FORMAL GROUPS, COMPLEX COBORDISM AND QUILLEN’'S THEOREM

DAVID ROE

1. INTRODUCTION

Quillen’s theorem, giving an explicit isomorphism betweba Lazard ring and the homotopy
ring of theMU spectrum, has provided a guiding direction for my studiesr akie past month.
Along the way, | have solidified and expanded my knowledgeutlfmrmal groups. Though |
did not think about the applications of formal groups to ladass field theory or elliptic curves,
what | picked up will certainly prove useful when | encourttegm in the future. Learning about
CW-spectra and beginning to think about the possible gezatadns has proved quite interesting.
Working with spectra is more to my taste than directly w@thV-complexes. And learning the
proof of Quillen’s theorem itself has been rewarding.

The main source for Quillen’s theorem has been Adams [1]hasmtook has proved a valuable
resource in learning about spectra as well. Switzer's #l{6] served to fill in some of the
details that Adams glossed over. Finally, Strickland’'sreeunotes [5] provided a more modern
perspective on the topic of formal groups and the symmetdo@/cle lemma.

The proof of Quillen’s theorem is by no means self containéé have chosen to focus on
the theory of spectra and formal groups rather than learammgugh about the Adams spectral
sequence and the Steenrod algebra to completely understetach calculations in Adam’s proof.
As a result some of the details of the proof are left as refsxemo his book.

In Section 2, we present results about formal groups. Baggnwith the definition of a formal
group law and examples, we proceed ftepa possible definition of a formal group as a group
object in a category of filtered algebras. The rest of Se@ideals with the Lazard ring, which
has the universal property that giving a commutative forgnauip law over a rindr is the same as
giving a ring homomorphism frorh to R. We compute the structure of the Lazard ring, following
a mixture of Adams [1, pp. 31-74] and Strickland [5, pp. 11;i@gether with one modification
in the proof of 2.17. Instead of a tedious analysisfhof Z/pZ, we are able to instead use the
p-adic ringZ, and leverage the fact that the desired result is easier t@ oo torsion-freeA. We
retain enough of Adams notation and specific lemmas to makerbofs in Section 4 easier, but
incorporate the notion of symmetric cocycles from Stricklan order to simplify and guide some
of the lemmas needed. By the end of Section 2 we have a goodptastof L and a specific
injectionL — Z[by, by, .. .] that will prove useful in Section 4.

We take an interlude in Section 3 to give some of the defirstimnd results that we use from
the theory ofCW-complexes an@CW-spectra. Adams [1], Hatcher [3], Milnor-Stashp!] and
Switzer [6] provide the source for the material in this seati We begin with the definition of a
CW-complex and outline some of the common geometric constmgisuch as suspension and
smash product. We proceed in Section 3.2 to motivate theagassomCW-complexes to spectra.
Two kinds of results motivate this change. The first is a nunadbeheorems that suggest there
should be a category in which suspension is invertible. thtamh, Browns represntability theorem
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shows that any homology theory gives a way to generate actiolteof spaces, indexed by the
integers, and related by maps from the suspension of eable tweit in line. This result provides
the second source of inspiration for the definition of a geetrhich we then give, together with
various associated definitions. Section 3.3 then consisigamples of spectra that appear in the
rest of this work. The rest of the section is devoted to outtjrsome of the constructions done
with spectra. We give a sketch of the construction of the snpasduct of spectra, the definition
of homotopy, homology and cohomology groups and the dedimitif ring and module spectra.
Finally, we give Adam’s definition of an orientation on a riggectra and include a primer on the
Atiyah-Hirzebruch spectral sequence.

The final section consists of a proof of Quillens theorenlpiving Adams [1]. As mentioned
above, some details are left out related to the use of the Adq®ctral sequence.



2. FormaL Groups

2.1. Formal Group Laws.

Definition 2.1. Let Rbe a commutative ring with unit. formal group lawoverRis a power series
u(xy) = Yijs0ajXy € R[x Y], satisfying
(2.1.1) u(x,0)=x wu0,y) =y, and

(2.1.2) p(% u(ys 2)) = pu(x.y), 2).
If, in addition,u(x, y) = u(y, X), then we say that the formal group law is commutative.

The first condition places obvious restrictions on the adlblea;;: we must havey, = d;; and
agj = 015, whered is the Kroneckes. How the second conditiorffacts thea;; is more dificult to
determine. We will consider this question more in sectich 2.

Of course, we are missing one axiom of a group. This omissqustified by the following
definition and lemma.

Definition 2.2. Given a formal group law overR, aformal inversefor p is a power seriegx) =
Sis1 ;X € R[], satisfying

(2.1.3) 1(X (X)) = u((x),x) = 0.
Lemma 2.3. Given any formal group law, there is a unique formal inversdor p.

Proof. Substitutingu(x) for y in i, we getx + Y., &X + Y1 &;X (Zkzl a{<xk)J = 0. We have
thata/ appears as a cfigient of X' in the first sum, and sindeand j are both at least 1, onl
for k < i appear in the cdicient ofi in the second sum. So we can solve for &hethus proving
existence of a right inverse, and uniqueness.

Suppose tha(x) is a right inverse. Then, by associativity,

X = (0, %) = p(u(X, (X)), X) = u(X u(1(X), X)) = X+ p(e(x), X) + Z & X p(e(%), )’
ij>1
Suppose that the ciigient of X' in u(«(x), X) is zero for O< i < n, and equal t&, for i = n. Then
reducing the above equation modwlt? yieldsa/, = 0. O

All of our formal group laws will be commutative; the third@afion then translates & = a;;.

If Ris graded, then we give y, andu(x, y) degree-2 (the topological reason for the factor of 2
is that the generator ¢*(CP*) lies in degree 2), and thus we ask thatie in degree A(+ j - 1).

One can define formal group laws in more variables (see FEtd[#] or Strickland [5]), but we
will only use the one dimensional case. We will, howeverye a more categorical approach in
section 2.3 and define a formal group, rather than just a fognoaip law.

But before proceeding, we first define homomorphisms betvieremal group laws.

Definition 2.4. A homomorphisnfrom a formal group law: overR to a formal group law over
Ris a power serie$(x) € R[x] satisfying

(2.1.4) v(F(3, T(¥)) = fu(xy))
An isomorphisnof formal groups is a homomorphism with an inverse, as usual.
Lemma 2.5.1f f = 3,._; GiX, then f is an isomorphism if and only if is invertible in R.



2.2. Examples. We begin with two simple examples, then proceed with a nurabsituations in
number theory and geometry where formal groups arise.

(i) The additive formal group law is defined by

(2.2.1) p(%y) = X+y

The inverse is then given hyx) = —x.
(i) The multiplicative formal group law is defined by

(2.2.2) (X y) = X+y+ Xy

The inverse is given by(X) = =X+ X2 = X3 + - - -.
(i) If cis aninvertible element iR, the Lorentz formal group law is given by

_ X+Yy

This formal group law is related to the addition of parallelocities in special relativity.

(iv) Let p be a prime and (x) € Z[X] be monic such thaf(x) = px (mod x?) and f(x) = x"
(mod p) for somen > 0. Then Lubin-Tate theory gives that there is a unique fognalip
law F overZ, such thatf (F(x, y)) = F(f(x), f(y)), and that for this group law if we add
to itself p times using the group law, we gétx).

2.3. A Categorical Approach. There are a number of ways to make formal group laws into a
category. The simplest way is to merely define a categiyvhose objects are formal group
laws overR, and define the morphisms to be exactly the homomorphismarofdl group laws
defined in section 2.1. But there are many other ways to putdbgroup laws into a categorical
framework. We will show that it is reasonable to define a fdrgraup to be a group object in the
opposite category to a category of filtefieehlgebras.

Definition 2.6. Suppose that is a category with finite products and a terminal objedtVe define
a group object irC to an object in C together with morphisms
emMGxG—-G
ee:l1-5G
ei:G—oG
such that
(i) mo (Mmx Idg) = mo (Idg xm)
(i) mo (exldg) = pr andmo (Idg xe) = p, wherep;: 1 x G —» Gandp,: Gx1 — G are
the canonical projection maps.
(i) mo (Idg xi) od = mo (i x Idg) o d = ez, whered: G —» G x G is the diagonal map and
€s is the composition of the unique morphigen— 1 with e.
We define GrpC) to be the category whose objects are group objedEsand whose morphisms

(G, mg, &5, ic) 4 (H, my, e, i) are morphismg : G — H in C that satisfy
GxG =G

fxfl lf

HXHWH
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and

For example, groups are group objects in the category aflsetgroups are group objects in the
category of smooth manifolds, topological groups are grjpcts in the category of topological
spaces and algebraic groups are group objects in the categalgebraic varieties.

Consider the category whose objects are filtered commatalgebras oveRr that are complete
and Hausddf for the filtration topology, and whose morphisms are filoatpreserving homomor-
phisms. LeC,g4be the opposite category.

TheR-algebraR[x; ... x,]l, with the obvious filtration, is an object 6ty,. Ris a terminal object
of Cag, and the Cartesian product Bffx; ... %] andR[y:...Yml iS R[X1... X0, Y1...Ym]l. If G
is the objectR[X] in Cag, then a magm: G x G — G is a filtration preserving homomorphism
m: R[x] — R[x,yl, which is specified by the imag&x,y) € R[x, y] of x € R[X]. So, given any
formal group lawu, we have a corresponding morphism in Cag. We also defin®R > RIx] by

Yis0GX = Co andR[X] LN RIX] by x = «(X), wherey, is the inverse associated gdoy Lemma
2.3. So for every formal group law ovBwe get a group object i@

Moreover, a morphisni € R[X] in Ciyof formal group laws specifies a morphism in GPp§)
from R[x] toR[y] byy — f(y). So we have a functdf,y: Ciy — Grp(Cayg). In fact, the following
proposition holds.

Proposition 2.7. The functor Ky is fully faithful, though not essentially surjective. THgewxts in
the image consist of exactly the group objectSimp(Cag) With G = R[X].

One might define a formal group as a group objecdg. We will mainly consider formal group
laws rather than formal groups because explicit power senie easier to work with. However,
there are many other interpretations of formal groups. S#s#s [1, pp. 44-46] for a reformula-
tion in terms of Hopf algebras, and Frohlich [2, pp. 29-42] & more extensive treatment in the
same direction. See Strickland [5, pp. 6-11] for a des@iptif formal groups as formal schemes
with an Abelian group structure on the fibers.

2.4. Lazard’s Ring. In this section we answer a question from Section 2.1: whadttaints does
associativity place on the cfiientsa;; of a formal group law? In particular, we define a universal
ring L and compute its structure.

Theorem 2.8. There is a commutative ring L with unit, and a commutativenfalrgroup lawu*
defined over L such that for any commutative ring R with umiti any commutative formal group
law R defined over R there is a uniqgue homomorphiigsmL — R withfg,ut = uR.
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Proof. We can defind. by giving it as the quotient of a polynomial ring by an idealrefations.
Consider the polynomial ring defined on the varialjgs: i, j > 1},

P = Z[a11, @12, @21, @13, 822, 831, - . ]
Define N
HO0Y) = x+y+ D agxy,
i,j=1
and define elements of P by

PO 2) = (). D) = ) bXyIZ
i,j,K

Let| be the ideal generated by thg anda;; — a;. SetL = P/I. Since we have quotiented out by
exactly the relations giving associativity and commuigtjy:" is a commutative formal group law.
Conversely, given anRR anduR, the fact that polynomial rings ov&rare the free in the category of
rings allow us to define a unique ring homomorphisimL — R sendingg; to the corresponding
codficient of uR. SinceuR is associatiative and commutative, this homomorphismeatetsto a
homomorphism fronk. = P/I. O

Yet this description oL is not totally satisfactory: we cannot specify a morphisamfiL by just
arbitrarily giving the images of tha;, because there are relations among them. In the rest of this
section we work to give a more useful descriptiorLof

Givea; degree A(+ j —1). Thenbyy is a homogeneous polynomial of degree2( + k—1). It
turns out that, after quotienting bythere is exactly one generator remaining in each positiea e
degree.

SetRto be the ringZ[b,, by, . . .], whereb; is given degreei2 Setb, = 1 in this ring. Define the
power series expf = Yi.obiy*! € R[yl, and log§) as the power series inverse of exp. Define

(2.4.1) 1R (X1, %) = exp(log) + log(xz)).

This is just the image of the additive formal group law under homomorphism of formal group
laws defined by log. By Theorem 2.8, there is a unique homohismz: L — R carryingu' to
uR. Note thatg preserves degree.

Theorem 2.9. The homomorphisi#k is injective. Moreover, L is isomorphic to a polynomial ring
on generators in degre2 4, . . ., thoughég is not an isomorphism.

Proof. We begin by defining thendecomposible quotiemtf a graded rindR, which will provide a
tool for isolating generators &.

Definition 2.10. Given a graded ring = @nzo Sh, we say that is connected i5g = Z. In this
case, defined theugmentation idealsl to be the ideal

s = @sn.

n>0

Elements ofl are calleddecomposible elementé S, because they can be written in terms of
generators of lower degree. We can define a graded abeliap @t¢S), called thandecomposible
guotient by

Q.(S) = 1s/14.
In fact, Q. is a functor from connected graded rings to graded abelianggy, if we consider only

morphisms that preserve degreex ¥ |, write X for the image ofx in Q.(S).
6



SinceR andL are nonzero only in nonnegative even degrégg(R) and Qn,(L) will both be
zero unlessn = 2n with n > 0, in which caseQ.,(R) = Z will be generated by,. The following
lemmas give us information abo@.(L) andQ.(6r) that will allow us to prove Theorem 2.9; the
proofs of these lemmas will be delayed until after the prdofteeorem 2.9.

Lemma2.11.
(i) Or(@;) = 52bi 1 (modI13) fori, j = 1.
(i) Set T, to be the image of Q(br): Qon(L) — Qn(R), and

(") = p ifn+1=p’forsome pprimeand § 1,
YW=\ 1 otherwise.

Then T, consists of the multiples gfn)b,,.

Given any abelian groufy, we can mak&a®A into a ring by settingr{, a)-(m, b) = (nm nb+ma).
Letnz: Z® A — Z be the projection map. Whenever we speak of a formal groupdlanzZ @ A,
we require thatrzu)(x, y) = x+Y. In addition, ifA is graded then we require the ¢beient of x'y!
in u(x,y) to liein degree A(+ j — 1).

There is a natural formal group law @w Q,n(L), namely

pOO0Y) = x+y+ Y Ay
ij>1
i+j=n+1

Lemma 2.12.

(i) Given any abelian group concentrated in deg&eand any commutative formal group

law u® onZ @ A, there is a uniqgue homomorphigtr: Qu, (L) — A such thatpa,u%®) =

A

(i) For any such A and any”®, the homomorphism, factors through the homomorphism
Qzn(L) — Th.
(iii) The homomorphism4£JL) — T, is an isomorphism of groups.

By Lemma 2,T, is generated by a single element, and by Lemma 3 we can chimossach
n> 0, an element, € L,, that projects to a generator of. We get a map

a. Z[tl,tz,...] — L.

By Lemma 3,Q,(a) is an isomorphism for eaah In order to see that is surjective, it is enough
to say that every; is in the image ofy, since thea;; generatd.. We prove this by induction on
i+ . If i+ ] = 2, thentt; must map teayy, since (%, ;)2 = 0 and (), = 0. Now consider

someq;; with i + ] > 2. SinceQy.j-1)(@) is an isomorphism, there existse Z[t, ty, .. .] with
Q2+j-1)(@)(X) = &;. Thena(x) = a; (mod1?2). Write

S k
() —a; = ) >, Coit | | @i
k=1 115 vesls J15eees Jk=1 =1

i1+ +ig+j1++ jk—k=i+j-1

By induction, we can findkg, with a(Xgn) = agh forg+h <i+ j. Then

0 k
Q(X_Z Z Cij.... ikl_[Xiljl) = &ij.
k=1 [N O LT e § 1=1

i1+ +ig+j1++j—k=i+j-1
7



But the compositér o a: Z[ty, 1o, .. ] 5L B R= Z[by, by, .. .] is injective, sincelr(a(ty)) =
y(n)b, (mod 13). Thereforea is also injective, and thus an isomorphism. Siaci an isomor-
phism, the injectivity of the composition now implies thgeictivity of 6r. O

We now need to fill in the gaps by giving proofs of Lemmas 2.1d 2112. We begin with two
preliminary propositions. The first relates the fimgents of exp and log, which will be needed in
the proof of Lemma 2.11. The second gives an elementarytrgsirg the p-adic valuation of
(;1) which will be used in the proofs of both lemmas.

Proposition 2.13. Setexpy) = Y., biy** andlog(x) = 3., mx*1, and denote the component in
dimensior2i of an inhomogeneous sum S by(&ter embeddin@[by, by, .. .] into Z[by, by, .. .]).

() The cogicients iy and m, of expandlog are related by

(2.4.2) m, = Fll [(Z bi) ]

i=0
1 0 -n-1
YN
(i) mp=1and m = -b, (mod13) forn > 1.
Proof. If
w= Z cy'dy,

i>—N

define resp) to bec_y, the residue ofv aty = 0. Then((zizo bi)‘”‘l)n is the codicient ofy" in
-n-1

(Zizo biyi)_n_l, which is the same as the dtieent ofy ! in (Zizo biyi+1) So

)

i>0

e dy
_ n-1
= resfx —dxdx)

= resf " (Z my(j + 1)xi]dx)

i=0
= (n+ 1)m,.
The proof for (2.4.3) is entirely symmetric.

We now prove the second part. The fact thmgt= 1 follows from the definitiorby = 1. By the
binomial theorem, fon > 1,

150 5 e (S0

i=1 k=0 i=1

=1-(n+ 1)(51 bi] (mod I3).
i=1
8



The only term in this last sum that lies in degreei2—b,, so by (2.4.2) we have
m,=-b, (modl3). O

Proposition 2.14. Let q be any prime, and for x Q let vy(X) be the largest power of q dividing X.
Then \4(('7‘)) is equal to the number of carries that occur when i and j areextloh base q.

Proof. If i = 0 or j = O the result is clear. Otherwise, write= kg + k10 + --- + (q and
j=Ao+Aq+---+ A4 andi + | = 1o+ 11+ - - - + 7, q" with all ks, 1s andrs between 0 and - 1.
If a carry occurs in positios, setc(s) = 1; otherwise set(s) = 0. In addition, set(-1) = 0 and
c(s)=0fors>r. Then

Ts = ks + As+ C(s— 1) — qs).

Counting the number of multiples af occuring below, we have

w-f{gf-

- % Yt

s=1 t=s

and likewise forvg(j!) andvgy((i + j)!). Therefore
=l ) - vy - i

R e ot

s=1 t=s s=1 t=s s=1 t=s
= > (ct-1)- qdt)g*
s=1 t=s
r ror-1 r r
= Z c(s-1)+ Z Z c(t)gs+t — Z Z O
s=1 s=1 t=s s=1 t=s
r-1
= D<),
s=0

where this last equality holds sincg) = 0. This last sum is exactly the number of carries occuring
when adding andj in baseqg. O

We now proceed to the proof of Lemma 2.11.

Proof of Lemma 2.11.

(i) We compute the cdicient ofxilxé in the power seriegR(xy, x2) = exp(log) + 10g(x.)).
9



k+1
exp(logga) + logx)) = ' b [Z mO¢? + x';l))

k>0 1>0

k+1
=X + Xo — Z b (3G + x5 + Z by [xl + X — Z b (3 + x5
>1 k>1 >1
= X+ Xp — Z b + X5 + Z be(X1 + %)<t
>1 k>1
Thus the cofficient of X, x) is ('*IJ) = ('I,*—J‘,)' fori, j > 1.
(i) We need to prove that the image @§.(6r) consists of multiples of eithdx, or of pby, (if
n+1=pH.

Sincel is generated as a ring by tlag, which lie in degree 2(+ j — 1), Qx(L) is
generated as an abelian groupdyfor i + j = n+ 1. By the previous part, it slices to
show that the greatest common divisoff'): 1 <i <n}isy(n+1). If n+1 = p', then
bothi and j havef digits but their sum ha$ + 1, so at least one carry occurs for every
i in the range 1< i < n. Thusvy(y(p" — 1)) > 1 by Proposition 2.14. If = p'* and
j = (p—1)p'?, then exactly one carry occurs, so in fagty(p’ — 1)) = 1. Now suppose
qis any prime anah + 1 # g' for any f > 1, and write the basg expansion oh + 1 as
Ko + k19 + - - - k:Q". Suppose first that; # 0 for somej in the range & j < r. If no such
j exists, then we must have+ 1 = ad with 2 < a < ¢; in this case set = r. In either
situation, we can writea+1 = ¢' + (n+1-q'), and no carries occur in that sum. Therefore
vq((”*l)) = 0, sovy(y(n + 1)) = 0. Since this holds for an arbitrary pringgwe have the

a )
desired conclusion.

O

In order to prove Lemma 2.12, we first develop the machinegyaimetric 2-cocycles. Many
of the arguments here are due to [5, p. 11-16].

Definition 2.15. Let A[x, y] be the abelian group consisting of formal sups., aijX'y! with
a;j € A. A symmetric 2-cocyclwith codficients inA is a power serie$(x,y) € A[X, y] such that
f(x,y) = f(y,x)andf(x,0) =0 and

f(y,2 - f(x+y,2+ f(x,y+2 - f(xy) =0.

Write Z(A) for the set of such’s andZy(A) for the subset consisting of homogeneous polynomials
of degredd.

We have thaZy(A) = Z;(A) = 0 by the conditions thatt(x, 0) = 0 andf(x,y) = f(y, X). Itis also
clear thatZ(A) = [14-1Z4¢(A). The following desciption oZ(A), together with the isomorphism
Z4(A) = A which we will prove in Lemma 2.17, form the key ingredientghe proof of Lemma
2.12.

Lemma 2.16. There is a natural ismorphism of abelian groupAX = Hom(Q.(L), A), where
the Hom is in the category of abelian groups. Under this isomorphiZgiA) is identified with
Hom(Qz@-1)(L). A).

10



Proof. Let Y(A) be the set of formal group lawsoverZ ® A. We haveu(x,y) = x+Yy+ f(x,y) for
somef(x,y) € Alx yl. The conditiong«(x, 0) = x andu(x, y) translate directly td (x,0) = 0 and
f(x,y) = f(y,x), and we have

uu(xy),2) = x+y+z+ f(xy)+ f(x+y+ f(xy),2.
Since f has cofficients inA andA? = 0 in Z @ A, the last term equal$é(x + y,2). Thus the
associativity condition op translates to the cocycle condition &nThe mapu — f thus gives a
bijectionY(A) = Z(A).

However, by Theorem 2.8Y(A) bijects with ring homomorphismg: L — Z & A, and the
condition that fzu)(X,y) = X + Yy) translates to the condition that¢(l, ), or equivalently that
#(IL) c A. If this is the case, thep(I?) c A% = 0, sog induces a homomorphis@.(L) = I./12 —

A

SinceQ.(L) = @M Q2on(L), by the duality of direct sums and products, iffstes to check that
the map just defined restricts to an isomorphism of abeliangsZq(A) — Hom(Qzw-1)(L), A) for
d > 1. Acocyclef = 3, 4 @ijXy € Z4(A) corresponds ta + y + Ditj= 4@ijXy € Y(A), which
corresponds to the homomorphignt Q.q-1)(L) — Agiven bye¢:(a;j) = aij. The product of these
correspondences gives our maA) = []g.1 Za(A) - Hom@g.1Q2@-1)(L), A) = Hom(Q.(L), A).
Moreover,f +g - ¢.g = ¢1 + ¢y, SO OUr correspondence is a homomorphism. In addigips; 0
impliesa;; = 0 for alli, ] which impliesf = 0, and conversely the conditions on thein L are
precisely those required to guarantee that for a homomsmphi Qyg-1)(L) — A there exists a
cocyclef with ¢ = ¢+. O

Given anyA we can define the mafn: A — Z4(A) by ¢a(a) = , " y(d)( )x'yd This makes
sense since(d) is the greatest common divisor of all of tfnﬁ and it's a symmetric 2-cocycle

sincega(@)(x.y) = sg((x +y)* = x1 = y9).
Fix a choice of integers; 4 for d > 1 and O< i < d such that

d-1 d
@ = Y )
i=1
Then define a mapa: Z4(A) — Aby
lﬂA(Z d—loixy"") = Z d - 1y gai
i=1 i=1

By constructionya o ¢a = Ida for all Aand alld > 1, sog, is always a split monomorphism.
Lemma 2.17. ¢4 is an isomorphism for every abelian group A.

Proof. We proceed by analyzing various possibilities for The first case is wheA is a vector
space ove. This case then allows us to prove the result for any torsiea A. We use an
argument involving thg-adic integer&,, in order to show the result f@&/p'Z. The classification
of finitely generated abelian group then implies the conclusor any finitely generated, and a
simple argument extends the result to an arbitrary abelianpy
(i) Suppose first thaf\ is a vector space ovéd. Definey: Zy(A) — A by y(3; axy*) =
v(d)a;/d. We have

@) = e d- 1y =a

11



soypa = lda. Now we show tha is injective. Supposeé(f) = 0. Thena; = 0. Since
f(xy) = X ax'y* this condition is equivalent to the condition tHaf0, y) = 0, where
f, is the derivative off with respect to the first coordinate. Buti@rentiating the cocycle
condition with respect ta yields

0=-fi(y,2 + f1(0,y + 2) — f1(0,y)
= —fi(y. 2,

and thereforey, = 0 for all .
Now we haveyga = lda, which implies thayygay = . Buty is injective, sopay =
ldz,n)- Thuse, is an isomorphism. In fact we haye= .

(i) Now suppose thaA is torsion-free. Then defin& = A® Q. SinceA is torsion-free,
a— a®1lembedA into A'. We have thaZy(A) = Z4(A') N A[X, Y], and we know that
¢ is an isomorphism by the previous part. Siggds just the restriction opn to A, itis
bijective and thus an isomorphism.

As special cases, we note that we now have the resulk foZ andA = Z,,.
(i) We now want to show the result fok = Z/p'Z. We already know thag, is injective, so
it suffices to check that it is surjective. Consider the diagram

Zp— 2o 74(Z,)
try, Pzn'z f
Z|p'Z —Z4(Z/p'Z)

It commutes and by the previous case the top arrow is an iqumssn. Therefore the
bottom arrow is a surjection.

(iv) If Ais any finitely generated abelian group, it can be written d&ect sum of finitely
many terms of the forriz or Z/p'Z. SinceZy(A® B) = Zy(A) @ Z4(B) we have the desired
result.

(v) Now suppose thah is any abelian group. LeéB be the subgroup of generated by the
codficients off. ThenB is finitely generated anfl € Z4(B). But ¢ is surjective, so there
is someb € B c Awith ¢a(b) = ¢g(b) = f. S0¢a is surjective and thus an isomorphism.

O

Proof of Lemma 2.12.

(i) We need to prove that there is a unigue Q.,(L) — Athat takesi* to u”.
By Theorem 2.8, there is a unique ring homomorphisg: L — Z & A with u” =
Ozeait. Since the grading o @ A is in dimensions 0 andr and since;qa preserves
degreefzea mapsa;j to O unless + j = n+ 1. Thusfzea factors as

0zen

L Z&®A
\ %
Z® Qxn(L)

(ii) In order to prove that, factors through the homomorphis@y,(L) — T,, we consider

different possibilities foA. We first prove the claim foA = Z andA = Z/pZ, then for
12



Z/p'Z. We then use the classification of finitely generated abajiaups to prove the
claim for finitely generated, and finally consider completely general

O

13



3. CW COMPLEXES AND SPECTRA

In this section we sketch definitions and basic results irtrdesition fromCW-complexes to
spectra in algebraic topology. For the underlying theor€@f-complexes, see Hatcher [3]. For a
more extensive exposition of spectra consult Adams [1, @B-373] or Switzer [6].

3.1. CW complexes and geometric operationsWe include the definition of @W-complex for
completeness. See Hatcher [3, p. 5] or Switzer [6, pp. 64d8%xamples and further details. Let
D" c R" be the subspades € R": |x| < 1} andS" c R™?! be the subspade € R™?: |x = 1}.

Definition 3.1. A CW-complex is a Hausdéitopological space that can be inductively constructed
from discs of varying dimensions and attaching maps. Moeeipely, acell complexon a Haus-
dorff spaceX is a collectiorK = {€]: n € N, a € J,} of subsets oK satisfying the properties given
below. Setk" = {€,: r < n,a € J,}, then-skeletorof K, andX®™ = J<n €,. Set

acds
& =¢e n XD = boundaryof €,
&=6-¢ = interior of €.

(04 (43

We say that a cek] is a face ofe] if there is a chain of faceg] = €?, " elx = & with

N i Bo® B> Py
& nej # 2. We require that

(I) X = Un,a egl
(i) & né& # eifand only ifa = gandm=n,
(iii) for each cell€)there is a map

o1 (D", S™) — (€], &)
that is surjective and ma;fﬁ" homeomorphically onte"

If in addition K satisfies the following two properties then we say KajivesX the structure of a
CW-complex, or just thaK is aCW-complex.

(i) For each celkjin K, there are only finitely many other cet#g with ég‘ Nel +a.
(i) A subsetS c X is closed if and only ifS N €] is closed ingfor each cell.

We say that c K is asubcomplexf K if for each cell€] € L, every face of) is also an element
of L.

CW-complexes provide the geometric framework for much ofsitzed algebraic topology. We
can form newCW-complexes out of previously constructed ones in a numbeagt (see Hatcher
[3, pp. 8-10]). Say (with cellse)) andY (with cellsd/'}‘) areCW-complexes and is a subcomplex

of X. When they appear, leg andy, be base points oX andY (chosen 0-cells). Let = D! be
the unit intervakx € R: 0 < x < 1} with its standardCW-structure.

(i) The disjoint unionX 11 Y is made into &W-complex in the obvious fashion.

(if) We can make the set theoretic prodixck Y a CW-complex by giving cells, x di* and
mapapa";”: (D™, SM-1y ~ (D" x DM, S™1x DMU D" x S™1) — €} x d,,;“. Note that the
topology on theCW-complexX x Y is not necessarily the same as the product topology.

(i) The quotientX/A has a celld] for each celle)that is not an element o4 (the image of

that cell under the projection map— X/A), and one new O-cef} corresponding to the
14



image ofA in X/A. For each celt?, the mapp”: (D", S™1) — d" is given by composing
@b with the projection maX — X/A.

(iv) The reduced suspensi@Xof a base pointed spaeis defined axX x | /(X x {0} U {Xo} X
| UXx{1}). If f: X — Yis continuous, defin& f: SX — SYto be the quotient of the
mapf xld: XxI - YxI.

(v) The smash producK A Y is defined asX x Y/(X X {yo} U {X} X Y). The projection
mapszy: X XY — Xandny: X XY — Y descend to maps oK A Y. Moreover,
given mapsf: X — X" andg: Y — Y’ of base-pointed topological spaces we get a map
fAQg: XAY — X' AY by taking the quotient of x g. Thus the smash product is the
product in the category of base pointed topological spaces.

(vi) The wedge sunX v Y is defined asX 11 Y/{xo, Yo}. The wedge sum is the coproduct in the
category of base pointed topological spaces.

(vii) The path spac®X is the topological space consisting of all mgpsl — X. If X has a
base point, we require tha(0) = X, and giveP X the base point consisting of the constant
map sending everyto Xo. It turns out thaPX has the homotopy type of@W-complex.

(viii) The loop spaceé2X is the subspace ¢tX consisting of pathsg with y(1) = X,.

Note thatS™ A S" = S™" thatS X= S! A X and that under this identificatid® f corresponds
toIdAf.

We generally consider arbitrary continuous maps betw&adhcomplexes, but sometimes it is
useful to restrict our attention to maps which satisfy antamltal property.

Definition 3.2. We say a mag : X — Y is cellularif f(X™) c Y® for everyn.

The cellular approximation theorem [3, p. 349] states thatyecontinuous map betwe&iW-
complexes is homotopic to a cellular map.

3.2. Spectra. The motivation to consider spectra comes from a number attesu The suspen-
sion functor orCW-complexes induces isomorphisms in homology:

Proposition 3.3. There is a natural isomorphismX) = H,,1(S X.

See Hatcher [3, p. 448].
The Freudenthal suspension theorem provides an analogoeiotopy theory. DefinE, : 7, (X, Xp) —
mr1(S X %) by 2([f]) =[S f] = Ids: AT.

Theorem 3.4. For every n-connected CW-complex3Xjs an isomorphism fot < r < 2n and an
epimorphism for r= 2n + 1.

See Hatcher [3, p. 360] or Switzer [6, p. 85].

These results motivate us to ask for a category where angumalaf suspension had an inverse
S-1. The category of spectra will satisfy this objective.

One can also motivate the construction of spectra by atiegfu generalize classical homology
and cohomology theories. This generalization is based &pown’s representation theorem (see
Switzer [6, pp. 152-157] for more details).

We consider contravariant functofsfrom the category of pointe@ W-complexes to the cate-
gory of pointed sets that satisfy three properties. We reguat

(i) F(X) depends only on the homotopy type of, &) and F(f) = F(g) if f andg are

homotopic maps.
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(i) Foran arbitrary wedge sumy, X, with inclusions,,: X, — A, X., the morphisn([],i.): F(A, X.) —
[T, F(X,) is an isomorphism.
(iii) If Aisany subcomplex of with inclusioni: A — Xandu € F(X), write ulAfori*(u). We
assume that iX is aCW-complex with subcomplexe; andA; are such thaX = AjUA,,
and if x; € F(Ay), X € F(A2) with x1]/A; N A = X|lA1 N A, then there is € F(X) with
YIAL = X andylA; = X,.
Given anyCW-complex {Y, yo) andu € F(Y), we have a natural transformatiop: [—, (Y, yo)] = F
given byT,([f]) = F(f)(u) € F(X) for any f: (X, %) — (Y,Yo). We say that an elemente F(Y)
is universal if T, : [(SY, %); (Y, Yo)] — F(S9) is an isomorphism for alj.

Theorem 3.5.For any such F, there is a CW-compl@ky) and universal elementa F(Y) such
that Ty: [—, (Y,Yo)] — F is a natural equivalence.

A version of this theorem holds if we consider functors tgkialues in the category of groups.
As a special case, we have that Eilenberg-MacLane spacssfglardinary cohomology.

Theorem 3.6.For any abelian group G, there is a natural equivalence[F, K(G, n)] - H"(-; G).

Suppose we have a reduced cohomology théoryhen by Theorem 3.5, for eactthere is a
CW-complexE, so thath"(-) = [—, (E,, *)]. In addition, theE, are related: one of the axioms for
a reduced cohomology theory gives natural equivaleogegth

(o)t

hr+1 o S

H
[ E] [S(=). Era]l == 1[-. QEr.4].

We can consider;1([Idg]) € [E;, QE.1] = [SE, E;,1]. So, given any cohomology theory, we
get a collection of spacds and maps; : SE — E;,;, at least up to homotopy. Moreover, we can
recover our functor from the given data.

Definition 3.7. (i) A CW-spectruntis a collection{(E,, *): n € Z} of CW-complexes such
thatS E, is (or is homeomorphic to) a subcomplexiyf.;. We will use the term spectrum
for aCW-spectrum.

(i) A subspectruni c E consists of subcomplex&s, c E,, such thaS K, c Fy.;.

(i) We now define acell of a spectrunE. The subspectrurk, = = for all n we denote by
+ and call a cell of dimensiorco. Suppose we havedidimensional cele? of E, other
thans such thag! is not the suspension of angt £ 1)-dimensional cell. Then we call the
sequence

e=(e},Sd,S%,..)
a cell of dimensiord — n.

(iv) We say a subspectrufd c E is cofinal if for any cell & c E, there is somam with
S"e ¢ Fhim.

(v) A function f: E — F of degree rbetween spectra is a collecti¢ofy: n € Z} of cellular
mapsf,: E, — Fn such thatf,,i|sg, = S §.

(vi) Let E andF be spectra. Consider the set of palgs, ') so thatE’ is a cofinal subspec-
trum of Eand f': E’ — F is a function. Say thatH’, f’) (E”, f”) if there is a cofinal
subspectrunk”” c E’ n E” with f’|e.» = f”|gw. Itis easy to show that is an equivalence

relation. We call an equivalence clasmapof spectra.
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(vii) We will define smash products of spectra in Section 3o4;the moment we define the
smash product of a spectrugwith aCW-complexX to be the spectrurg A X defined by
(EAX)y=EyA X

(viii) Let I, be the intervall with a disjoint base point added. Therhamotopyis a map
h: EAl, — F. Letip andi, be the two map& — E A I, induced by the inclusions of O
and 1 intol,. We say that two map#, f;: E — F arehomotopidf there is a homotopy
h: EAl, - Fwithhoig = fpandhoi, = f;. We write [E, F] for the set of homotopy
classes of maps frofato F(as a graded set), an8,[F], for those of degree.

We will be working with the category whose objects are sgeatd whose morphisms are maps
of spectra.

3.3. Examples of Spectra. We now list a few examples of spectra.

(i) Given anyCW-complex X, we can form the suspension spectrumXgfwhich we will
write X. This spectrum is defined by

N S"X ifn>0
nT] « otherwise.

As a special case we have the sphere spectrum, which we Wi Sir
S" ifn>0
s,

% otherwise.

(i) Write H for the Eilenberg-MacLane spectrum. The justification feingH rather tharkK
comes from our notation for the generalized homology themsociated to a spectrum:
by choosingH we will be able to writeH*(X) andH.(X) for ordinary cohomology and
homology. See Hatcher [3, p. 365] for a construction of Hikeng-Maclane spaces, and

define
Ho— K(Z,n) ifn>0
n= « otherwise.

More generally we can form the Eilenberg-MacLane spectrutin godficients, given by

HG = K(G,n) ifn> 0-
* otherwise.

Even more generally, if we have any spectrdnwe can add cd&cients to it by smashing
with an appropriate Moore spectrum. We will return to thisstouction in Section 3.4,
after we have some additional tools for working with spectra

(i) An important collection of spectra is obtained by catesing classifying spaces of topo-
logical groups. In order to define these spectra we need taléfse classifying spaces.

Suppose now thab is a topological group. Define a contravariant fundtgrfrom
CW-complexes to pointed sets: Xfis aCW-complex,ks(X) is the set of all equivalence
classes of principdb-bundles oveK, and if [f] is a homotopy class of mags (X, Xp) —
(Y, yo) thenks ([ f]D({€}) = {f*¢}. Switzer proves [6, p. 201] that this functor satisfies the
conditions in Theorem 3.5. Thus there iI€®-complexBG, determined up to homotopy
type, and a universal princip@-bundleés over BG such that the natural transformation
Te: [-, (BG, )] — ks defined byTg([f]) = {f*&s} is a natural equivalence.
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For G of particular interest, namely various matrix groups iaohg U (n), O(n), S Q(n)
andS p(n) one can be more explicit. Since we will be using mostiyn) bundles, | will
give the construction foBU(n); the others can be found in Switzer [6, p. 203], and a more
verbose description of th@(n) case can be found in Milnor-Staghpt, pp. 55-68].

We can define the complex Stiefel manifold of lefirames inC" by

Vien(C) = U(n)/U(n - k),
and the Grassmanian of all compleximensional linear subspaces@f by
Gn(C) = U(n)/(U(n - K) x U(K)).

We have a fibratiod(n) — U(n+ 1) — U(n + 1)/U(n) = S>*! and the long exact
sequence of homotopy groups gives us thgt(n), x) — mq(U(n + 1), %) is surjective
for g = 2n and an isomorphism fay < 2n. Thereforerg(U(n), ) — mq(U(n + K), *) is
surjective forq < 2n and an isomorphism fay < 2n, which shows thatry(Vik.n, *) = 0
for g < 2n. So the principal (k)-bundle with base spadgyy,, and total spac¥.n IS
universal forU (k) bundles ove€CW-complexes of dimension at most.ZThe inclusions

CkCCk+1C“‘

given by i, ..., %) — (0, X4, ..., %) induce inclusions

j j
Gk = Grs1— -+

We setBU(K) = Uns0Gkkin aNd EU(K) = Unso Viken, both with the weak topology.
This gives a universal complex vector bundle of dimendioMoreover, the inclusions

: U(k) c U(k+1)induce incIusionSJ(n+k)/(U(n)xU(k))—'> U(n+k+1)/(U(n)xU(k+1))
which commute with thg and thus induce an inclusidsi: BU(k) - BU(k + 1). These
Bi allow us to define a spad®@U = | J,., BU(K).

One can show that the two functasandB are almost inverses of each other. More
precisely, we have the following proposition [6, p. 206]:

Proposition 3.8. If G has the homotopy type of a CW-complex, there is a hometpuy-
alence(G, 1) =~ (QBG, wo).

Moreover, we have the following result, which will allow us define spectra out of
theseBG.

Theorem 3.9(Bott Periodicity Theorem)There are homotopy equivalences
Q°BU ~Z x BU
Q*BS p~Zx BO
Q*BO~ZxBSp
This result allows us to define speckandKO by:

K. — Z x BU if nis even,
"7 QBU  if nis odd,
18



and
ZxBO ifn=0 (mod 8)

Q¥"BSp ifn=123andn=n" (mod 8)

ZxBSp ifn=4 (mod 8)

QF"BO ifn=567andn=n" (mod 8)

The notation is justified because the associated cohomthegyies are complex and real
K-theory respectively.

(iv) SupposeG c O(n) for somen. Given any principalG-bundleé with total spaceE(¢)
and basd3(¢), one can form the Thom spabd&(¢) as follows (see Milnor-Staskg4, pp.
205-208] for more details). Each fiber has an inner prodwattithpreserved by the action
of G c O(n). Define a subspao&(¢) c E(¢) by A¢) = {(b,v) € E(¢): [Vl > 1}.

Definition 3.10. TheThom space N§) is given by
M(£) = E(£)/A&).

Write MU (n) for M(¢) whené is the universal bundle ov&U(n).
The spectrdMU s defined from theviU (n). More precisely,

MUn:{ MU (k) if n= 2k,

MU(K) A St if n= 2k + 1.

The mapMU(K) A S — MU(k + 1) is given by noting that if, denotes the universal
bundle oveBU(k) then the Whitney surfy @ 1

One can similarly definé10O(n), MS Qn), MS U(n) andMS [n), but we will not need
any of these spaces or the associated spectra.

3.4. Smash Products of Spectra.Most of the geometric constructions that one can perform on
spaces, such as those listed in Section 3.1, carry over knganes constructions on spectra that sat-
isfy similar properties. Unforetunately, the construndecome significantly more complicated.
The most important of these constructions for us will be tifahe smash product. The category
of CW-spectra admits a smash product, which is a functor of tw@bbes, with arguments and
values in the homotopy category ©fV-spectra. Note that the smash product is constant on spec-
tra that are homotopy equivalent, but it is also only definpdathomotopy. This flaw may be
remedied by working in other categories of spectra, but fothe problems caused by having the
product only defined up to homotopy are not serious enoughateant the extra complication of
working with symmetric spectra or some other option.

The smash product is associative, commutative and has lhieeesppectrum as a unit. | sketch
the basic construction below: see Adams [1, pp. 158-189]édatils.

Let A be a totally ordered set, isomorphiciip and letA = B1I C be a partition ofA. We define
B: A — N by setting(a) = #{b € B: b < a}, anda andy analogously withA andC replacingB.
Then we set

(E Asc Fla@ = Es@Fy@

and prove that under suitable conditions®andC, the resulting spectra are all homotopy equiv-
alent and satisfy associativity, commutativity and idigmnitip to homotopy.

With smash products available, we can now make the followfgnitions, continuing into the

next section.
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Definition 3.11. (i) We call a spectrunt a ring spectrumif it is equipped with a map
me: EAE — E and a mageg: S — E so thatmg is associative and commutative up
to homotopy and acts as a unit up to homotopy.

(i) We say that a spectrumdl is amodule spectrurover a ring spectrurk if it is equipped
with a mapmy,: EAM — M. Note that ifE is a ring spectrum anB is any spectrum
thenE A F is a module spectrumviathe mag Alde: EAEAF > EAF.

Given an abelian grou@, we can construct a Moore spectrii(G) (see Adams [1, p. 200])
with

n(M(G)) =0 forr <0,
oM (G)) = G,
H,(M(G)) =0 forr > 0.
This spectrum allows the addition of “cihieients” to any spectruri: define
EG = E A M(G).

An analogoue of the universal déieient theorem (see Adams [1, p. 200-202]) shows that the
definitions ofHG asH A M (G) and as the Eilenberg-MacLane spectrum with teK({((s, n) agree.

3.5. Homology, Cohomology and Homotopy.We define the homotopy groups of a spectrum,
which are really stable homotopy groups. Given a spectyume have homomorphisms

Tner (En) = Miri1(SER) = mnirsa(Ensa),
so for fixedr the groupst,,(E,) fit into a directed system.
Definition 3.12. Thenth homotopy group of a spectruknis defined by
. (E) = rl]m Tner (En).

The following proposition [1, pp. 145-146] relategE) to homotopy classes of maps irffo

Proposition 3.13.1If X is a finite CW-complex and the associated suspension spectrum, then for
any spectrun, [X, E]; = lim,[S™ X, E,]. In the case X= S° this yieldsr, (E) = [S, E],.

We now define generalized homology and cohomology in a fasbamsistent with the com-
ments at the beginning of Section 3.2.
Definition 3.14. Let E be a spectrum. Then tliehomology of a spectrurK is defined by

En(X) =[S E A X]n,
and theE-cohomology ofX is defined by
E"(X) = [X, E]_n.

If Xis aCW-complex with suspension spectrdfrithen we defind,,(X) = E,(X) andE"(X) =

E"(X).

The definitions immediately yield a number of relationshyg$ween homology, cohomology
and homotopy groups.

Proposition 3.15. (i) For any spectrunt, E*(pt) = E.(pt) = n.(E) =[S, E].
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(i) For any commutative ring spectrul n.(E) is a commutative ring.
(i) For any commutative ring spectruand any spectrurifthe mapY =~ SAY N EAY
induces a homomorphism
[X,Y], S [X,EAY]..
called the Boardman homomorphism. Specializingto= S and E = H yields the
Hurewicz homomorphism.(Y) A H.(Y).

In addition to these basic properties, generalized honyologl cohomology groups satisfy
many of the same axioms as ordinary homology and cohomolegyyfurther exposition see [1,
pp. 196-214].

3.6. Orientations. Giving a spectrum an orientation allows us to choose geoerabherently
for many of the groups and rings that we need to consider. Tésepce of an orientation is also
crucial in the process that produces a formal group law frapextrum.

Definition 3.16. Let i be the inclusioni: CP* — CP*. An orientationof a spectrunmEis an
elementxf € E*(CP*) such thaE*(CP?) is a free module over, (E) on the generatdr(x).

SinceCP! may be identified witt5?, the unit mage: S — E that is part of the ring spectrum
structure ofE yields a generatoy € E?(CP!). We define a unitf € r,(E) by i*(xF) = uEy.
From now on all spectra come equipped with an orientation.

3.7. Atiyah-Hirzebruch spectral sequence. The Atiyah-Hirzebruch spectral sequence provides
a powerful method for computing-homology ande-cohomology.

Theorem 3.17.Suppose thaf and X are spectra so thaX is bounded below: there is some
such thatr,(X) = Ofor r < v. Then there are spectral sequences

EZq = Hp(X, 74(F)) = Fpq(X)
EXY = HP(X, nq(F)) = FP*9(X)

This spectral sequence comes from considering the skélétaion on Xand gluing together
the long exact sequences in homology or cohomology for eadhsion of ther-skeleton into the
r + 1-skeleton. In particular, we get exact couples

B, F.(X*D) D, F.(xXP)

@p F.(X(P, X(P-1)

and

P, F (xC2) - P, F(X®).

@p Fr(X(P, X(P-1)
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One notable feature of this spectral sequence is that if w#oa pave an element € F*(X),
all differentials vanish on its image in afy(X(®). This will allow us to argue that the sequence
degenerates at the second page in a variety of cases usiegiskence of an orientation.

For more details about this spectral sequence see Adamg.[214-220].
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4. QUILLEN'S THEOREM
In this section we will prove the following theorem, due toiligun.

Theorem 4.1.There is a natural formal group lagMY onMU so that the homomorphisfy : L —
m.MU given by Theorem 2.8 is an isomorphism.

Proof. We first define the formal group law iU using the computation &*(CP*) andE(CP* x
CP*), and theH-space structure oGP*. The universal property df then produces a homomor-
phismL — x.(MU), which we proceed to show is an isomorphism. The central glathe
argument is the commutative diagram in Lemma 4.5. We gettinjey from the injectivity of
the homomorphisnir of Theorem 2.9, and surjectivity from an analysis of the oaaposible
quotient of the Hurewicz homomorphism.

Lemma 4.2. Suppose théE is a ring spectrum. Then
(i) E*(CP") = m.(E)[X]/(x"Y),
(i) E*(CP*) = m.(E)[XI,
(i) E*(CP"x CP™) = m.(E)[Xq, X2] /(X]*2, x5,
(iv) E*(CP* x CP*®) = m.(E)[ X1, %21

We know thatCP*> is anH-space (by [3, p. 282] for example), and its product mapCP> x
CPi — CP* is associative, commutative and with an identity element.

Definition 4.3. Defineu®(x1, X2) = m*(x) € E*(CP* x CP*) = r,(E)[ X1, X1
Lemma 4.4. The power serieg® defined above gives a commutative formal group law.

Proof. The required associativity, identity and commutativitycams follow from the correspond-
ing properties om. O

This formal group law allows us to define a homomorph&m: L — #.(MU). Recall from
Section 2.4 thaR = Z[by, by, ...] and that we have a formal group law# and thus a homomor-
phismér: L — R. In order to connect these maps, we need the following result

Lemma 4.5. (i) TheE-homology oMU is given by
E.(MU) = n.(E)[by, by, .. .].
(i) Moreover, the following diagram commutes:

L —™ 7. (MU)
eRl lh
R=——H.(MU)

This commutative diagram constitutes the central part isf phoof. We know from Theorem
2.9 thatér is injective, and thus we have th@jy is also injective. In order to prove thég is
surjective we use the following results.

Lemma 4.6.
Z for m positive and even,
0 otherwise.
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Lemma 4.7. The image of @(h): Qax(7.(MU)) —» Qu(H.(MU)) is the same as the image of
Qan(OR).-

These two lemmas allow us to complete the proof of Theoremsing Lemma 2 we have that
Qan(h) is an isomorphism onto its image. SinQg,(6r) is also an isomorphism onto its image by
Lemma 2, by the commutativity of the diagram in Lemma 4.5 wevkithatQ,,(6wy ) is actually
an isomorphism. Therefor@,y is surjective, by the same argument that showed ¢havas
surjective given thaf,,(6r) was an isomorphism. We have already seenéhatis injective, so it
is an isomorphism. This concludes the proof of Theorem 4.1. O

Once again there are many details to fill in. We begin with tle®pof Lemma 4.2, computing
the cohomology of£P", CP*and their products.

Proof of Lemma 4.2We have the following spectral sequences from Theorem 3.17:
(i) H*(CP"; .(E)) = E*(CP"),
(i) H*(CP>; n.(E)) = E*(CP™),
(i) H*(CP" x CP™; n.(E)) = E*(CP" x CP™),
(iv) H*(CP* x CP*; n.(E)) = E*(CP* x CP>).

The appropriate powers andx‘lx’2 form a basis for th&, page as a.(E) module. In factxis
the image of the orientatioxt € E*(CP*), and thus by the construction of the Atiyah-Hirzebruch
spectral sequence must survive to Eagpage. Therefore all fierentialsd, vanish onx, and since
these diferentials arer.(E)-algebra homomorphisms, allftBrentials vanish and thi&s (CP*) =
m(E)IXI.

The arguments for the other spectral sequences are analogou O

In order to prove Lemma 4.5, we need to pursue some preliesarn order to compute
E.(MU), we first computd, (CP~) = E.(BU(1)), then proceed t&.(BU) and finallyE.(MU).

The computation of the homology 6P~ is dual to the computation of its cohomology. Indeed,
we have the following.

Lemma 4.8. () E.(CP") andE.(CP>) are finitely generated free modules ove(E), dual
to E*(CP") andE*(CP*).
(i) Letg; be the element d&*(CP") dual to X, and also writgs; for the image irE*(CP*) of
Bi. Then{Bi: 0 <i < n} forms ar,(E) basis forE.(CP") and{g;: i > 0} forms an.(E)
basis forE.(CP*).

In order to compute th&-homology ofBU, we need to know the ordinary homology BU,
which is given in the following lemma (see [4, p. 161] for thegf of the dual statement).

Lemma 4.9. The homology HBU) is given by

H.(BU) = Z[B1,B2, .. ],
whereg; is the image in EH(BU) of the corresponding element of (€P*) under the inclusion
CP* = BU(1) — BU.

The Atiyah-Hirzebruch spectral sequence is trivial sintdifferentials vanish on the monomi-
als in thes;. This gives us the following:

Lemma 4.10.
E.(BU) = n.(E)[B1,B2, - - ]
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Proof of Lemma 4.5Cupping with the Thom class gives an isomorphB(BU) = E.(MU) (see
[4, p. 206]). We want to use slightly flierent generators fdg,(MU ) though, in order to make the
diagram in Lemma 4.5 commute. In particular, we have Biafl) = MU (1) and the “inclusion”
of MU(1) in MU induces a homomorphism

Ep(MU(1)) - Ep2(MU).

Write b; for the image ofufgi,, in E.(MU). SinceuF is a unit inx.(E) andby = 1, this gives
Lemmal.

We now need to prove the commutativity of the diagram in Lendnta Recall from Section
3.5 that the map: ».(MU) = [SMU] — [S H A MU] = H,(MU) is induced from the map
MU — H A MU. We need to understand the pushforwargu¥8¥, which has cofficients in
n.(MU), under this map.

The orientationsMV € MU*(CP>) and x" € H*(CP*) map to orientationg™V andy" in
(H A MU)*(CP™). | claim thatyMV = ¥, b (y")"*1. Note thatb!! € H.(MU) = [S H A MU] —
[S HAMU A CP]. The proof of this claim is given in [1, p. 60] and consistsstip of chasing
down definitions.

Recall that the power series @) € m.(H A MU)[[X] is defined by

expy(X) = Z bf*x*1,
i>0
Then we've shown that, tracing around the top and right ottiramutative diagram, we have
h.u™ (%1, %5) = exp, (109, (%) + l0g, (%))
But this is exactly the the definition @f. O

The only remaining task is to contr@,(r.(MU)) andQ,,(h). We sketch the proofs of Lemmas
4.6 and 4.7, for more details see [1, pp. 75-79].

Sketch for Lemma 4.6 he proof that

_ | Z for mpositive and even,
Qinr.(MU)) = { 0 otherwise

rests on the Adams spectral sequencd i the modp Steenrod algebra, then
Ext'(H*(MU; Z/pZ), Z/ pZ) = m_s(MU).
We prove that, for any,

_ | Z/pz for mpositive and even,
Qn(r.(MU)) ® Z/pZ = { 0 otherwise.

SinceH*(MU) is concentrated in even degrees, this result is easy foooddn-positivem. In
order to prove that the dimension @f,(7.(MU)) ® Z/pZ is at least one, we can use the fact that
the Hurewicz map is an isomorphism after tensoring WitAnd note that

Qzn(7.(MU)) ® Q = QH.(MU))®Q = Q.

So it remains to prove th&,,(r.(MU)) ® Z/ pZ has dimension at most 1 oVEy pZ. At this point
| will defer to the treatment in Adams [1] and the papers tleatdferences. O
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Sketch for Lemma 4.%\Ve need to prove that the image @b,(h) is the same as the image of
Q2n(6r). The inclusion imQ,,(6r)) c iIm(Qzn(h)) is clear from the commutativity of the diagram
in Lemma 4.5. Since in@,,(6r)) = Qu(R) for n+ 1 # p' by Lemma 2, we need to prove that for
n+ 1= pf, the inclusion imQ,,(h)) c p(b,) holds.

SetG = Z/pz. There is a canonical ma@U — H (see Adams [1, p. 52]) and another
H — HG. Call the compositio, and the induced map

g.: H.(MU) = [S,H A MU] = [S, HG A HG] = HG,(HG).

Adams argues that the imagegp(by) in Qzn(HG.(HG)) = Z/pZ is nonzero, but that, annihilates
h(r.(MU)) [1, p. 79]. This implies the inclusion i, (h)) c p(bn). O

REFERENCES

[1] Adams, J.F. Stable Homotopy and Generalised Homolobicago: University of Chicago Press, 1974.

[2] Frohlich, A. Formal Groups. Lecture Notes in Matherosti74. Berlin: Springer, 1968.

[3] Hatcher, A. Algebraic Topology. Cambridge: Cambridge, @002.

[4] Milnor, J.W., Stashf, J.D. Annals of Mathematics Studies, 76. Princeton: Ptorc&P, 1974.

[5] Strickland, N.P. Formal Groups. Course Notlastp://neil-strickland.staff.shef.ac.uk/courses/
formalgroups/.

[6] Switzer, R.M. Algebraic Topology - Homology and Homoyoperlin: Springer, 2002.

26



