multiple com-
mands to be rolled back if there is a failure.1 We summarize the major differences,
including the distinction between a relational database and a document-oriented
database, and describe some of the features of each that were important in differ-
ent stages of the LMFDB’s history. We also outline our process for both porting
the data and updating the codebase to use a different system.

We finish by highlighting some of the benefits provided by performing such a
major structural change. For example, the process of rewriting a large amount of
code allowed us to refactor and encapsulate many of the LMFDB’s core functions.
Moreover, these code changes enabled us to dramatically improve performance and
add new features, such as verification suites that check for consistency within the
database. Going forward, the ability to make connections between different kinds
of mathematics is one of the core aims of the LMFDB, and a relational database
will help us achieve this goal.

2. Using databases in mathematics

In order to put our work on the LMFDB in context, we give an overview of some
other existing mathematical databases.

We will be primarily interested in datasets consisting of information on math-
ematical objects, such as specific number fields, graphs or curves, rather than on
mathematical statements. There are many valuable resources focusing on theorems
and propositions, from general encyclopedias such as the Encyclopedia of Mathe-
matics [16] and Mathworld [48] to the preprint server arXiv [5] to numerous domain
specific references [1,14,33]. However, the design imperatives for such projects favor
a different type of database than the ones we are interested in. Since the content of
theorem-oriented sites is likely to be textual, the standard tools for internet search-
ing such as Google tend to work effectively. Moreover, because humans are directly
creating the content, the tools for inputting and managing data are different. Wiki
[1, 6, 23, 33] and blog [3] software is often used to make it easier for many users to
be involved in content creation. Finally, when algorithms are generating data, it
is possible to end up with orders of magnitude more content, leading to various
challenges of scale not faced by human-created datasets.

One of the main roles that a mathematical database plays is to record the results
of interesting computations. Such collections of examples are useful in many areas
of mathematics, including group theory [7,15,22,49], Lie theory [2,8], graph theory
[10], knot theory [28], integer sequences [44], Euclidean geometry [26], algebraic
geometry [3] and number theory [11, 29]. In each case, much of the utility of the
database is shaped by how the results are displayed to a user, whether as a list
of integers with annotations, a picture of a knot or a webpage showing various
invariants of the object. Some databases [7, 22, 30] are embedded within computer
algebra systems such as Sagemath [42], Magma [9], or GAP [18], which allows a user
to perform further computations with the objects in the database easily. Others
are available online in various formats; we will discuss different methods of data
distribution in Section 3.

1MongoDB 4.0 added support for transactions but was released after we switched to
PostgreSQL.
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Collecting a large number of examples into one database makes possible a valu-
able paradigm for experimental mathematics: the ability to search through ex-
amples for a few that have particular specific desired properties or are counterex-
amples to a conjecture. In addition to the LMFDB, a number of other math-
ematical databases also have search functionality as one of their core features
[8,10,27,28,37,41,44]. Searching requires a more substantial infrastructure than is
needed for just displaying data; the discussion in Section 4 highlights some of the
factors to consider when choosing a search engine.

A final role played by many online mathematical databases is to provide domain-
specific exposition surrounding the examples that they host [1,11,14,15,23,28,41].
The LMFDB aims to provide enough definitions and background for mathematically
literate users to be able to understand the contents. The main tool for doing so is
a webpage element called a knowl, which is a bit of context-free knowledge. Within
the LMFDB, knowls are embedded inside webpages or other knowls, and expand to
provide more information when clicked. Such exposition is an important part of the
presentation of a database, but is peripheral to our main topic of the functioning
of the underlying system.

Another important aspect of a database project that falls beyond this article’s
scope is the social and financial efforts required to sustain a collaboration. There are
numerous examples of projects that are no longer accessible because the authors
have moved on or passed away. Projects have various ways of reaching out to
potential developers, ranging from academic workshops and conferences, to the
standard open source tools such as GitHub [19], to forms allowing users to easily
submit data [10,41,44]. In this article, we limit our attention to the technical side
of the job: from setting up hosting servers, to the different options for database
software, to details on how the LMFDB functions.

2.1. The LMFDB project. The Langlands program, first formulated by Robert
Langlands in the 1960s, is a set of widespread conjectures aimed at understanding
and explaining the interconnections between a dizzying array of subfields of math-
ematics, including number theory, representation theory, algebraic geometry, and
harmonic analysis—and in the 21st century its reach continues to expand. The
Langlands program has been called “one of the biggest ideas to come out of mathe-
matics in the last fifty years” and “the Grand Unified Theory of mathematics” [17, p.
3].

To provide compelling visual and computational displays of the Langlands pro-
gram “in action,” a database was created called the L-functions and Modular Forms
Database (LMFDB), available at the website http://www.lmfdb.org/. The LMFDB
was first conceived in 2007 [12] and remains the object of a significant amount of
ongoing work by over one hundred mathematicians [29, Acknowledgments].

The LMFDB hosts a variety of databases, including some predating the project
[13, 24, 25], and connects them through the Langlands program; we recommend
online experimentation or [12] for more details.

3. Nuts and bolts

When it comes to hosting a mathematical database, there is a wide range of
options available. Until the last several decades, the only choice was to use a print
format, for example in a book or an article, and rely on a publisher to distribute
its content and to make it available to the rest of scientific community. Since the

http://www.lmfdb.org/


4 EDGAR COSTA AND DAVID ROE

publisher takes care of most of the technical issues, this method offers the benefit of
simplicity to the author. Still, distribution in print provides several disadvantages
compared to digital distribution via the internet. For instance, the act of publishing
through print is a lengthy process, and the data is less immediately accessible than
online distribution, putting barriers in the way of the database user. Furthermore,
once the data is published, it is challenging to address mistakes, add new data or
features. For last, it can only accommodate small databases, due to the physical
requirements to print.

On the other hand, given that the digital distribution of mathematical data is
not taken on by publishers, authors have many more choices to make. We break
down these choices into the following related categories:

• back end — How to encode and manipulate the database in a machine
readable format.

• front end — How the user interacts with the database.
• hosting — Where to physically store the database.

We will overview some of the possible options in each of these categories

3.1. Back end. We organize the options for how to encode the database in a
machine readable format by how easy it is to search for content.

Human readable files. Storing the data set in a human readable format, like a
plain text file or a comma-separated values file, is one of the most straightforward
possible solutions. It does not require special software to access the data, very
similar to a table in print. However, it can be cumbersome and impractical to
search or manipulate the data without additional tools. Note that simple searches
are possible using tools like grep or the find feature of a text editor. However, these
methods do not offer the full search capability of a database.

Application dependent files. A more advanced solution is to store the dataset
in an application dependent format. For example, the Small Groups Library [7]
available in the GAP computer algebra system [18] uses a specific method to encode
solvable groups. In many cases, such a choice enables direct manipulation of the
desired objects. For example, using SageMath pickles makes it easy to load the data
into an active SageMath session. However, the dataset will not likely be efficiently
searchable, searching for objects with specific properties will usually require to
loop over every item in the dataset (a sequential search). Moreover, specialized
data formats are vulnerable to backward-incompatible changes in the software used
to load them and are more difficult to maintain in the long run.

Database structure. Finally, one may store the dataset in a database format, i.e.
in a format optimized for searching. As above, such a solution will require additional
software for users to manipulate the data, but the data formats are more stable
in practice since database software is widely used beyond mathematics. There are
many types of database available, each optimized with different applications; in this
article, we will focus on two:

• relational database — a collection of ledger-style tables with a fixed schema,
where the structure of each row is constant. This kind of database has been
prevalent for decades; major examples include Oracle [35], MySQL [34],
PostgreSQL [38], and SQLite [21].
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• document oriented database — a schema free database, where each object
is stored in a single instance in the database, and every stored object can
be different from every other. MongoDB [31] is one of the most famous
instantiations of this paradigm.

In Section 4, we will contrast PostgreSQL and MongoDB.

3.2. Front end. There are many choices for how to enable a user to interact with
data. Different options have varying degrees of accessibility and utility; we describe
three possibilities below.

Minimal. The author may decide to provide direct access to the database.
For example, the author may make the database files available through email or a
webpage; or allow direct read access to a SQL server [8].

Computer algebra system. If the database is provided in a computer algebra
system dependent files, these might evolve into being part of algebra system itself,
either as a standard or an optional package. For example, the Small Groups Li-
brary [7] is available in GAP and the K3 Database in Magma [30]. This option is
extremely convenient for users of those software systems but limits their availability
to others.

Static website.
The user may also interact with the database through a collection of web pages

displaying the data. These web pages can range widely in complexity. For example,
one can manually curate each page individually [3, 23] or automatically generate
them as static web pages [14, 15, 26, 28, 45]. Such webpages can provide a very
usable interface, but their main weakness is that the html code for displaying the
data must be duplicated for each object presented, introducing a large overhead
that becomes prohibitive as the size of the database grows.

Dynamic website. Alternatively, one can instead use a web application to
generate each page when it is accessed. This is essential for large datasets, as
generating and storing a static web page for each object can be infeasible. The
LMFDB follows such an approach, where the web page displaying the content is
generated on the fly through a dedicated web application based on Flask [40] and
HTML templates, and only a small amount of the content is human-curated. Other
examples of mathematical databases using such an approach include [6, 10]. The
main downside of this approach is a higher level of complexity when compared to
the static option.

3.3. Hosting. Finally, we discuss some of the options for where to physically host
the front end and the database. We focus on how each possibility varies in terms
of cost, ease of maintenance and scalability.

Personal hard-drive. This is one of the simplest options, as it has no initial
set up cost. However, it severely limits the database’s accessibility to others due to
the lack of a front end.

Personal web page. If one already maintains a personal web page, a convenient
option is to also use it to host the database and the front end. However, the scope
might be limited, as many universities will only allow their users to host static
content.
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Web framework. Another convenient option is to use a web framework service
(e.g. GitHub, CoCalc, Wordpress/Wikidot/blogs). For example, some people might
dump their database into GitHub, while others might also use it to host the front
end. These options offer a lower initial set up cost with a minimal long term
maintenance cost, however, the scope is also limited by the framework, since they
control what software is used to host content.

On a university/personal server. This solution provides complete control.
However, there is both a high initial cost in buying the servers and setting them up.
Moreover, one needs to maintain the server for the duration of its life: installing
security updates, dealing with service interruptions, and managing backups. In
addition, the database’s scope might be limited by the capabilities of the initial
hardware choices. The LMFDB uses a couple of servers purchased through grants
to provide a development platform for our contributors, and host the back end and
the front end for beta.lmfdb.org

Using a hosting service. Servers in the cloud [4, 20] provide complete control
and have no monetary startup costs, but require ongoing payments proportional
to the resources used. The main benefit is that one does not need to worry about
maintaining the servers themselves; cloud servers also have the ability to easily scale
the resources available if necessary. This option is currently used by the LMFDB
to host www.lmfdb.org.

4. MongoDB vs PostgreSQL

In 2009, when MongoDB was initially released as an open source project, it
presented itself as an exciting new option to easily store mathematical objects. As
a document-oriented database, where each document was stored independently in a
JSON-like format, it did not require a schema, a boon when creating new collections
of mathematical objects where the data requirements only gradually became clear.
Moreover, Python bindings were available, a language that many computational
number theorists were familiar with due to its use in SageMath. This setup worked
well for many years; however, as the LMFDB grew, various shortcomings of using
a non-relational database became more evident. In March 2018, we decided to
transition from MongoDB to PostgreSQL, a popular open source implementation
of the SQL language that grew out of earlier projects founded in the 1970s and 80s.
As a relational database, PostgreSQL stores data in a structured way, where the
data is organized in tables, and each table has a specified schema, i.e., each row
must have the same layout, with the types of columns constant across all rows.

4.1. Comparing two database systems. MongoDB and PostgreSQL offer two
different database paradigms. MongoDB, as a document-oriented database, is
meant to facilitate the storage of unstructured data, where the fields and types
present in each document can vary within a collection. This flexibility is extremely
convenient since the data structure can organically evolve as the project develops.
However, it can also easily lead to errors and unnecessary overhead for a structured
database. For example, field names were kept short in MongoDB to save space, and
multiple typos in the field names were found during the transition to PostgreSQL.
Furthermore, differing layouts across documents required more complicated pro-
cessing code. In contrast, PostgreSQL is a relational database with fixed schemas

beta.lmfdb.org
www.lmfdb.org
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that enable queries across multiple tables. Since the LMFDB was already a uniform
set of fields in MongoDB (so much so that an inventory application was written to
extract a schema from the data), creating a formal schema was fairly straightfor-
ward. Database-level schema support improves robustness and performance, and
PostgreSQL’s JSONB type allows for schemaless columns when desired.

One benefit of switching has been that storing the data in PostgreSQL re-
quires substantially less space than in MongoDB. For example, when converting
our biggest MongoDB collection Lfunctions.Lfunctions to the PostgreSQL table
lfunc_lfunctions, we observed a space savings of about 42%, going from 194GiB
to 113GiB. These savings translate both to monetary savings (we were spending
a total of about $2000 per year paying for storage space using MongoDB) and to
query speed when a sequential search is performed.

Two main factors contribute to the smaller storage requirements. First, we no
longer need to (repeatedly) store the name of each field in every document; this
was a MongoDB requirement, as fields in a document can vary across a collection.
For some of the LMFDB’s collections, these names accounted for a substantial
fraction of the storage requirement. In addition to the space benefits, the switch
to PostgreSQL also relaxes the pressure to minimize the lengths of these names,
improving readability.

The second factor contributing to space savings is PostgreSQL’s support for
arbitrary precision integers. As a mathematical database, the LMFDB frequently
uses large integers, which had to be stored as strings in MongoDB. In addition to
the storage consequences, various workarounds were required to sort and search the
data correctly. The elimination of these hacks has simplified some of the supporting
code.

While smaller tables help with query performance, indexes provide a more pow-
erful tool for speeding up searches. Indexes facilitate the location of records with
constraints on a specified set of columns by storing additional data. Having such
indexes available is key to providing quick search results for typical queries. For
example, both MongoDB and PostgreSQL support indexes based on binary trees,
which work well for totally ordered data such as integers and strings. However,
there is another query type that is not well supported by binary trees: given a
column representing a set of integers, search for rows that contain a particular set,
or are contained in a particular set. For example, we store the set of ramified
primes RK for number fields K, and we want to be able to search on number fields
by specifying such constraints on RK . Even though we supported such searches
through our web interface, many such searches took several minutes to perform
within MongoDB, which caused our web front end to timeout. In PostgreSQL,
most of these queries finish in a couple of seconds, both when the number of results
is not large enough to justify using an index (the first three rows of Table 1), and
when generalized inverted indexes (GIN) [43] apply (the last row of Table 1).

The significant improvement in indexless queries is another considerable advan-
tage of the transition to PostgreSQL. Such queries are relevant, since non-typical
queries can be the most interesting mathematically, and since it is impossible to
construct all indexes in advance because the LMFDB offers the user a lot of freedom

2We used WiredTiger for comparisons since it outperforms MMAP when using normal amounts
of RAM
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Query result/total MongoDB2 PostgreSQL
#{K : 5 /∈ RK} 71% 6h 9min 2.93s
#{K : {2, 5} ⊂ RK} 18% 10min 2s 6.9s
#{K : RK ⊂ {2, 3, 5}} 4% 14min 34s 3.42s
#{K : RK ⊂ {2, 3, 73}} 0.1% 8min 11s 170ms
Table 1. Times for counting the number fields K satisfying the
given constraint on set of ramified primes.

to select search parameters. We present two such examples in Table 2 (the first
for number fields and the second for elliptic curves), where the number of results is
about 1000 in each case. We also note that successful queries are instantaneous on
a second run, as both databases cache the results.

Query MongoDB PostgreSQL
{K : 5 /∈ RK , |discK | ≤ 2000} 1.95s 0.1s
{E : #X = 4, rankE = 1,#Etorsion = 1} 1min 58s 1.95s

Table 2. Times for fetching the objects/rows satisfying the given constraint.

While search performance is vital for website usability, the process of uploading
data and creating indexes is also essential to make the development sustainable and
to aid in the implementation of new features. PostgreSQL’s COPY FROM command
allows for the rapid importing of data from plain-text files without a Python in-
termediary, which is useful when the data is generated by some other system such
as Magma [9]. For example, we imported a 14 398 359 row table from a 680GB
text file in about 8 hours. With MongoDB we estimate that would have taken
us several days. Creating indexes in PostgreSQL is also dramatically faster than
in MongoDB, approximately by an order of magnitude. Additionally, PostgreSQL
offers a more diverse and mature set of open source front ends and administration
tools, for example [36,47], that lower the learning curve for the SQL language. The
transition has substantially improved database management.

In addition to performance improvements, PostgreSQL makes new kinds of
queries possible. Relational databases allow joining tables, returning values from
both tables when they share some specified relationship. The existing schemas,
having been designed for MongoDB, do not take advantage of this feature, but new
tables on finite groups and on p-adic tori will.

4.2. Transition. Once the decision had been made to switch from MongoDB to
PostgreSQL, we faced two main tasks: to port the data and to update the LMFDB
codebase to use PostgreSQL. The majority of the work was done by the second
author between March 2018 and August 2018, with assistance from the first author
starting in July.

Since PostgreSQL requires the specification of schemas, the initial step of the
data migration involved defining the schema for each table. In practice, most of
the tables had a schema already, which were made visible by a custom inventory
module within the LMFDB.3 Unfortunately, the accuracy of these schema varied:

3The inventory displayed the kinds of documents within each collection, the fields present on
each type of document, the indexes present in each collection, and both machine and human
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some collections had multiple independent kinds of records within the same table,
while others had typos in some of the field names. Moreover, the inventory system
itself proved to reflect the types of some columns inaccurately, since it inferred the
type from finding a single record. For example, it concluded that a specific field was
a real number, while some documents had complex values. Eventually, we overcame
these issues and created a schema for each PostgreSQL table.

In some cases, there were multiple possible types to choose from for a given
column. PostgreSQL 9.4 added support for a binary JSON type, which allows for
unstructured data to be stored in a column. It provided an alternative to arrays
that could also store an analog of Python’s dictionaries, with strings as keys. For
simplicity, we initially chose to use this JSONB type instead of arrays, since it
simplified some of the supporting code. However, after much of the rest of the
transition was complete, we realized that when arrays are possible (namely, when
the type is uniform across all entries), they provide some significant advantages.
Namely, arrays are more space efficient than the JSONB type, and indexes on arrays
support more operations than indexes on a JSONB column. We are gradually
transitioning JSONB to array columns where useful.

We also took advantage of the transition to change some data types that had
been chosen due to the deficiencies in MongoDB. For example, many large integers
had been stored as strings since MongoDB lacked an arbitrary precision data type.
With the switch to PostgreSQL, we were able to use the numeric type instead,
which simplified code used to sort and compute with the results.

Since one of the goals of the switch was to improve performance, we made some
changes to the schemas to help speed up queries. In particular, we split some
of the largest tables in half, putting columns that were used for searching into
a search table and columns that were only used for display into an extras table.
This significantly reduced the search table’s size, improved index efficiency, and
sped up indexless queries that had to traverse the whole table. Query performance
is also affected by sort order, and the default sorting on many tables uses four
or five columns. We added a primary key column to each table, and for large
tables we ordered this primary key by the table’s standard order. This feature
decreased the size of indexes and improved their performance since search results
could be ordered by a single numeric column rather than a combination of many
columns. This optimization was feasible because the data in the LMFDB changes
infrequently, and because each search page comes with a default order.

With the schemas created and export scripts written, the actual changeover of the
data went reasonably smoothly. PostgreSQL provides a COPY FROM command
to load data from a text file, which runs very quickly. After several false starts,
exporting 400GB of data from MongoDB to text files took three or four days;
copying it between servers on opposite sides of the Atlantic took less than a day,
and loading it into PostgreSQL took less than a day.

Adapting the LMFDB codebase to use PostgreSQL took longer. The backend
code for the LMFDB is written in Python, and the Python bindings for MongoDB
and PostgreSQL take a very different approach. PyMongo [32] offers a high level
interface to the database that integrates python data structures. Queries are per-
formed by constructing dictionaries that specify the values of certain columns and

generated information on the types of each field. It was a very useful resource for constructing
schema.
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have special keys for adding more complicated constraints such as inequalities or
boolean combinations of conditions. Psycopg [46], on the other hand, is a thin
interface that offers the user the ability to execute SQL statements. Construct-
ing queries using dictionaries worked well as a model for the LMFDB, since the
search pages provided many inputs that could be processed independently into a
dictionary. Moreover, we did not want to require LMFDB developers to learn SQL.
Therefore, we implemented a high-level interface to PostgreSQL that translated a
dictionary-based query system similar to PyMongo’s into SQL SELECT statements
while avoiding SQL injection attacks. This query interface has already proved use-
ful in rapidly prototyping another project, researchseminars.org, and we plan to
make it available as a stand-alone tool.

5. Benefits

5.1. Abstraction. As the LMFDB has grown, the most common paradigm for
adding new features has been to take a functional section of the website, copy
it to a new folder, and modify the templates and backend code. This approach
has the benefit of easily producing valid code since it is iteratively making small
changes to an already functional webpage. However, it leads to large quantities of
repeated code, which make fixing bugs and adding features much harder, since the
same change must be applied in dozens of locations. The standard solution is to
encapsulate tasks into functions that can then be used repeatedly and changed as
needed. Of course, the LMFDB has used functions like this since the beginning,
but often these functions are not written in a way that allows them to be used in
multiple sections of the website.

The task of switching from MongoDB to PostgreSQL was made more difficult by
this low level of abstraction, but it also presented an opportunity. Since the data-
base change necessitated changing a large number of files throughout the project,
it offered a perfect time to make additional changes. We highlight three in particu-
lar to illustrate the kinds of encapsulation that accompanied the database change:
a new data-management interface, more robust and uniform handling of search
inputs, and common tools for creating statistics pages.

We centralized many of the scripts used to upload data into a suite of data man-
agement tools. There is now a single object available from the Sage command line
that has methods for performing a variety of tasks: creating new tables and modify-
ing existing schemas, copying data to and from text files, moving data between the
beta and production versions of the database, accessing PostgreSQL’s tools for an-
alyzing slow queries, adding indexes and constraints, and tracking statistics as data
is changed. The centralization of these tasks allows us to reduce code duplication
and use best practices to handle errors.

Each section of the LMFDB has a search page, where users can input constraints
they would like their curve, field or group to satisfy. Some input boxes require
an integer or list of integers; others need a label string in a particular format;
others a rational number. The processing code must process the user provided
text, raising appropriate errors on invalid input, and transform the set of inputs
into a database query. Before the database change, we had already begun the
process of encapsulating this task. Each input box corresponds to a specific field or
column in the database, and there is a processing function for each type of input

https://researchseminars.org
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(list of integers, floating point, etc.). As we switched each part of the LMFDB to
PostgreSQL, we ensured that it was using these functions.

Once these queries have been constructed, we need to execute the search and
pass the results to the Jinja [39] template that actually creates the webpage seen by
the user. Various parts of this task are shared among all sections of the LMFDB.
For example, we have to be able to handle errors in user input, errors or timeouts
in the execution of the query, and jump boxes that allow a user to go straight to an
object with a particular label. As part of the switch to PostgreSQL, we created a
search wrapper that performs all of these jobs, and adopted it across the LMFDB.
In addition to simplifying the code overall, this change made the user experience
more uniform and allowed for the creation of new features, which will be described
in the next section.

Many parts of the LMFDB had a statistics page prior to the database change.
These pages described the number of objects with certain attributes; for example,
a table of how many number fields were available by signature, or a table giving
the fraction of elliptic curves with a specified torsion structure. Along with the
database change, we created a class to support the database queries required for
these statistics, and a common template to display them nicely. This change has
the benefit that it automates the process for updating these counts when developers
add data. It also makes it easier to create these statistics pages for more sections of
the LMFDB, and makes it easier to implement new features such as user-requested
statistics.

5.2. New Features. In addition to the intrinsic benefits of using PostgreSQL, the
transition has eased the implementation of a number of new features. While many
of these would have been possible using MongoDB, the improved abstraction made
implementing them much more manageable. And some, such as dynamic statistics
and verifications, rely on PostgreSQL’s improved performance and the relational
model.

PostgreSQL supports transactions, allowing one to roll back to a functional ear-
lier state if some later action fails. We have built these transactions into our inter-
face layer, making it possible to safely modify rows in place, rather than creating a
copy of the whole table when changes are made.

The fact that all interactions with the database pass through our interface layer
allows us to add custom logging. For example, all queries that take longer than a
threshold are recorded, allowing us to focus on creating the right indexes. We also
log high-level actions, such as adding new data to a table or changing a schema,
along with a username to provide a record of what changes have been made to the
data. These logs help us ensure the quality of our data.

The statistics infrastructure has enabled a new user interface which we refer to as
dynamic statistics. Rather than presenting only a pre-selected set of views, the user
can specify which variables they are interested in and the objects’ constraints. The
system then generates a display describing the possible values of those variables and
the number of objects possessing each possible set of values. For example, a user
can create a table to view how the weight and level of modular forms vary among
forms with complex multiplication. As of June 2020 we are still in the process
of enabling this feature throughout the LMFDB. We hope that this feature will
provide researchers with a new method of interacting with the LMFDB, allowing
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them to look for large scale patterns in these objects in addition to searching for
objects with particular properties.

Many browse pages in the LMFDB already had a link to view a random object.
Because of the new search wrapper abstraction, it was easy to add the ability to
return a random object satisfying a search query. This feature saves time when
browsing since it allows you to more quickly reach the homepage of an object
satisfying a particular constraint, such as CM elliptic curve or a weight one modular
form.

During the transition to PostgreSQL, we modified the search results pages so
that they do not always provide the total count. The count is provided only if it is
sufficiently small or has already been cached (though it is available in every case if
requested). This change dramatically improved response times in some cases, where
a large number of results makes finding the first few much easier than counting them
all.

Mathematical data differ from data in most other applications because it has a
notion of correctness that can be checked, rather than just providing a record of a
real-world measurement. Some of these verifications are internal, such as checking
that the defining polynomial of a number field is irreducible or that the sum of the
complex embeddings of classical modular matches the trace of the exact newform.
Others rely on connections with other tables in the database, such as checking
that invariants matchup between an elliptic curve and its corresponding modular
form. These kinds of verifications across different tables are much faster using
PostgreSQL, since the relational database model is explicitly designed to search
across different tables. The switch to PostgreSQL made it possible to create a
framework to write such consistency checks and run them whenever new data is
added.

We are excited about the new features that we added to the LMFDB and we
believe that the transition to PostgreSQL will aid with the long term maintenance
of the project. We look forward to how the abstraction layer we have created around
database interactions will help standardize the user experience across LMFDB. We
hope others will learn from our experience in their efforts to leverage computation
and data towards the study of mathematics.
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