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1. Introduction

This paper grew out of Kevin Buzzard’s course A Concrete Introduction to p-adic Modular
Forms [2], part of the eigenvarieties semester at Harvard in spring 2006. It generalizes the
results of Buzzard and Kilford [4] from the case p = 2 to p = 3.

The eigencurve, first constructed by Coleman and Mazur [5], parameterizes eigenvalues
of the compact operator U on the space of overconvergent modular forms. In this paper, we
prove that the 3-adic eigencurve consists of a countable disjoint union of annuli near the
boundary of weight space, and compute the eigenvalues of U on these components of the
eigencurve explicitly. Let W◦ be the open disc over C3 with center 0 and radius 1, write
v(w0) for the 3-adic valuation of w0 ∈ W

◦ and set |w0| = 3−v(w0). To each w0 ∈ W
◦ we may

associate a unique weight κ ∈ Hom(Z×3 ,C
×
3 ) with κ(−1) = 1 and κ(4) = 1 + w0.

Theorem 1.1. If κ is a weight corresponding to w0 ∈ W
◦ with 1/3 < |w0| < 1, and if

v = v(w0), then the slopes of U acting on overconvergent modular forms of weight κ are
the arithmetic progression 0, v, 2v, 3v, 4v, . . . , each appearing with multiplicity 1.

In Section 2, we introduce notation that we will need, including definitions of the op-
erators U and V and definitions of the modular forms that will play a crucial role in what
follows. In Lemma 2.4, we prove fundamental relationships between the modular forms
just defined. In the proof of this lemma we used the q-expansion principle, GP/PARI [1]
and Sage [15] in order to obviate the need for a detailed analysis of the poles and zeroes of
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the various modular forms involved. The results stated in Lemma 2.4 constitute the part of
the paper most likely to fail for other p. Conversely, if such results can be proved for other
p, most of the rest of the paper would follow. Section 2 concludes with a corollary giving
the action of U and V on various power series rings.

Section 3 begins the analysis of families of modular forms. We analyze T, a family
given by powers of a theta series, in order to gather information about the Eisenstein family.
Using the results of the previous section, we consider various quotients of T,U(T),V(T)
and VU(T) and prove that these quotients have specific degrees of overconvergence.

We consider the overconvergence of E/V(E) in Section 4, where E is the Eisenstein
family. In order to find the degree of overconvergence of E/V(E), we use a technique sug-
gested by Buzzard that eliminates the need for some of the arguments in [4, §4-5]. From
Coleman and Mazur [5], we know that E/V(E) is at least slightly overconvergent. We
use the fact that U increases overconvergence, together with the explicit overconvergence
bounds for the family T found in Section 3, to show that E/V(E) extends an explicit dis-
tance into the supersingular discs.

In Section 5 we consider specializations of E/V(E) to weights κ near the boundary of
weight space. If we expand Eκ/V(Eκ) as a power series in y (a specific parameter on X0(9)
defined in Section 2), then reduce modulo the maximal ideal, the resulting power series
over a finite field does not depend on κ.

In Section 6 we find a description for the action of U on the 3-adic Banach space of
overconvergent modular forms of weight κ. In particular, if |c| is sufficiently close to 1 then
V(Eκ)(cy)n forms a basis for this Banach space as n ranges over non-negative integers. We
find a generating function that gives us the matrix of U with respect to this basis.

In Section 7 we find the valuations of the coefficients of the characteristic power series
of U. The coefficients are given by determinants of submatrices of the matrix of U. We use
the generating function from Section 6 to find a lower bound on the valuation of the coef-
ficients. Finally, we use the results of Section 5 to prove that this inequality is actually an
equality by showing that a certain determinant is a 3-adic unit. Knowledge of the valuations
of the coefficients then gives us the proof of the main theorem.

Finally, in Section 8 we summarize some related work, both for p = 3 and larger p.

2. Preliminaries

Throughout this paper, we will conflate modular forms with their q-expansions in order
to make the grammar easier to follow. Let ω be a primitive cube root of unity, and define
K = Q3(ω). Set OK to be the ring of integers of K, let π = ω − 1 be a uniformizer for OK ,
and let v3 be the extension of the standard valuation on Q3 to K (ie v3(3) = 1). Define u
such that 3 = uπ2. Let C3 be the completion of an algebraic closure of Q3 and OC3 be the
ring of integers of C3. On all of these fields, we have the norm |x| = 3−v3(x).

All rings are commutative with unity, and if R is a ring we define two R-module homo-
morphisms U and V : R~q�→ R~q� by:

U

 ∞∑
n=0

rnqn

 =

∞∑
n=0

r3nqn,
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and

V

 ∞∑
n=0

rnqn

 =

∞∑
n=0

rnq3n.

One can easily check that V is an R-algebra homomorphism.

Lemma 2.1. For all g, h ∈ R~q�, we have U(gV(h)) = hU(g).

Proof. This follows from a straightforward computation.

Corollary 2.2. If h ∈ R~q�×, then V(h) is too, and U(g/V(h)) = U(g)/h.

Proof. Apply Lemma 2.1 to g and h−1 and note that V is a ring homomorphism.

We now define modular forms that will serve as analogues of those in [4, §2] for the
p = 3 case.

For k ≥ 2 an even integer, define

Ek := 1 +
2

(1 − 3k−1)ζ(1 − k)

∞∑
n=1

( ∑
0<d|n
3-d

dk−1
)
qn,

where ζ(s) is the Riemann zeta function. Then Ek is a modular form of level 3 and weight k
obtained, for k ≥ 4, from the standard level 1 Eisenstein form of weight k by dropping an
Euler factor. The form Ek is an eigenform for U.

The function

∆(q) := q
∞∏

n=1

(1 − qn)24 = q − 24q2 + 252q3 − 1472q4 + · · ·

is a standard level 1 weight 12 modular form. Set

f =

√
∆(q3)
∆(q)

= q + 12q2 + 90q3 + 508q4 + · · · ,

a level 3 modular function giving an isomorphism X0(3) → P1 (this fact follows from the
observation that f = q

∏
3-n(1−qn)−12 has a simple zero at the cusp∞ and no other zeroes).

Define

θ :=
∑

(a,b)∈Z2

qa2+ab+b2
= 1 + 6q + 6q3 + 6q4 + 12q7 + · · · ,

a level 3 weight 1 modular form that will play the rôle that the form E2 (with p = 2) did in
[4].

Proposition 2.3. θ and θ2 are eigenforms for the U operator with eigenvalue 1.

Proof. SinceM2(Γ0(3)) is 1 dimensional [7, Thm. 3.5.1], and the square of any element
ofM1(Γ1(3)) lies inM2(Γ0(3)),M1(Γ1(3)) is at most one dimensional. Thus θ and θ2 are
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both eigenforms. The computation of the eigenvalue follows from the first few terms of the
q-expansion.

Finally, define

y =

θ
V(θ) − 1

6
= q − 5q4 + 32q7 − 198q10 + 1214q13 − · · · ,

a level 9 modular function giving an isomorphism X0(9)→ P1.
We encapsulate the crucial facts about these modular forms in the following lemma.

Using this lemma, we will then be able to proceed in the same fashion as Buzzard and
Kilford in [4].

Lemma 2.4.

(1) U(y) = U(y2) = 0 and U(y3) =
y(1+3y+9y2)

(1+6y)3 .

(2) For m ∈ Z≥0 we have U(y3m+1) = U(y3m+2) = 0 and U(y3m) =

(
y(1+3y+9y2)

(1+6y)3

)m
.

(3) f =
y(1+3y+9y2)

(1−3y)3 , and U( f ) = 10 · 32 f + 4 · 37 f 2 + 311 f 3 and V( f ) =
y3

1−27y3 .

Proof.

(1) By Proposition 2.3, θ and θ2 are both eigenforms for U. Putting this together with
Corollary 2.2 and the definition of y, we have that

6U(y) = U
(
θ

V(θ)

)
− 1 =

U(θ)
θ
− 1 = 0

and

36U(y2) = U

( θ

V(θ)
− 1

)2
=

U(θ2)
θ2 − 2

U(θ)
θ

+ 1

= 0.

In order to show that U(y3) =
y(1+3y+9y2)

(1+6y)3 , one could analyze the zeroes and poles of
U(y3). But both are meromorphic functions on X0(9) with at most nine poles, and thus
it suffices to check that the first 100 terms of their q-expansions agree, which is easily
performed on a computer.

(2) The fact that U(y) = 0 and U(y2) = 0 implies that y = qV(F) for some F ∈ Z~q�.
Applying Lemma 2.1 we thus have U(yn) = U(qnV(F)n) = U(qn)Fn, which easily
implies U(y3m+1) = U(y3m+2) = 0. On the other hand, U(y3) = U(q3V(F)3) = qF3, so
U(y3m) = U(q3mV(F)3m) = qmF3m = U(y3)m.

(3) As in (1), these results follow by a comparison of q-expansions.
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Using this lemma, we are able to deduce the following corollary, specifying the image
under U and V of various subsets of power series rings.

Corollary 2.5. Let R be a commutative ring containing OK , let r ∈ OK satisfy v3(r) ≤ 1,
and let R~ry� denote the subring of R~q� consisting of elements of the form a0 + a1(ry) +

a2(ry)2 + · · · . Then

(1) R~r f � = R~ry� and r f R~r f � = ryR~ry�.
(2) V(R~r3 f �) = R~r3y3� ⊆ R~r f � and V(r3 f R~r3 f �) = r3y3R~r3y3� ⊆ r f R~r f �.
(3) U(R~r f �) ⊆ R~r3 f � and U(r f R~r f �) ⊆ r3 f R~r3 f �.

Proof.

(1) Lemma 2.4(3) gives 3 f =
3y(1+3y+9y2)

(1−3y)3 and thus r f = ry + · · · ∈ ryR~ry�. As a power
series in ry, we can invert this equation and find ry as a power series in r f , giving the
desired equality.

(2) Since V is an R-algebra homomorphism, continuous with respect to the q-adic topol-
ogy, and so, again by Lemma 2.4(3), we have

V(R~r3 f �) = R~V(r3 f )� = R~r3V( f )� = R~r3y3�.

In addition, R~r3y3� ⊆ R~ry� = R~r f �. Finally, if α ∈ r3 f R~r3 f � has no constant
term, then neither does V(α).

(3) By part (1), we have that R~r f � = R~ry�. But

R~ry� = R~r3y3� ⊕ ryR~r3y3� ⊕ r2y2R~r3y3�

as R-modules, so one can write g ∈ R~ry� as g = g0 + g1 + g2 with gi ∈ riyiR~r3y3�.
Then by Lemma 2.4(1) and Lemma 2.1, U(g1) = U(g2) = 0. Write g0 = V(h) with
h ∈ R~r3 f � using part (2). Then U(g) = U(g0) = UV(h) = h, so we have U(R~r f �) ⊆
R~r3 f �. If g ∈ r f R~r f � = ryR~ry� then g0 ∈ r3y3R~r3y3� and thus we can choose
h ∈ r3 f R~r3 f �, again by part (2).

3. Families of Modular Forms

We use weight space to 3-adically interpolate between modular forms of integral weight.
DefineW = Hom(Z×3 ,C

×
3 ), and letW◦ be the open disc over C3 with center 0 and radius

1. For each w ∈ W◦ there is a unique κ ∈ W with κ(4) = 1 + w and κ(−1) = 1. This map
W◦ →W identifiesW◦ with one of the two components of weight space. As in Buzzard
and Kilford [4], all of the weights appearing in this paper will lie in this identity component
W◦.

For k ∈ C3 with |k| < 1, we can think of k as the weight x 7→ xk. In this case, 4k = w + 1
and thus w

3 ∈ kZ3~k�. Therefore, we have

Z3~w� ⊂ Z3~w/3�→ Z3~k�,
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where the inclusion is the natural one and the map on the right is the isomorphism sending
w/3 to (4k − 1)/3 = k + · · · ∈ kZ3~k�.

We shall use italics to denote modular forms of fixed weight, and bold face to denote
families of modular forms. We shall consider two families: first T, defined below, and then
E/V(E), defined in the next section. We will use T to study E/V(E), our ultimate object of
interest.

Define

T = θk,

that is, T is the element θk of 1 + 3kqZ3~k, q� ⊂ Z3~k, q�×. One constructs T explicitly
using the binomial theorem. In addition, we have the following application of the binomial
theorem that will be used repeatedly in what follows:

Lemma 3.1. Let R be a commutative ring containing OK , let r ∈ OK be arbitrary, let ξ be
an indeterminate, and let g ∈ R~rξ�. Then (1 + rπξg)k ∈ 1 + rπkξR~k, rξ�.

Proof. First note that v3(n!) ≤ (n − 1)/2. We now use the binomial theorem to conclude
that

(1 + rπξg)k = 1 + rπkξg
(
1 +

k − 1
2!

(rπξg) +
(k − 1)(k − 2)

3!
(rπξg)2 + · · ·

)
= 1 + rπkξg

(
1 +

π(k − 1)
2!

(rξg) +
π2(k − 1)(k − 2)

3!
(rξg)2 + · · ·

)
∈ 1 + rπkξR~k, rξ�.

We use Lemma 3.1 to get information about the overconvergence of the family T.

Lemma 3.2. We have the following containments:

(1) θ/V(θ) ∈ 1 + 3 fOK~3 f �.
(2) T/V(T) ∈ 1 + 3k fOK~k, π f �.
(3) U(T)/T ∈ 1 + 9k fOK~k, 3π f �.
(4) Let σ denote the OK~k� algebra automorphism of OK~k, q� sending q to ωq. Then we

have σ(T)/T ∈ 1 + 3πkyOK~k, 3y� and σ2(T)/T ∈ 1 + 3πkyOK~k, 3y�.
(5) VU(T)/T ∈ 1 + πkyOK~k, 3y�.
(6) U(T)/VU(T) ∈ 1 + 3kyZ3~k, 3y�.

Proof.

(1) By the definition of y we have that θ/V(θ) = 1 + 6y. But we know from Corollary 2.5
(i) that 3y ∈ 3 fOK~3 f �, and thus θ/V(θ) ∈ 1 + 3 fOK~3 f �.

(2) Write θ/V(θ) = 1+3 f g for g ∈ OK~3 f �. Applying Lemma 3.1, we have that T/V(T) ∈
1 + 3k fOK~k, π f �.

(3) Applying Corollary 2.5 (iii) with R = OK~k� and r = π gives the containment
U(T)/T ∈ 1 + 9k fOK~k, 3π f �.
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(4) Note that σ fixes the image of V , so σ(T)
T =

σ(T/V(T))
T/V(T) . Now, since the power series of y

in terms of q contains only exponents congruent to 1 modulo 3, σ(y) = ωy. Therefore
σ(T/V(T)) = σ((1 + 6y)k) = (1 + 6ωy)k, and thus

σ(T)
T

=

(
1 + 6ωy
1 + 6y

)k

=

(
1 +

6πy
1 + 6y

)k

.

We now apply Lemma 3.1, yielding σ(T)
T ∈ 1 + 3πkyOK~k, 3y�.

The same argument works with σ replaced by σ2, noting that ω2 − 1 = π(ω + 1).
(5) Since qi + σ(qi) + σ2(qi) equals 0 if i . 0 (mod 3) and equals 3 if i ≡ 0 (mod 3), we

have that 3VU(T) = T + σ(T) + σ2(T). Thus 3VU(T)/T ∈ 3 + 3πkyOK~k, 3y�, which
yields the desired result after division by 3.

(6) Part (iii) gives U(T)/T ∈ 1+9k fOK~k, 3π f � ⊂ 1+3kyOK~1, 3y�. Putting this together
with part (v) and dividing yields U(T)/VU(T) ∈ 1 + πkyOK~k, 3y�. But U(T)/VU(T)
is clearly an element of Z3~k, y�, and since

Z3~k, y� ∩ 1 + πkyOK~k, 3y� = 1 + 3kyZ3~k, 3y�,

we have the desired conclusion.

4. The Family E/V(E)

In this section we will prove a result about the degree of overconvergence of the family
of modular functions E/V(E). General expositions on families of overconvergent modular
functions and overconvergent modular forms can be found in [3, Appendix; 5, §2.1, 2.4].
For our purposes, however, we may remain at the level of rings, using only one result
from the more general expositions above. Specifically, we can rephrase Proposition 2.2.7
of Coleman and Mazur for our purposes in the following proposition:

Proposition 4.1. For all weights k, the p-adic modular function Ek/V(Ek) ∈ OC3~r f � for
some r ∈ C3 with |r| < 1.

Using the knowledge that Ek/V(Ek) overconverges, we get the following explicit result
on how far E/V(E) overconverges. Recall from Section 3 that w = 4k − 1 ∈ W◦.

Theorem 4.2. The ratio E/V(E) belongs to Z3~w/3, 3y�.

Proof. The key idea is to use the fact that U increases overconvergence to prove that
something that we know overconverges to a small extent actually overconverges to a much
greater degree. For the moment fix a weight k. Define a map Ũ : OC3~ f �→ OC3~ f � by

Ũ(α) = U
(
α

U(θk)
VU(θk)

)
.
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Note that

Ũ
(

Ek

U(θk)

)
= U

(
Ek

U(θk)
U(θk)

VU(θk)

)
= U

(
Ek

VU(θk)

)
=

Ek

U(θk)
.

Now, if we knew that Ek/U(θk) were an element of OC3~r f � with 1
3 ≤ |r| < 1 and

U(θk)/VU(θk) ∈ OC3~3 f � then we could conclude using Corollary 2.5 (iii) that

Ek/U(θk) ∈ OC3~r
3 f �

and thus Ek/U(θk) ∈ OC3~27 f � by repeated application of Ũ. So we need to demonstrate
the two assumptions above. Lemma 3.2 (vi) gives U(T)/VU(T) ∈ 1 + 3kyZ3~k, 3y�. Spe-
cializing to weight k and using Corollary 2.5 (i) yields U(θk)/VU(θk) ∈ OC3~3 f �. In addi-
tion, by Proposition 4.1 and Lemma 3.2 we know that both Ek/V(Ek) and U(θk)/VU(θk)
are in OC3~r f � for some r with |r| < 1, and thus so is their quotient, Ek/U(θk)

V(Ek/U(θk)) . Therefore,
so is Ek/U(θk) and thus we have by the argument above that Ek/U(θk) actually belongs to
OC3~27 f �. Corollary 2.5 (ii) now implies that V(Ek)/VU(θk) ∈ OC3~3 f �.

Putting all of the previous containments together yields

Ek

V(Ek)
=

Ek

U(θk)
U(θk)

VU(θk)
VU(θk)
V(Ek)

∈ OC3~3 f � = OC3~3y�.

We now need to work over all weights k simultaneously. We know that

E/V(E) ∈ Z3~k, y� = Z3~w/3, y�.

Say E/V(E) =
∑

i, j≥0 αi, j(w/3)iy j. Suppose for the sake of contradiction that for some i
and j, v3(αi, j) < j. Among such, choose one with minimal i and let w be a weight with
0 < v3(w/3) < j−v3(αi, j)

i . Consider the valuation of the coefficient of y j in the expansion of
E/V(E):

v3

∑
m≥0

αm j(w/3)m

 .
Note that v3(αi, j(w/3)i) < j, so the only way that the whole sum could have valuation
at least j would be if two terms with low valuation had exactly the same valuation. But
for m > j

v3(w/3) , we have v3(αm j(w/3)m) > j, so by adjusting w slightly without changing
this threshold value of m we can ensure that the minimum valuation occurring in the sum
does not appear twice. This gives a contradiction, since we know that for each weight,
Ek/V(Ek) ∈ OC3~3y�.

Corollary 4.3. If we write E/V(E) =
∑

ai, jwiy j then 3 j−i|ai, j for j ≥ i ≥ 0.

Proof. By the theorem and the fact that E/V(E) ∈ Z3~w, q� = Z3~w, y� we can write
E/V(E) =

∑
ai, jwiy j =

∑
bi, j(w/3)i(3y) j with ai, j, bi, j ∈ Z3. Thus ai, j = 3 j−ibi, j and the

result follows.
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5. Reduction of the Eisenstein Family Near the Boundary of Weight Space

Let F denote the residue field of OK . As before, write E/V(E) =
∑

i, j ai, jwiy j. Now spe-
cialize to some weight w0 ∈ OC3 satisfying 1/3 < |w0| < 1, and let κ denote the corre-
sponding character. We deduce that Eκ/V(Eκ) ∈ OK~w0y�. Write Eκ/V(Eκ) = gκ(w0y) with
gκ ∈ OK~X�. Let ḡκ ∈ F~X� denote the reduction of gκ modulo the maximal ideal of OK .

Define r(X) ∈ F~X� by r(X) =
∑

m≥0 X3m
.

Lemma 5.1. We have ḡκ(X) = 1 − X−1r(X3) − X−2(r(X3) − r(X3)2). In particular, ḡκ is
independent of κ (for κ corresponding to w0 ∈ W

◦ with 1/3 < |w0| < 1).

Proof. Fix κ and say gκ =
∑

cnXn, with cn = cn(κ) ∈ OK . Specializing the quotient
E/V(E) =

∑
i, j ai, jwiy j to weight w0 we have c jw

j
0 =

∑
i ai, jwi

0 and thus

c j =
∑

i

ai, jw
i− j
0 .

Since |w0| > 1/3, Corollary 4.3 implies that ai, jw
i− j
0 is in the maximal ideal of OC3 if j > i.

But ai, jw
i− j
0 is also in the maximal ideal of OC3 if j < i since ai, j ∈ Z3 and |w0| < 1.

Therefore,

c̄n = ān,n ∈ F.

In particular, c̄n is independent of the choice of κ and thus ḡκ is as well. Thus to finish the
proof of the lemma, we need only verify the formula for ḡκ for a particular choice of κ. Let
κ0 be the Dirichlet character of conductor 9 given by κ0(2) = ω + 1 where ω is a primitive
cube root of unity. The weight corresponding to κ0 is κ0(4) − 1 = ω − 1 which satisfies
1/3 < |ω − 1| < 1. The corresponding Eisenstein series is

Eκ0 = 1 −
(

1
18

8∑
m=1

mκ0(m)
)−1 ∑

n>0

( ∑
0<d|n
3-d

κ0(d)
)
qn

= 1 + (1 − ω)q + 3q2 + (1 − ω)q3 + (4 + 2ω)q4 + · · ·

and the corresponding ratio

f0 := Eκ0/V(Eκ0 ) = 1 + (1 − ω)q + 3q2 + (4 + 5ω)q4 + · · ·

is a function on X0(27) which can be checked to satisfy the equation

9y3 f 3
0 + (−27y3 − 9y2 − 3y) f 2

0 + ((27 − 27ω)y3 + 27y2 + 9y + (2 + ω)) f0
+ ((−27 + 27ω)y3 − 27y2 − 9y − (2 + ω)) = 0.

If we consider f0 as an element of OK~y� then this last equation is an identity in OK~y�.
Dividing the whole equation by −1 − 2ω and setting X = (−1 +ω)y = w0y, we deduce that
the equation

X3gκ0 (X)3 + (−3X3 + (1−ω)X2 +ωX)gκ0 (X)2 + ((3−3ω)X3− (3−3ω)X2−3ωX +ω)gκ0 (X)

+ ((−3 + 3ω)X3 + (3 − 3ω)X2 + 3ωX − ω) = 0
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is an identity in OK~X�. Reducing modulo the maximal ideal we find that

X3ḡκ0 (X)3 + Xḡκ0 (X)2 + ḡκ0 (X) − 1 = 0

in F~X�. Using the identity r(X) − r(X)3 = X, which holds in F~X�, it is straightforward
to check that ḡκ0 (X) = 1 − X−1r(X3) − X−2(r(X3) − r(X3)2) is the unique solution to this
equation in F~X�.

6. Generating Function for the Matrix of the U-operator Near the Boundary of
Weight Space.

In this section we begin the computation of the characteristic power series of U acting on
overconvergent forms of weight κ, where κ corresponds to a point w0 in weight space with
1/3 < |w0| < 1. In particular, we give an expression for the coefficients of the matrix of U
with respect to a certain basis using generating functions.

Almost by definition, V(Eκ) is an overconvergent modular form of weight κ [5, Prop.
2.2.7]. Corollary 2.5 (i) implies that if c ∈ C3 with 1 > |c| > 1/3 then the region of X0(9)
defined by |cy| ≤ 1 is isomorphic to the region of X0(3) defined by |c f | ≤ 1 and thus the
powers of cy can be taken as a Banach basis of a 3-adic Banach space M0 of weight 0
overconvergent modular forms (this space depends on c, but we will suppress this choice in
our notation). For |c| sufficiently close to 1, the space V(Eκ)M0 of overconvergent weight κ
modular forms will be closed under the action of the standard Hecke operators, and the
operator U will be compact. This space has a Banach basis {V(Eκ)(cy)n : n = 0, 1, 2, . . .}
and we shall prove results about the U operator by analyzing its matrix with respect to this
basis. Define mi, j ∈ C3 for i, j ≥ 0 by

U(V(Eκ)(cy) j) = V(Eκ)
∑

i

mi, j(cy)i. (6.1)

Lemma 6.1. The generating function
∑

i, j≥0 mi, jXiY j is equal to

gκ(
w0
c X)(1 + 6

c X)3

(1 + 6
c X)3 − Y3(c2X + 3cX2 + 9X3)

.

Proof. A rearrangement of equation 6.1 gives∑
i

mi, j(cy)i = (Eκ/V(Eκ))U((cy) j).

By Lemma 2.4, U(y j) = 0 if j is not a multiple of 3, so mi, j = 0 in that case. For j = 3t, we
have U(y j) = (y(1 + 3y + 9y2)/(1 + 6y)3)t) and thus∑

i

mi, j(cy)i = gκ(w0y)
(

c3y(1 + 3y + 9y2)
(1 + 6y)3

)t

.

This is an identity in C3~y�, so substituting X for cy gives∑
i

mi, jXi = gκ(w0X/c)
(

c2X + 3cX2 + 9X3

(1 + 6X/c)3

)t

.
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Multiplying by Y j and summing over j gives∑
i, j

mi, jXiY j = gκ(w0X/c)
∑
t≥0

(
(c2X + 3cX2 + 9X3)Y3

(1 + 6X/c)3

)t

,

and summing the geometric series on the right hand side gives the result.

Since the mi, j are just the matrix coefficients of U operating on the space of weight κ
overconvergent modular forms, we can read off the well known result that U is compact
for |c| < 1 sufficiently close to 1 by noting that if |c| > |w0| then the coefficients of gκ are
integral and w0

c ,
6
c and c all have norm less than 1.

7. The Characteristic Power Series of U Near the Boundary of Weight Space

As in the previous section, let w0 satisfy 1/3 < |w0| < 1 and let κ be the corresponding
weight. In this section we compute the characteristic power series for various compact
operators on p-adic Banach spaces; see Serre [13] for the definitions and basic theorems.
Our goal in this section is to determine the valuations of the roots of the characteristic
power series of U. In order to do so, we compute the valuations of the coefficients of the
characteristic polynomial in Proposition 7.4, then read off the valuations of the roots using
Newton polygons. Since y has the property that U(y j) = 0 when j is not a multiple of three,
our matrix is only nonzero on every third row. In addition, since U is compact we know
that the valuations of the rows are increasing. In Lemma 7.1 we provide the tool to pull off

the valuation component of the coefficients of the characteristic polynomial. Lemmas 7.2
and 7.3 then give us the ability to prove that what remains has unit determinant.

Fix s a positive integer, and let d ∈ OC3 be nonzero. Let N = (ni, j)0≤i, j≤3s−1 be a 3s by
3s matrix with the propoerty that ni, j ∈ d jOC3 for all 0 ≤ i, j ≤ 3s − 1. Assume that ni, j = 0
when j is not a multiple of 3. Let P(T ) = det(1− T N) = 1 + · · · =

∑
α≥0 aαTα ∈ OC3 denote

the “characteristic power series” of N (though it is of course actually a polynomial). For
0 ≤ β ≤ s, let Tβ denote the β by β matrix whose (i, j)th entry is n3i,3 j/d3 j ∈ OC3 .

Lemma 7.1. We have that aα/d3α(α−1)/2 ∈ OC3 , and furthermore, for α ≤ s we have that
aα/d3α(α−1)/2 ∈ O×C3

iff det(Tα) ∈ O×C3
.

Proof. For S a subset of {0, 1, 2, . . . , 3s − 1} of size α, set

dS =
∑

σ:S→S

sgn(σ)
∏
s∈S

ns,σ(s).

By the definition of the determinant, we have that (−1)αaα is the sum of the dS as S ranges
over the size α subsets of {0, 1, 2, . . . , 3s−1}. Note that dS = 0 unless S consists entirely of
multiples of 3. In this case, d

∑
s∈S s divides dS , and

∑
s∈S s ≥ 3

2α(α−1), with equality iff S =

S 0 := {0, 3, 6, . . . , 3α − 3}. Thus aα is a sum of multiples of d3α(α−1)/2, all but one of which
are multiples of d3α(α−1)/2+1. Therefore aα/d3α(α−1)/2 ∈ OC3 and in fact, aα/d3α(α−1)/2 ∈ O×C3

iff dS 0/d
3α(α−1)/2 ∈ O×C3

. But dS 0/d
3α(α−1)/2 = det(Tα) and we are done.
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We will use this lemma with N as truncations of the matrix of U. The following lemma
allows us to find the coefficients of the matrix Tα in this case. Recall that r(X) =

∑
m≥0 X3m

.

Lemma 7.2. Define si, j ∈ F3 for 0 ≤ i, j < ∞ by∑
0≤i, j

si, jXiY j =
1 − X−1r(X3) − X−2(r(X3) − r(X3)2)

1 − XY3 ,

with the equality taking place in F3~X,Y�. Define ti, j = s3i,3 j for 0 ≤ i, j. Then∑
0≤i, j

ti, jXiY j =
1 − r(X)Y + (r(X)2 − r(X))Y2

1 − XY3 .

Proof. Define power series A(X,Y) and B(X,Y) in F~X,Y� by

A(X,Y) =
1 − X−1r(X3)X−2(r(X3)2 − r(X3))

1 − XY3 ,

and

B(X,Y) =
1 − r(X)Y + (r(X)2 − r(X))Y2

1 − XY3 .

Our desired result is equivalent to the statement that

X3(A(X,Y) − B(X3,Y3)) ∩ F~X3,Y3� = 0.

This follows from explicit computation:

X3(A(X,Y) − B(X3,Y3)) =

(X + X2Y3)r(X3)2 − (X + X2 + X2Y3 + X4Y6)r(X3) + X4Y3 + X5Y6

1 − X3Y9 .

Finally, we provide another lemma that allows us to conclude that certain matrices have
unit determinant.

Lemma 7.3. Fix an integer α ≥ 0, and let T̄α be the α by α matrix (t̄i, j)0≤i, j≤α with entries
in F defined via the following identity:∑

i, j≥0

t̄i, jXiY j =
1 − r(X)Y + (r(X)2 − r(X))Y2

1 − XY3 ,

the equality taking place in F[X,Y]/(Xα,Yα). Then det(T̄α) , 0.

Proof. Write
∑

i, j t̄i, jXiY j =
∑

j f j(X)Y j, with f j(X) ∈ V := F[X]/(Xα). It suffices to prove
that the f j(X), 0 ≤ j < α, span V as an F-vector space. Consider r = r(X) as an element of
V . We have∑

j

f j(X)Y j = (1 − rY + (r2 − r)Y2)(1 + XY3 + X2Y6 + X3Y9 + · · · )
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and by comparing powers of Y we obtain the identities f3t(X) = Xt and f3t+1 = −rXt

and f3t+2 = (r2 − r)Xt. Using the identity r − r3 = X, we have that f3t = (r − r3)t and
f3t+1 = −r(r − r3)t and f3t+2 = (r2 − r)(r − r3)t and hence as polynomials in r we have that
deg( fn) = n. Therefore the span of the f j contains the image of F[r] in V . This is enough
because r = X + · · · , so this image is all of F[X]/(Xα).

We now prove a proposition that gives the valuations of the coefficients of the charac-
teristic power series of U. As usual let κ be a weight such that the corresponding w0 satisfies
1/3 < |w0| < 1, and let (mi, j) be the matrix representing U in weight κ.

Proposition 7.4. If Pκ(T ) =
∑
α≥0 bαTα denotes the characteristic power series of U in

weight κ, then |bα| = |w0|
α(α−1)/2.

Proof. If β ≥ 0 and Mβ denotes the truncated matrix (mi, j)0≤i, j<β, and if we write Pβ(T )
for the characteristic power series det(1 − T Mβ) of Mβ, then the Pβ(T ) tend to Pκ(T ) in the
sense that if Pβ(T ) =

∑
α bα,βTα then limβ→∞ bα,β = bα. Therefore it suffices to prove that

|bα,β| = |w0|
α(α−1)/2 for β > 3α, and we may further assume that β is a multiple of 3. Let

Nβ be the matrix with elements (ni, j)0≤i, j<β where ni, j = mi, j(c/w0)i− j. Then Nβ is easily
checked to be a conjugate of Mβ, so Pβ(T ) = det(1−T Nβ). Furthermore, one easily checks
that Lemma 6.1 implies (substituting X for w0/cX and Y for c/w0Y)

F(X,Y) :=
∑

0≤i, j<β

ni, jXiY j =
gκ(X)(1 + 6/w0X)3

(1 + 6/w0X)3 − Y3(w2
0X + 3w0X2 + 9X3)

,

as an element ofOC3 [X,Y]/(Xβ,Yβ). Choose d ∈ OC3 with d3 = w2
0. The fact that G(X,Y) :=

F(X,Y/d) satisfies

G(X,Y) =
gκ(X)(1 + 6/w0X)3

(1 + 6/w0X)3 − Y3(X + 3/w0X2 + 9/w2
0X3)

shows that ni, j/d j ∈ OC3 for all i, j, and the fact that F(X,Y) is a function of X and Y3 implies
that ni, j = 0 if j is not a multiple of 3. We are therefore in position to apply Lemma 7.1 to
deduce that |bα,β| ≤ d3α(α−1)/2 = |w0|

α(α−1)/2, with equality iff the matrix (n3i,3 j/d3 j)0≤i, j<β

has unit determinant. Let Tα denote this matrix, and let T̄α denote its reduction modulo the
maximal ideal of OC3 . Reducing G(X,Y) modulo the maximal ideal of OC3 , it becomes

Ḡ(X,Y) =
ḡκ(X)

1 − XY3 ∈ F[X,Y]/(XβYβ)

and by Lemma 5.1 and Lemma 7.2 we deduce that T̄α = (t̄i, j)0≤i, j<α with∑
0≤i, j<α

t̄i, jXiY j =
1 − r(X)Y + (r(X)2 − r(X))Y2

1 − XY3 ,

the equality taking place in F[X,Y]/(XαYα). Lemma 7.3 implies that det(T̄α) is nonzero,
and hence that det(Tα) ∈ O×C3

. The second part of Lemma 7.1 now implies the desired
equality.
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This proposition allows us to prove Theorem 1.1.

Proof of Theorem 1.1. By Proposition 7.4, the Newton polygon of the characteristic
power series of U has vertices (α, 1

2α(α − 1)v) and slopes 0, v, 2v, 3v, 4v, . . . .

As in the p = 2 case, we see that the eigencurve is geometrically the disjoint union of
countably many annuli over the boundary of weight space.

8. Other Work

Daniel Jacobs’ thesis [9] uses a different approach to compute the slopes of U3 on spaces
of overconvergent modular forms. He begins with a specific definite quaternion algebra,
ramified at 2 and infinity, and then uses the Jacquet-Langlands correspondence to derive
results about U3. As a consequence of this different methodology, he only obtains a subset
of the slopes listed in Thereom 1.1. In addition, the fact that his quaternion algebra is
ramified at 2 introduces level structure at 2 beyond just Γ0(3). However, his methods are
not subject to the restriction on weight that Theorem 1.1 is: he can find slopes at weight
x 7→ x3 for example.

Smithline’s thesis [14] gives partial information on the slopes of U for p = 3 and p = 5
in weight 0. Loeffler [12] refined this work to compute the slopes of the U operator for
p = 3, again only for weight 0.

For p = 5, Kilford [10] finds that the slopes of U arise in the union of two arithmetic
progressions. His work applies to arbitrary weight, but is restricted to conductor 25. Kilford
and McMurdy [11] extend these results to p = 7 and conductor 49, where again the slopes
occur in two arithmetic progressions.

In a related setting, Davis, Wan and Xiao [6] have recently proven that the eigencurve
associated to the Artin-Schreier-Witt tower breaks up as a disjoint union of pieces over the
boundary of weight space, with slopes in arithmetic progression.

Finally, Diao and Liu [8] have shown that the eigencurve is proper for general p: a
geometric motivation for computing the slopes of U.
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