
FORMAL GROUPS, COMPLEX COBORDISM AND QUILLEN’S THEOREM

DAVID ROE

1. I

Quillen’s theorem, giving an explicit isomorphism betweenthe Lazard ring and the homotopy
ring of theMU spectrum, has provided a guiding direction for my studies over the past month.
Along the way, I have solidified and expanded my knowledge about formal groups. Though I
did not think about the applications of formal groups to local class field theory or elliptic curves,
what I picked up will certainly prove useful when I encounterthem in the future. Learning about
CW-spectra and beginning to think about the possible generalizations has proved quite interesting.
Working with spectra is more to my taste than directly withCW-complexes. And learning the
proof of Quillen’s theorem itself has been rewarding.

The main source for Quillen’s theorem has been Adams [1], andhis book has proved a valuable
resource in learning about spectra as well. Switzer’s textbook [6] served to fill in some of the
details that Adams glossed over. Finally, Strickland’s course notes [5] provided a more modern
perspective on the topic of formal groups and the symmetric 2-cocycle lemma.

The proof of Quillen’s theorem is by no means self contained.We have chosen to focus on
the theory of spectra and formal groups rather than learningenough about the Adams spectral
sequence and the Steenrod algebra to completely understandcertain calculations in Adam’s proof.
As a result some of the details of the proof are left as references to his book.

In Section 2, we present results about formal groups. Beginning with the definition of a formal
group law and examples, we proceed to offer a possible definition of a formal group as a group
object in a category of filtered algebras. The rest of Section2 deals with the Lazard ringL, which
has the universal property that giving a commutative formalgroup law over a ringR is the same as
giving a ring homomorphism fromL to R. We compute the structure of the Lazard ring, following
a mixture of Adams [1, pp. 31-74] and Strickland [5, pp. 11-17], together with one modification
in the proof of 2.17. Instead of a tedious analysis ofA = Z/pZ, we are able to instead use the
p-adic ringZp and leverage the fact that the desired result is easier to prove for torsion-freeA. We
retain enough of Adams notation and specific lemmas to make the proofs in Section 4 easier, but
incorporate the notion of symmetric cocycles from Strickland in order to simplify and guide some
of the lemmas needed. By the end of Section 2 we have a good description of L and a specific
injectionL→ Z[b1, b2, . . .] that will prove useful in Section 4.

We take an interlude in Section 3 to give some of the definitions and results that we use from
the theory ofCW-complexes andCW-spectra. Adams [1], Hatcher [3], Milnor-Stasheff [4] and
Switzer [6] provide the source for the material in this section. We begin with the definition of a
CW-complex and outline some of the common geometric constructions such as suspension and
smash product. We proceed in Section 3.2 to motivate the passage fromCW-complexes to spectra.
Two kinds of results motivate this change. The first is a number of theorems that suggest there
should be a category in which suspension is invertible. In addition, Browns represntability theorem
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shows that any homology theory gives a way to generate a collection of spaces, indexed by the
integers, and related by maps from the suspension of each to the next in line. This result provides
the second source of inspiration for the definition of a spectra, which we then give, together with
various associated definitions. Section 3.3 then consists of examples of spectra that appear in the
rest of this work. The rest of the section is devoted to outlining some of the constructions done
with spectra. We give a sketch of the construction of the smash product of spectra, the definition
of homotopy, homology and cohomology groups and the definition of ring and module spectra.
Finally, we give Adam’s definition of an orientation on a ringspectra and include a primer on the
Atiyah-Hirzebruch spectral sequence.

The final section consists of a proof of Quillens theorem, following Adams [1]. As mentioned
above, some details are left out related to the use of the Adams spectral sequence.
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2. F G

2.1. Formal Group Laws.

Definition 2.1. Let Rbe a commutative ring with unit. Aformal group lawoverR is a power series
µ(x, y) =

∑

i, j≥0 ai j xiyj ∈ R~x, y�, satisfying

(2.1.1) µ(x, 0) = x, µ(0, y) = y, and

(2.1.2) µ(x, µ(y, z)) = µ(µ(x, y), z).

If, in addition,µ(x, y) = µ(y, x), then we say that the formal group law is commutative.

The first condition places obvious restrictions on the allowableai j : we must haveai0 = δi1 and
a0 j = δ1 j, whereδ is the Kroneckerδ. How the second condition affects theai j is more difficult to
determine. We will consider this question more in section 2.4.

Of course, we are missing one axiom of a group. This omission is justified by the following
definition and lemma.

Definition 2.2. Given a formal group lawµ overR, a formal inversefor µ is a power seriesι(x) =
∑

i≥1 a′1xi ∈ R~x�, satisfying

(2.1.3) µ(x, ι(x)) = µ(ι(x), x) = 0.

Lemma 2.3. Given any formal group lawµ, there is a unique formal inverseι for µ.

Proof. Substitutingι(x) for y in µ, we getx +
∑

i≥1 a′i x
i
+

∑

i, j≥1 ai j xi
(

∑

k≥1 a′kx
k
) j
= 0. We have

thata′i appears as a coefficient of xi in the first sum, and sincei and j are both at least 1, onlya′k
for k < i appear in the coefficient of i in the second sum. So we can solve for thea′i , thus proving
existence of a right inverse, and uniqueness.

Suppose thatι(x) is a right inverse. Then, by associativity,

x = µ(0, x) = µ(µ(x, ι(x)), x) = µ(x, µ(ι(x), x)) = x+ µ(ι(x), x) +
∑

i, j≥1

ai j x
iµ(ι(x), x) j .

Suppose that the coefficient of xi in µ(ι(x), x) is zero for 0≤ i < n, and equal toa′n for i = n. Then
reducing the above equation moduloxn+1 yieldsa′n = 0. �

All of our formal group laws will be commutative; the third equation then translates toai j = a ji .
If R is graded, then we givex, y, andµ(x, y) degree−2 (the topological reason for the factor of 2

is that the generator ofH∗(CP∞) lies in degree 2), and thus we ask thatai j lie in degree 2(i + j −1).
One can define formal group laws in more variables (see Fröhlich [2] or Strickland [5]), but we

will only use the one dimensional case. We will, however, provide a more categorical approach in
section 2.3 and define a formal group, rather than just a formal group law.

But before proceeding, we first define homomorphisms betweenformal group laws.

Definition 2.4. A homomorphismfrom a formal group lawµ overR to a formal group lawν over
R is a power seriesf (x) ∈ R~x� satisfying

(2.1.4) ν( f (x), f (y)) = f (µ(x, y))

An isomorphismof formal groups is a homomorphism with an inverse, as usual.

Lemma 2.5. If f =
∑

i>=1 ci xi, then f is an isomorphism if and only if c1 is invertible in R.

.
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2.2. Examples. We begin with two simple examples, then proceed with a numberof situations in
number theory and geometry where formal groups arise.

(i) The additive formal group law is defined by

(2.2.1) µ(x, y) = x+ y

The inverse is then given byι(x) = −x.
(ii) The multiplicative formal group law is defined by

(2.2.2) µ(x, y) = x+ y+ xy

The inverse is given byι(x) = −x+ x2 − x3
+ · · · .

(iii) If c is an invertible element inR, the Lorentz formal group law is given by

(2.2.3) µ(x, y) =
x+ y

1+ xy/c2

This formal group law is related to the addition of parallel velocities in special relativity.
(iv) Let p be a prime andf (x) ∈ Z[x] be monic such thatf (x) ≡ px (mod x2) and f (x) ≡ xpn

(mod p) for somen > 0. Then Lubin-Tate theory gives that there is a unique formalgroup
law F overZp such thatf (F(x, y)) = F( f (x), f (y)), and that for this group law if we addx
to itself p times using the group law, we getf (x).

.

2.3. A Categorical Approach. There are a number of ways to make formal group laws into a
category. The simplest way is to merely define a categoryCfglwhose objects are formal group
laws overR, and define the morphisms to be exactly the homomorphisms of formal group laws
defined in section 2.1. But there are many other ways to put formal group laws into a categorical
framework. We will show that it is reasonable to define a formal group to be a group object in the
opposite category to a category of filteredR-algebras.

Definition 2.6. Suppose thatC is a category with finite products and a terminal object1. We define
a group object inC to an objectG in C together with morphisms

• m: G×G→ G
• e: 1→ G
• i : G→ G

such that
(i) m◦ (m× IdG) = m◦ (IdG×m)

(ii) m◦ (e× IdG) = p1 andm◦ (IdG×e) = p2 wherep1 : 1×G→ G andp2 : G × 1→ G are
the canonical projection maps.

(iii) m◦ (IdG ×i) ◦ d = m◦ (i × IdG) ◦ d = eG, whered : G→ G ×G is the diagonal map and
eG is the composition of the unique morphismG→ 1 with e.

We define Grp(C) to be the category whose objects are group objects inG and whose morphisms

(G,mG, eG, iG)
f
−→ (H,mH, eH, iH) are morphismsf : G→ H in C that satisfy

G×G
mG //

f× f
��

G

f
��

H × H mH

// H
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G
iG //

f
��

G

f
��

H
iH

// H

and

1
eG // G

f
��

1 eH

// H

For example, groups are group objects in the category of sets, Lie groups are group objects in the
category of smooth manifolds, topological groups are groupobjects in the category of topological
spaces and algebraic groups are group objects in the category of algebraic varieties.

Consider the category whose objects are filtered commutative algebras overR that are complete
and Hausdorff for the filtration topology, and whose morphisms are filtration preserving homomor-
phisms. LetCalgbe the opposite category.

TheR-algebraR~x1 . . . xn�, with the obvious filtration, is an object ofCalg. R is a terminal object
of Calg, and the Cartesian product ofR~x1 . . . xn� andR~y1 . . . ym� is R~x1 . . . xn, y1 . . . ym�. If G
is the objectR~x� in Calg, then a mapm: G × G → G is a filtration preserving homomorphism
m: R~x� → R~x, y�, which is specified by the imageµ(x, y) ∈ R~x, y� of x ∈ R~x�. So, given any
formal group lawµ, we have a corresponding morphismmµ in Calg. We also defineR

e
−→ R~x� by

∑

i≥0 ci xi 7→ c0 andR~x�
iµ
−→ R~x� by x 7→ ι(x), whereιµ is the inverse associated toµ by Lemma

2.3. So for every formal group law overR we get a group object inCalg.
Moreover, a morphismf ∈ R~x� in Cfglof formal group laws specifies a morphism in Grp(Calg)

from R~x� toR~y� byy 7→ f (y). So we have a functorFalg : Cfgl → Grp(Calg). In fact, the following
proposition holds.

Proposition 2.7. The functor Falg is fully faithful, though not essentially surjective. The objects in
the image consist of exactly the group objects inGrp(Calg) with G= R~x�.

One might define a formal group as a group object inCalg. We will mainly consider formal group
laws rather than formal groups because explicit power series are easier to work with. However,
there are many other interpretations of formal groups. See Adams [1, pp. 44-46] for a reformula-
tion in terms of Hopf algebras, and Fröhlich [2, pp. 29-42] for a more extensive treatment in the
same direction. See Strickland [5, pp. 6-11] for a description of formal groups as formal schemes
with an Abelian group structure on the fibers.

.

2.4. Lazard’s Ring. In this section we answer a question from Section 2.1: what constraints does
associativity place on the coefficientsai j of a formal group law? In particular, we define a universal
ring L and compute its structure.

Theorem 2.8. There is a commutative ring L with unit, and a commutative formal group lawµL

defined over L such that for any commutative ring R with unit, and any commutative formal group
law µR defined over R there is a unique homomorphismθR: L→ R withθR∗µ

L
= µR.
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Proof. We can defineL by giving it as the quotient of a polynomial ring by an ideal ofrelations.
Consider the polynomial ring defined on the variables{ai j : i, j ≥ 1},

P = Z[a11, a12, a21, a13, a22, a31, . . .].

Define
µL(x, y) = x+ y+

∑

i, j≥1

ai j x
iyj ,

and define elementsbi jk of P by

µL(x, µL(y, z)) − µL(µL(x, y), z) =
∑

i, j,k

bi jk xiyjzk.

Let I be the ideal generated by thebi jk andai j − a ji . SetL = P/I . Since we have quotiented out by
exactly the relations giving associativity and commutativity, µL is a commutative formal group law.
Conversely, given anyRandµR, the fact that polynomial rings overZ are the free in the category of
rings allow us to define a unique ring homomorphismφ : L → R sendingai j to the corresponding
coefficient ofµR. SinceµR is associatiative and commutative, this homomorphism descends to a
homomorphism fromL = P/I . �

Yet this description ofL is not totally satisfactory: we cannot specify a morphism fromL by just
arbitrarily giving the images of theai j , because there are relations among them. In the rest of this
section we work to give a more useful description ofL.

Giveai j degree 2(i + j − 1). Thenbi jk is a homogeneous polynomial of degree 2(i + j + k− 1). It
turns out that, after quotienting byI , there is exactly one generator remaining in each positive even
degree.

SetR to be the ringZ[b1, b2, . . .], wherebi is given degree 2i. Setb0 = 1 in this ring. Define the
power series exp(y) =

∑

i≥0 biyi+1 ∈ R~y�, and log(x) as the power series inverse of exp. Define

(2.4.1) µR(x1, x2) = exp(log(x1) + log(x2)).

This is just the image of the additive formal group law under the homomorphism of formal group
laws defined by log. By Theorem 2.8, there is a unique homomorphismθR: L → R carryingµL to
µR. Note thatθR preserves degree.

Theorem 2.9.The homomorphismθR is injective. Moreover, L is isomorphic to a polynomial ring
on generators in degree2, 4, . . . , thoughθR is not an isomorphism.

Proof. We begin by defining theindecomposible quotientof a graded ringR, which will provide a
tool for isolating generators ofR.

Definition 2.10. Given a graded ringS =
⊕

n≥0 Sn, we say thatS is connected ifS0 = Z. In this
case, defined theaugmentation ideal IS to be the ideal

IS =

⊕

n>0

Sn.

Elements ofI2
S are calleddecomposible elementsof S, because they can be written in terms of

generators of lower degree. We can define a graded abelian groupQ∗(S), called theindecomposible
quotient, by

Q∗(S) = IS/I
2
S.

In fact, Q∗ is a functor from connected graded rings to graded abelian groups, if we consider only
morphisms that preserve degree. Ifx ∈ IS, write x for the image ofx in Q∗(S).
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SinceR and L are nonzero only in nonnegative even degrees,Qm(R) andQm(L) will both be
zero unlessm = 2n with n > 0, in which caseQ2n(R) � Z will be generated bybn. The following
lemmas give us information aboutQ∗(L) andQ∗(θR) that will allow us to prove Theorem 2.9; the
proofs of these lemmas will be delayed until after the proof of Theorem 2.9.

Lemma 2.11.
(i) θR(ai j ) ≡

(i+ j)!
i! j! bi+ j−1 (mod I2

R) for i, j ≥ 1.
(ii) Set Tn to be the image of Q2n(θR) : Q2n(L) → Q2n(R), and

γ(n) =

{

p if n+ 1= pf for some p prime and f≥ 1,
1 otherwise.

Then Tn consists of the multiples ofγ(n)bn.

Given any abelian groupA, we can makeZ⊕A into a ring by setting (n, a)·(m, b) = (nm, nb+ma).
Let πZ : Z ⊕ A→ Z be the projection map. Whenever we speak of a formal group lawµ onZ ⊕ A,
we require that (πZµ)(x, y) = x+y. In addition, ifA is graded then we require the coefficient ofxiyj

in µ(x, y) to lie in degree 2(i + j − 1).
There is a natural formal group law onZ ⊕ Q2n(L), namely

µQ2n(L)(x, y) = x+ y+
∑

i, j≥1
i+ j=n+1

ai j x
iyj.

Lemma 2.12.
(i) Given any abelian group concentrated in degree2n and any commutative formal group

law µA onZ ⊕ A, there is a unique homomorphismϕA : Q2n(L) → A such thatϕA∗µ
Q2n(L)

=

µA.
(ii) For any such A and anyµA, the homomorphismϕA factors through the homomorphism

Q2n(L) → Tn.
(iii) The homomorphism Q2n(L) → Tn is an isomorphism of groups.

By Lemma 2,Tn is generated by a single element, and by Lemma 3 we can choose,for each
n > 0, an elementtn ∈ L2n that projects to a generator ofTn. We get a map

α : Z[t1, t2, . . .] → L.

By Lemma 3,Q2n(α) is an isomorphism for eachn. In order to see thatα is surjective, it is enough
to say that everyai j is in the image ofα, since theai j generateL. We prove this by induction on
i + j. If i + j = 2, then±t1 must map toa11, since (I2

Z[t1,t2,...]
)2 = 0 and (I2

L)2 = 0. Now consider
someai j with i + j > 2. SinceQ2(i+ j−1)(α) is an isomorphism, there existsx ∈ Z[t1, t2, . . .] with
Q2(i+ j−1)(α)(x) = ai j . Thenα(x) ≡ ai j (mod I2

L). Write

α(x) − ai j =

∞
∑

k=1

∑

i1,...,ik, j1,..., jk≥1
i1+···+ik+ j1+···+ jk−k=i+ j−1

ci1,...,ik

k
∏

l=1

ail jl .

By induction, we can findxgh with α(xgh) = agh for g+ h < i + j. Then

α(x−
∞
∑

k=1

∑

i1,...,ik, j1,..., jk≥1
i1+···+ik+ j1+···+ jk−k=i+ j−1

ci1,...,ik

k
∏

l=1

xil jl ) = ai j .
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But the compositeθR ◦ α : Z[t1, t2, . . .]
α
−→ L

θR
−→ R = Z[b1, b2, . . .] is injective, sinceθR(α(tn)) ≡

γ(n)bn (mod I2
R). Thereforeα is also injective, and thus an isomorphism. Sinceα is an isomor-

phism, the injectivity of the composition now implies the injectivity of θR. �

We now need to fill in the gaps by giving proofs of Lemmas 2.11 and 2.12. We begin with two
preliminary propositions. The first relates the coefficients of exp and log, which will be needed in
the proof of Lemma 2.11. The second gives an elementary result giving the p-adic valuation of
(

n
m

)

, which will be used in the proofs of both lemmas.

Proposition 2.13.Setexp(y) =
∑

i≥0 biyi+1 and log(x) =
∑

i≥0 mi xi+1, and denote the component in
dimension2i of an inhomogeneous sum S by Si (after embeddingZ[b1, b2, . . .] into Z~b1, b2, . . .�).

(i) The coefficients bn and mn of expand log are related by

mn =
1

n+ 1































∞
∑

i=0

bi















−n−1














n

(2.4.2)

bn =
1

n+ 1































∞
∑

i=0

mi















−n−1














n

(2.4.3)

(ii) m0 = 1 and mn ≡ −bn (mod I2
R) for n ≥ 1.

Proof. If

ω =
∑

i≥−N

ciy
idy,

define res(ω) to bec−1, the residue ofω at y = 0. Then
(

(∑

i≥0 bi
)−n−1

)

n
is the coefficient ofyn in

(

∑

i≥0 biyi
)−n−1

, which is the same as the coefficent ofy−1 in
(

∑

i≥0 biyi+1
)−n−1

. So






























∑

i≥0

bi















−n−1














n

= res(x−n−1dy)

= res(x−n−1 dy
dx

dx)

= res(x−n−1

















∑

j≥0

mj( j + 1)xj

















dx)

= (n+ 1)mn.

The proof for (2.4.3) is entirely symmetric.
We now prove the second part. The fact thatm0 = 1 follows from the definitionb0 = 1. By the

binomial theorem, forn ≥ 1,














1+
∞
∑

i=1

bi















−n−1

=

∞
∑

k=0

(

n+ k
k

)

(−1)k














∞
∑

i=1

bi















k

≡ 1− (n+ 1)















∞
∑

i=1

bi















(mod I2
R).
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The only term in this last sum that lies in degree 2n is −bn, so by (2.4.2) we have

mn ≡ −bn (mod I2
R). �

Proposition 2.14.Let q be any prime, and for x∈ Q let vq(x) be the largest power of q dividing x.
Then vq(

(

i+ j
i

)

) is equal to the number of carries that occur when i and j are added in base q.

Proof. If i = 0 or j = 0 the result is clear. Otherwise, writei = κ0 + κ1q + · · · + κrqr and
j = λ0 + λ1q+ · · ·+ λrqr andi + j = τ0 + τ1q+ · · ·+ τrqr with all κs, λs andτs between 0 andq− 1.
If a carry occurs in positions, setc(s) = 1; otherwise setc(s) = 0. In addition, setc(−1) = 0 and
c(s) = 0 for s≥ r. Then

τs = κs + λs+ c(s− 1)− qc(s).

Counting the number of multiples ofq j occuring belowi, we have

vq(i!) =

⌊

i
q

⌋

+

⌊

i
q2

⌋

+ · · ·

=

r
∑

s=1

r
∑

t=s

κtq
t−s

and likewise forvq( j!) andvq((i + j)!). Therefore

vq(

(

i + j
i

)

) = vq((i + j)!) − vq(i!) − vq( j!)

=

r
∑

s=1

r
∑

t=s

τtq
t−s −

r
∑

s=1

r
∑

t=s

κtq
t−s −

r
∑

s=1

r
∑

t=s

λtq
t−s

=

r
∑

s=1

r
∑

t=s

(c(t − 1)− qc(t))qt−s

=

r
∑

s=1

c(s− 1)+
r

∑

s=1

r−1
∑

t=s

c(t)qt−s+1 −

r
∑

s=1

r
∑

t=s

c(t)qt−s+1

=

r−1
∑

s=0

c(s),

where this last equality holds sincec(r) = 0. This last sum is exactly the number of carries occuring
when addingi and j in baseq. �

We now proceed to the proof of Lemma 2.11.

Proof of Lemma 2.11.

(i) We compute the coefficient ofxi
1xj

2 in the power seriesµR(x1, x2) = exp(log(x1)+ log(x2)).
9



exp(log(x1) + log(x2)) =
∑

k≥0

bk















∑

l≥0

ml(x
l+1
1 + xl+1

2 )















k+1

≡ x1 + x2 −
∑

l≥1

bl(x
l+1
1 + xl+1

2 ) +
∑

k≥1

bk















x1 + x2 −
∑

l≥1

bl(x
l+1
1 + xl+1

2 )















k+1

≡ x1 + x2 −
∑

l≥1

bl(x
l+1
1 + xl+1

2 ) +
∑

k≥1

bk(x1 + x2)
k+1.

Thus the coefficient ofxi
1xj

2 is
(

i+ j
i

)

=
(i+ j)!
i! j! for i, j ≥ 1.

(ii) We need to prove that the image ofQ2n(θR) consists of multiples of eitherbn or of pbn (if
n+ 1 = pf ).

SinceL is generated as a ring by theai j , which lie in degree 2(i + j − 1), Q2n(L) is
generated as an abelian group byai j for i + j = n+ 1. By the previous part, it suffices to
show that the greatest common divisor of{

(

n+1
i

)

: 1 ≤ i ≤ n} is γ(n+ 1). If n+ 1 = pf , then
both i and j have f digits but their sum hasf + 1, so at least one carry occurs for every
i in the range 1≤ i ≤ n. Thusvp(γ(pf − 1)) ≥ 1 by Proposition 2.14. Ifi = pf−1 and
j = (p− 1)pf−1, then exactly one carry occurs, so in factvp(γ(pf − 1)) = 1. Now suppose
q is any prime andn + 1 , qf for any f ≥ 1, and write the baseq expansion ofn+ 1 as
κ0 + κ1q+ · · · κrqr . Suppose first thatκ j , 0 for somej in the range 0≤ j < r. If no such
j exists, then we must haven + 1 = aqr with 2 ≤ a < q; in this case setj = r. In either
situation, we can writen+1 = q j

+ (n+1−q j ), and no carries occur in that sum. Therefore
vq(

(

n+1
qj

)

) = 0, sovq(γ(n + 1)) = 0. Since this holds for an arbitrary primeq, we have the
desired conclusion.

�

In order to prove Lemma 2.12, we first develop the machinery ofsymmetric 2-cocycles. Many
of the arguments here are due to [5, p. 11-16].

Definition 2.15. Let A~x, y� be the abelian group consisting of formal sums
∑

i, j≥0 ai j xiyj with
ai j ∈ A. A symmetric 2-cocyclewith coefficients inA is a power seriesf (x, y) ∈ A~x, y� such that
f (x, y) = f (y, x) and f (x, 0) = 0 and

f (y, z) − f (x+ y, z) + f (x, y+ z) − f (x, y) = 0.

Write Z(A) for the set of suchf ’s andZd(A) for the subset consisting of homogeneous polynomials
of degreed.

We have thatZ0(A) = Z1(A) = 0 by the conditions thatf (x, 0) = 0 andf (x, y) = f (y, x). It is also
clear thatZ(A) =

∏

d>1 Zd(A). The following desciption ofZ(A), together with the isomorphism
Zd(A) � A which we will prove in Lemma 2.17, form the key ingredients inthe proof of Lemma
2.12.

Lemma 2.16. There is a natural ismorphism of abelian groups Z(A) = Hom(Q∗(L),A), where
the Hom is in the category of abelian groups. Under this isomorphism, Zd(A) is identified with
Hom(Q2(d−1)(L),A).

10



Proof. Let Y(A) be the set of formal group lawsµ overZ⊕A. We haveµ(x, y) = x+ y+ f (x, y) for
somef (x, y) ∈ A~x, y�. The conditionsµ(x, 0) = x andµ(x, y) translate directly tof (x, 0) = 0 and
f (x, y) = f (y, x), and we have

µ(µ(x, y), z) = x+ y+ z+ f (x, y) + f (x+ y+ f (x, y), z).

Since f has coefficients inA and A2
= 0 in Z ⊕ A, the last term equalsf (x + y, z). Thus the

associativity condition onµ translates to the cocycle condition onf . The mapµ 7→ f thus gives a
bijectionY(A) = Z(A).

However, by Theorem 2.8,Y(A) bijects with ring homomorphismsφ : L → Z ⊕ A, and the
condition that (πZµ)(x, y) = x + y) translates to the condition thatπZφ(IL), or equivalently that
φ(IL) ⊂ A. If this is the case, thenφ(I2

L) ⊂ A2
= 0, soφ induces a homomorphismQ∗(L) = IL/I2

L →

A.
SinceQ∗(L) =

⊕

n≥1 Q2n(L), by the duality of direct sums and products, it suffices to check that
the map just defined restricts to an isomorphism of abelian groupsZd(A)→ Hom(Q2(d−1)(L),A) for
d > 1. A cocycle f =

∑

i+ j=d αi j xiyj ∈ Zd(A) corresponds tox + y +
∑

i+ j=d αi j xiyj ∈ Y(A), which
corresponds to the homomorphismφ f : Q2(d−1)(L) → A given byφ f (ai j ) = αi j . The product of these
correspondences gives our mapZ(A) =

∏

d>1 Zd(A) → Hom(⊕d>1Q2(d−1)(L),A) = Hom(Q∗(L),A).
Moreover,f +g 7→ φ f+g = φ f +φg, so our correspondence is a homomorphism. In addition,φ f = 0
impliesαi j = 0 for all i, j which implies f = 0, and conversely the conditions on theai j in L are
precisely those required to guarantee that for a homomorphismφ : Q2(d−1)(L) → A there exists a
cocycle f with φ = φ f . �

Given anyA we can define the mapφA : A→ Zd(A) by φA(a) = a
∑d−1

i=1
1

γ(d)

(

d
i

)

xiyd−i. This makes

sense sinceγ(d) is the greatest common divisor of all of the
(

d
i

)

, and it’s a symmetric 2-cocycle
sinceφA(a)(x, y) = a

γ(d) ((x+ y)d − xd − yd).
Fix a choice of integersηi,d for d > 1 and 0< i < d such that

γ(d) =
d−1
∑

i=1

ηi,d

(

d
i

)

.

Then define a mapψA : Zd(A)→ A by

ψA(
∑

i=1

d − 1αi x
iyd−i) =

∑

i=1

d − 1ηi,dαi

By construction,ψA ◦ φA = IdA for all A and alld > 1, soφA is always a split monomorphism.

Lemma 2.17.φA is an isomorphism for every abelian group A.

Proof. We proceed by analyzing various possibilities forA. The first case is whenA is a vector
space overQ. This case then allows us to prove the result for any torsion free A. We use an
argument involving thep-adic integersZp in order to show the result forZ/pfZ. The classification
of finitely generated abelian group then implies the conclusion for any finitely generatedA, and a
simple argument extends the result to an arbitrary abelian group.

(i) Suppose first thatA is a vector space overQ. Defineψ : Zd(A) → A by ψ(
∑

i ai xiyd−i) =
γ(d)a1/d. We have

ψ(φA(a)) = ψ(a
∑

i=1

d − 1
1
γ(d)

(

d
i

)

xiyd−i) = a,

11



soψφA = IdA. Now we show thatψ is injective. Supposeψ( f ) = 0. Thena1 = 0. Since
f (x, y) =

∑d−1
i=1 ai xiyd−i this condition is equivalent to the condition thatf1(0, y) = 0, where

f1 is the derivative off with respect to the first coordinate. But differentiating the cocycle
condition with respect tox yields

0 = − f1(y, z) + f1(0, y+ z) − f1(0, y)

= − f1(y, z),

and thereforeai = 0 for all i.
Now we haveψφA = IdA, which implies thatψφAψ = ψ. But ψ is injective, soφAψ =

IdZd(A). ThusφA is an isomorphism. In fact we haveψ = ψA.
(ii) Now suppose thatA is torsion-free. Then defineA′ = A ⊗ Q. SinceA is torsion-free,

a 7→ a ⊗ 1 embedsA into A′. We have thatZd(A) = Zd(A′) ∩ A[x, y], and we know that
φA′ is an isomorphism by the previous part. SinceφA is just the restriction ofφA′ to A, it is
bijective and thus an isomorphism.

As special cases, we note that we now have the result forA = Z andA = Zp.
(iii) We now want to show the result forA = Z/pfZ. We already know thatφA is injective, so

it suffices to check that it is surjective. Consider the diagram

Zp
φZp

//

����

Zd(Zp)

����

Z/pfZ
φ
Z/pf Z

// Zd(Z/pfZ)

It commutes and by the previous case the top arrow is an isomorphism. Therefore the
bottom arrow is a surjection.

(iv) If A is any finitely generated abelian group, it can be written as adirect sum of finitely
many terms of the formZ orZ/pfZ. SinceZd(A⊕B) � Zd(A)⊕Zd(B) we have the desired
result.

(v) Now suppose thatA is any abelian group. LetB be the subgroup ofA generated by the
coefficients of f . ThenB is finitely generated andf ∈ Zd(B). ButφB is surjective, so there
is someb ∈ B ⊂ A with φA(b) = φB(b) = f . SoφA is surjective and thus an isomorphism.

�

Proof of Lemma 2.12.

(i) We need to prove that there is a uniqueϕA : Q2n(L) → A that takesµL to µA.
By Theorem 2.8, there is a unique ring homomorphismθZ⊕A : L → Z ⊕ A with µA

=

θZ⊕A∗µ
L. Since the grading onZ ⊕ A is in dimensions 0 and 2n, and sinceθZ⊕A preserves

degree,θZ⊕A mapsai j to 0 unlessi + j = n+ 1. ThusθZ⊕A factors as

L
θZ⊕A //

$$J
JJ

JJ
JJ

J
J

J Z ⊕ A

Z ⊕ Q2n(L)
IdZ ⊕ϕA

88qqqqqqqqqq

(ii) In order to prove thatϕA factors through the homomorphismQ2n(L) → Tn, we consider
different possibilities forA. We first prove the claim forA = Z andA = Z/pZ, then for

12



Z/pfZ. We then use the classification of finitely generated abeliangroups to prove the
claim for finitely generatedA, and finally consider completely generalA.

�
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3. CW   S

In this section we sketch definitions and basic results in thetransition fromCW-complexes to
spectra in algebraic topology. For the underlying theory ofCW-complexes, see Hatcher [3]. For a
more extensive exposition of spectra consult Adams [1, pp. 123-373] or Switzer [6].

.

3.1. CW complexes and geometric operations.We include the definition of aCW-complex for
completeness. See Hatcher [3, p. 5] or Switzer [6, pp. 64-65]for examples and further details. Let
Dn ⊂ Rn be the subspace{x ∈ Rn : |x| ≤ 1} andSn ⊂ Rn+1 be the subspace{x ∈ Rn+1 : |x| = 1}.

Definition 3.1. A CW-complex is a Hausdorff topological space that can be inductively constructed
from discs of varying dimensions and attaching maps. More precisely, acell complexon a Haus-
dorff spaceX is a collectionK = {en

α : n ∈ N, α ∈ Jn} of subsets ofX satisfying the properties given
below. SetKn

= {er
α : r ≤ n, α ∈ Jn}, then-skeletonof K, andX(n)

=
⋃

r≤n
α∈Jr

er
α. Set

ėn
α = en

α ∩ X(n−1)
= boundaryof en

α,

e̊n
α = en

α − ėn
α = interior of en

α.

We say that a cellem
β

is a face ofen
α if there is a chain of facesem

β
= em0

β0
, em1

β1
, . . . , emk

βk
= en

α with
e̊mi
βi
∩ emi+1

βi+1
, ∅. We require that

(i) X =
⋃

n,α en
α,

(ii) e̊n
α ∩ e̊m

β
, ∅ if and only if α = β andm= n,

(iii) for each cellen
αthere is a map

ϕn
α : (Dn,Sn−1)→ (en

α, ė
n
α)

that is surjective and maps̊Dn homeomorphically onto ˚en
α.

If in addition K satisfies the following two properties then we say thatK givesX the structure of a
CW-complex, or just thatX is aCW-complex.

(i) For each cellen
αin K, there are only finitely many other cellsem

β
with e̊m

β
∩ en

α , ∅.
(ii) A subsetS ⊂ X is closed if and only ifS ∩ en

α is closed inen
αfor each cell.

We say thatL ⊂ K is asubcomplexof K if for each cellen
α ∈ L, every face ofen

α is also an element
of L.

CW-complexes provide the geometric framework for much of classical algebraic topology. We
can form newCW-complexes out of previously constructed ones in a number ofways (see Hatcher
[3, pp. 8-10]). SayX (with cellsen

α) andY (with cellsdm
β
) areCW-complexes andA is a subcomplex

of X. When they appear, letx0 andy0 be base points ofX andY (chosen 0-cells). LetI = D1 be
the unit interval{x ∈ R : 0 ≤ x ≤ 1} with its standardCW-structure.

(i) The disjoint unionX∐ Y is made into aCW-complex in the obvious fashion.
(ii) We can make the set theoretic productX × Y a CW-complex by giving cellsen

α × dm
β

and
mapsϕm+n

α,β
: (Dm+n,Sm+n−1) � (Dn ×Dm,Sn−1×Dm∪Dn ×Sm−1)→ en

α × dm
β
. Note that the

topology on theCW-complexX × Y is not necessarily the same as the product topology.
(iii) The quotientX/A has a celldn

α for each cellen
αthat is not an element ofA (the image of

that cell under the projection mapX→ X/A), and one new 0-celle0
A corresponding to the

14



image ofA in X/A. For each celldn
α, the mapφn

α : (Dn,Sn−1) → dn
α is given by composing

ϕn
α with the projection mapX→ X/A.

(iv) The reduced suspensionS Xof a base pointed spaceX is defined asX× I/(X× {0} ∪ {x0} ×

I ∪ X × {1}). If f : X → Y is continuous, defineS f : S X→ S Yto be the quotient of the
map f × Id : X × I → Y× I .

(v) The smash productX ∧ Y is defined asX × Y/(X × {y0} ∪ {x0} × Y). The projection
mapsπX : X × Y → X and πY : X × Y → Y descend to maps onX ∧ Y. Moreover,
given mapsf : X → X′ andg: Y → Y′ of base-pointed topological spaces we get a map
f ∧ g: X ∧ Y → X′ ∧ Y′ by taking the quotient off × g. Thus the smash product is the
product in the category of base pointed topological spaces.

(vi) The wedge sumX∨Y is defined asX∐Y/{x0, y0}. The wedge sum is the coproduct in the
category of base pointed topological spaces.

(vii) The path spacePX is the topological space consisting of all mapsγ : I → X. If X has a
base point, we require thatγ(0) = x0 and givePX the base point consisting of the constant
map sending everyt to x0. It turns out thatPX has the homotopy type of aCW-complex.

(viii) The loop spaceΩX is the subspace ofPX consisting of pathsγ with γ(1) = x0.
Note thatSm ∧ Sn � Sm+n, thatS X� S1 ∧ X and that under this identificationS f corresponds

to Id∧ f .
We generally consider arbitrary continuous maps betweenCW-complexes, but sometimes it is

useful to restrict our attention to maps which satisfy an additional property.

Definition 3.2. We say a mapf : X→ Y is cellular if f (X(n)) ⊂ Y(n) for everyn.

The cellular approximation theorem [3, p. 349] states that every continuous map betweenCW-
complexes is homotopic to a cellular map.

.

3.2. Spectra. The motivation to consider spectra comes from a number of sources. The suspen-
sion functor onCW-complexes induces isomorphisms in homology:

Proposition 3.3. There is a natural isomorphism Hn(X) � Hn+1(S X).

See Hatcher [3, p. 448].
The Freudenthal suspension theorem provides an analogue inhomotopy theory. DefineΣr : πr(X, x0)→

πr+1(S X, ∗) by Σ([ f ]) = [S f] = IdS1 ∧ f .

Theorem 3.4.For every n-connected CW-complex X,Σr is an isomorphism for1 ≤ r ≤ 2n and an
epimorphism for r= 2n+ 1.

See Hatcher [3, p. 360] or Switzer [6, p. 85].
These results motivate us to ask for a category where an analogue of suspension had an inverse

S−1. The category of spectra will satisfy this objective.
One can also motivate the construction of spectra by attempting to generalize classical homology

and cohomology theories. This generalization is based uponBrown’s representation theorem (see
Switzer [6, pp. 152-157] for more details).

We consider contravariant functorsF from the category of pointedCW-complexes to the cate-
gory of pointed sets that satisfy three properties. We require that

(i) F(X) depends only on the homotopy type of (X, x0) and F( f ) = F(g) if f and g are
homotopic maps.
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(ii) For an arbitrary wedge sum
∧

α Xα with inclusionsiα : Xα →
∧

α Xα, the morphismF(
∏

α iα) : F(
∧

α Xα)→
∏

α F(Xα) is an isomorphism.
(iii) If A is any subcomplex ofX with inclusioni : A ֒→ X andu ∈ F(X), writeu|A for i∗(u). We

assume that ifX is aCW-complex with subcomplexesA1 andA2 are such thatX = A1∪A2,
and if x1 ∈ F(A1), x2 ∈ F(A2) with x1|A1 ∩ A2 = x2|A1 ∩ A2 then there is ay ∈ F(X) with
y|A1 = x1 andy|A2 = x2.

Given anyCW-complex (Y, y0) andu ∈ F(Y), we have a natural transformationTu : [−, (Y, y0)] → F
given byTu([ f ]) = F( f )(u) ∈ F(X) for any f : (X, x0) → (Y, y0). We say that an elementu ∈ F(Y)
is universal ifTu : [(Sq, s0); (Y, y0)] → F(Sq) is an isomorphism for allq.

Theorem 3.5.For any such F, there is a CW-complex(Y, y0) and universal element u∈ F(Y) such
that Tu : [−, (Y, y0)] → F is a natural equivalence.

A version of this theorem holds if we consider functors taking values in the category of groups.
As a special case, we have that Eilenberg-MacLane spaces classify ordinary cohomology.

Theorem 3.6.For any abelian group G, there is a natural equivalence T: [−,K(G, n)] → Hn(−; G).

Suppose we have a reduced cohomology theoryh∗. Then by Theorem 3.5, for eachn there is a
CW-complexEn so thathn(−) = [−, (En, ∗)]. In addition, theEn are related: one of the axioms for
a reduced cohomology theory gives natural equivalencesσr with

hr
(σr )−1

// hr+1 ◦ S

[−,Er ] [S(−),Er+1] [−,ΩEr+1].

We can considerσ−1
r ([IdEr ]) ∈ [Er ,ΩEr+1] = [S Er ,Er+1]. So, given any cohomology theory, we

get a collection of spacesEr and mapsǫr : S Er → Er+1, at least up to homotopy. Moreover, we can
recover our functor from the given data.

Definition 3.7. (i) A CW-spectrumEis a collection{(En, ∗) : n ∈ Z} of CW-complexes such
thatS En is (or is homeomorphic to) a subcomplex ofEn+1. We will use the term spectrum
for aCW-spectrum.

(ii) A subspectrumF ⊂ E consists of subcomplexesFn ⊂ En such thatS Fn ⊂ Fn+1.
(iii) We now define acell of a spectrumE. The subspectrumFn = ∗ for all n we denote by
∗ and call a cell of dimension−∞. Suppose we have ad-dimensional celled

n of En other
than∗ such thated

n is not the suspension of any (d− 1)-dimensional cell. Then we call the
sequence

e= (ed
n,S edn,S

2ed
n, . . .)

a cell of dimensiond − n.
(iv) We say a subspectrumF ⊂ E is cofinal if for any cell ed

n ⊂ En there is somem with
Smed

n ⊂ Fn+m.
(v) A function f: E → F of degree rbetween spectra is a collection{ fn : n ∈ Z} of cellular

mapsfn : En→ Fn−r such thatfn+1|S En = S fn.
(vi) Let E andF be spectra. Consider the set of pairs (E′, f ′) so thatE′ is a cofinal subspec-

trum of Eand f ′ : E′ → F is a function. Say that (E′, f ′) (E′′, f ′′) if there is a cofinal
subspectrumE′′′ ⊂ E′ ∩ E′′ with f ′|E′′′ = f ′′|E′′′ . It is easy to show that is an equivalence
relation. We call an equivalence class amapof spectra.
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(vii) We will define smash products of spectra in Section 3.4;for the moment we define the
smash product of a spectrumEwith aCW-complexX to be the spectrumE∧X defined by
(E ∧ X)n = En ∧ X.

(viii) Let I+ be the intervalI with a disjoint base point added. Then ahomotopyis a map
h: E ∧ I+ → F. Let i0 andi1 be the two mapsE → E ∧ I+ induced by the inclusions of 0
and 1 intoI+. We say that two mapsf0, f1 : E → F arehomotopicif there is a homotopy
h: E ∧ I+ → F with h ◦ i0 = f0 andh ◦ i1 = f1. We write [E,F] for the set of homotopy
classes of maps fromEto F(as a graded set), and [E,F]r for those of degreer.

We will be working with the category whose objects are spectra and whose morphisms are maps
of spectra.

.

3.3. Examples of Spectra.We now list a few examples of spectra.

(i) Given anyCW-complexX, we can form the suspension spectrum ofX, which we will
write X. This spectrum is defined by

Xn =

{

SnX if n ≥ 0
∗ otherwise.

As a special case we have the sphere spectrum, which we will write S:

Sn =

{

Sn if n ≥ 0
∗ otherwise.

(ii) Write H for the Eilenberg-MacLane spectrum. The justification for usingH rather thanK
comes from our notation for the generalized homology theoryassociated to a spectrum:
by choosingH we will be able to writeH∗(X) andH∗(X) for ordinary cohomology and
homology. See Hatcher [3, p. 365] for a construction of Eilenberg-Maclane spaces, and
define

Hn =

{

K(Z, n) if n ≥ 0
∗ otherwise.

More generally we can form the Eilenberg-MacLane spectrum with coefficients, given by

HG =
{

K(G, n) if n ≥ 0
∗ otherwise.

Even more generally, if we have any spectrumE, we can add coefficients to it by smashing
with an appropriate Moore spectrum. We will return to this construction in Section 3.4,
after we have some additional tools for working with spectra.

(iii) An important collection of spectra is obtained by considering classifying spaces of topo-
logical groups. In order to define these spectra we need to first define classifying spaces.

Suppose now thatG is a topological group. Define a contravariant functorkG from
CW-complexes to pointed sets: ifX is aCW-complex,kG(X) is the set of all equivalence
classes of principalG-bundles overX, and if [f ] is a homotopy class of mapsf : (X, x0)→
(Y, y0) thenkG([ f ])({ξ}) = { f ∗ξ}. Switzer proves [6, p. 201] that this functor satisfies the
conditions in Theorem 3.5. Thus there is aCW-complexBG, determined up to homotopy
type, and a universal principalG-bundleξG overBG such that the natural transformation
TG : [−, (BG, ∗)] → kG defined byTG([ f ]) = { f ∗ξG} is a natural equivalence.
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ForG of particular interest, namely various matrix groups includingU(n), O(n), S O(n)
andS p(n) one can be more explicit. Since we will be using mostlyU(n) bundles, I will
give the construction forBU(n); the others can be found in Switzer [6, p. 203], and a more
verbose description of theO(n) case can be found in Milnor-Stasheff [4, pp. 55-68].

We can define the complex Stiefel manifold of allk-frames inCn by

Vk,n(C) = U(n)/U(n− k),

and the Grassmanian of all complexk-dimensional linear subspaces ofCn by

Gk,n(C) = U(n)/(U(n− k) × U(k)).

We have a fibrationU(n) → U(n + 1) → U(n + 1)/U(n) � S2n+1, and the long exact
sequence of homotopy groups gives us thatπq(U(n), ∗) → πq(U(n + 1), ∗) is surjective
for q = 2n and an isomorphism forq < 2n. Thereforeπq(U(n), ∗) → πq(U(n + k), ∗) is
surjective forq ≤ 2n and an isomorphism forq < 2n, which shows thatπq(Vk,k+n, ∗) = 0
for q ≤ 2n. So the principalU(k)-bundle with base spaceGk,k+n and total spaceVk,k+n is
universal forU(k) bundles overCW-complexes of dimension at most 2n. The inclusions

Ck ⊂ Ck+1 ⊂ · · ·

given by (x1, . . . , xk)→ (0, x1, . . . , xk) induce inclusions

Gk,k
j
−→ Gk,k+1

j
−→ · · · .

We setBU(k) =
⋃

n≥0 Gk,k+n and EU(k) =
⋃

n≥0 Vk,k+n, both with the weak topology.
This gives a universal complex vector bundle of dimensionk. Moreover, the inclusions

: U(k) ⊂ U(k+1) induce inclusionsU(n+k)/(U(n)×U(k))
i
−→ U(n+k+1)/(U(n)×U(k+1))

which commute with thej and thus induce an inclusionBi : BU(k) → BU(k + 1). These
Bi allow us to define a spaceBU =

⋃

k≥1 BU(k).
One can show that the two functorsΩ andB are almost inverses of each other. More

precisely, we have the following proposition [6, p. 206]:

Proposition 3.8. If G has the homotopy type of a CW-complex, there is a homotopyequiv-
alence(G, 1) ≃ (ΩBG, ω0).

Moreover, we have the following result, which will allow us to define spectra out of
theseBG.

Theorem 3.9(Bott Periodicity Theorem). There are homotopy equivalences

Ω
2BU ≃ Z × BU

Ω
4BS p≃ Z × BO

Ω
4BO≃ Z × BS p

This result allows us to define spectraKandKOby:

K n =

{

Z × BU if n is even,
ΩBU if n is odd,
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and

KOn =































Z × BO if n ≡ 0 (mod 8)
Ω

4−n′BS p if n′ = 1, 2, 3 andn ≡ n′ (mod 8)
Z × BS p if n ≡ 4 (mod 8)
Ω

8−n′BO if n′ = 5, 6, 7 andn ≡ n′ (mod 8)
The notation is justified because the associated cohomologytheories are complex and real
K-theory respectively.

(iv) SupposeG ⊂ O(n) for somen. Given any principalG-bundleξ with total spaceE(ξ)
and baseB(ξ), one can form the Thom spaceM(ξ) as follows (see Milnor-Stasheff [4, pp.
205-208] for more details). Each fiber has an inner product that is preserved by the action
of G ⊂ O(n). Define a subspaceA(ξ) ⊂ E(ξ) by A(ξ) = {(b, v) ∈ E(ξ) : |v| ≥ 1}.

Definition 3.10. TheThom space M(ξ) is given by

M(ξ) = E(ξ)/A(ξ).

Write MU(n) for M(ξ) whenξ is the universal bundle overBU(n).
The spectraMU is defined from theMU(n). More precisely,

MU n =

{

MU(k) if n = 2k,
MU(k) ∧ S1 if n = 2k+ 1.

The mapMU(k) ∧ S2 → MU(k + 1) is given by noting that ifξk denotes the universal
bundle overBU(k) then the Whitney sumξk ⊕ 1

One can similarly defineMO(n), MS O(n), MS U(n) andMS p(n), but we will not need
any of these spaces or the associated spectra.

.

3.4. Smash Products of Spectra.Most of the geometric constructions that one can perform on
spaces, such as those listed in Section 3.1, carry over to analogous constructions on spectra that sat-
isfy similar properties. Unforetunately, the constructions become significantly more complicated.
The most important of these constructions for us will be thatof the smash product. The category
of CW-spectra admits a smash product, which is a functor of two variables, with arguments and
values in the homotopy category ofCW-spectra. Note that the smash product is constant on spec-
tra that are homotopy equivalent, but it is also only defined up to homotopy. This flaw may be
remedied by working in other categories of spectra, but for us the problems caused by having the
product only defined up to homotopy are not serious enough to warrant the extra complication of
working with symmetric spectra or some other option.

The smash product is associative, commutative and has the sphere spectrum as a unit. I sketch
the basic construction below: see Adams [1, pp. 158-189] fordetails.

Let A be a totally ordered set, isomorphic toN, and letA = B∐C be a partition ofA. We define
β : A→ N by settingβ(a) = #{b ∈ B: b < a}, andα andγ analogously withA andC replacingB.
Then we set

(E ∧B,C F)α(a) = Eβ(a)Fγ(a)

and prove that under suitable conditions onB andC, the resulting spectra are all homotopy equiv-
alent and satisfy associativity, commutativity and identity up to homotopy.

With smash products available, we can now make the followingdefinitions, continuing into the
next section.
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Definition 3.11. (i) We call a spectrumE a ring spectrumif it is equipped with a map
mE : E ∧ E → E and a mapiE : S → E so thatmE is associative and commutative up
to homotopy andiE acts as a unit up to homotopy.

(ii) We say that a spectrumM is amodule spectrumover a ring spectrumE if it is equipped
with a mapmM : E ∧ M → M . Note that ifE is a ring spectrum andF is any spectrum
thenE ∧ F is a module spectrum via the mapmE ∧ IdF : E ∧ E ∧ F→ E ∧ F.

Given an abelian groupG, we can construct a Moore spectrumM (G) (see Adams [1, p. 200])
with

πr(M (G)) = 0 for r < 0,

π0(M (G)) � G,

Hr(M (G)) = 0 for r > 0.

This spectrum allows the addition of “coefficients” to any spectrumE: define

EG = E ∧M (G).

An analogoue of the universal coefficient theorem (see Adams [1, p. 200-202]) shows that the
definitions ofHG asH ∧M (G) and as the Eilenberg-MacLane spectrum with termsK(G, n) agree.

.

3.5. Homology, Cohomology and Homotopy.We define the homotopy groups of a spectrum,
which are really stable homotopy groups. Given a spectrumE, we have homomorphisms

πn+r(En)→ πn+r+1(SEn)→ πn+r+1(En+1),

so for fixedr the groupsπn+r(En) fit into a directed system.

Definition 3.12. Thenth homotopy group of a spectrumE is defined by

πr(E) = lim
n→∞

πn+r(En).

The following proposition [1, pp. 145-146] relatesπr(E) to homotopy classes of maps intoE.

Proposition 3.13. If X is a finite CW-complex andX the associated suspension spectrum, then for
any spectrumE, [X,E]r = limn→∞[Sn+rX,En]. In the case X= S0 this yieldsπr(E) = [S,E]r .

We now define generalized homology and cohomology in a fashion consistent with the com-
ments at the beginning of Section 3.2.

Definition 3.14. Let E be a spectrum. Then theE-homology of a spectrumX is defined by

En(X) = [S,E ∧ X]n,

and theE-cohomology ofX is defined by

En(X) = [X,E]−n.

If X is aCW-complex with suspension spectrumX then we defineEn(X) = En(X) andEn(X) =
En(X).

The definitions immediately yield a number of relationshipsbetween homology, cohomology
and homotopy groups.

Proposition 3.15. (i) For any spectrumE, E∗(pt) = E∗(pt) = π∗(E) = [S,E].
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(ii) For any commutative ring spectrumE, π∗(E) is a commutative ring.

(iii) For any commutative ring spectrumEand any spectrumYthe mapY ≃ S∧Y
iE∧IdY
−−−−→ E∧Y

induces a homomorphism

[X,Y]∗
B
−→ [X,E ∧ Y]∗,

called the Boardman homomorphism. Specializing toX = S and E = H yields the

Hurewicz homomorphismπ∗(Y)
h
−→ H∗(Y).

In addition to these basic properties, generalized homology and cohomology groups satisfy
many of the same axioms as ordinary homology and cohomology.For further exposition see [1,
pp. 196-214].

.

3.6. Orientations. Giving a spectrum an orientation allows us to choose generators coherently
for many of the groups and rings that we need to consider. The presence of an orientation is also
crucial in the process that produces a formal group law from aspectrum.

Definition 3.16. Let i be the inclusioni : CP1 → CP∞. An orientationof a spectrumEis an
elementxE ∈ E∗(CP∞) such thatE∗(CP1) is a free module overπ∗(E) on the generatori∗(x).

SinceCP1 may be identified withS2, the unit mapiE : S→ E that is part of the ring spectrum
structure ofE yields a generatorγ ∈ E2(CP1). We define a unituE ∈ π∗(E) by i∗(xE) = uEγ.

From now on all spectra come equipped with an orientation.

.

3.7. Atiyah-Hirzebruch spectral sequence.The Atiyah-Hirzebruch spectral sequence provides
a powerful method for computingE-homology andE-cohomology.

Theorem 3.17.Suppose thatF and X are spectra so thatX is bounded below: there is someν
such thatπr(X) = 0 for r < ν. Then there are spectral sequences

E2
p,q = Hp(X, πq(F))⇒ Fp+q(X)

Ep,q
2 = Hp(X, πq(F))⇒ Fp+q(X)

This spectral sequence comes from considering the skeletalfiltration onXand gluing together
the long exact sequences in homology or cohomology for each inclusion of ther-skeleton into the
r + 1-skeleton. In particular, we get exact couples

⊕

p F∗(X(p−1)) i∗ //
⊕

p F∗(X(p))
j∗

vvmmmmmmmmmmmmm

⊕

p F∗(X(p),X(p−1))

∂
hhRRRRRRRRRRRRR

and
⊕

p F∗(X(p−1))

∂ ((RRRRRRRRRRRRR

⊕

p F∗(X(p))
i∗

oo

⊕

p F∗(X(p),X(p−1))
j∗

66mmmmmmmmmmmmm

.
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One notable feature of this spectral sequence is that if we a priori have an elementx ∈ F∗(X),
all differentials vanish on its image in anyF∗(X(p)). This will allow us to argue that the sequence
degenerates at the second page in a variety of cases using theexistence of an orientation.

For more details about this spectral sequence see Adams [1, pp. 214-220].
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4. Q’ T

In this section we will prove the following theorem, due to Quillen.

Theorem 4.1.There is a natural formal group lawµMU onMU so that the homomorphismθMU : L→
π∗MU given by Theorem 2.8 is an isomorphism.

Proof. We first define the formal group law onMUusing the computation ofE∗(CP∞) andE(CP∞×
CP∞), and theH-space structure onCP∞. The universal property ofL then produces a homomor-
phism L → π∗(MU ), which we proceed to show is an isomorphism. The central part of the
argument is the commutative diagram in Lemma 4.5. We get injectivity from the injectivity of
the homomorphismθR of Theorem 2.9, and surjectivity from an analysis of the indecomposible
quotient of the Hurewicz homomorphism.

Lemma 4.2. Suppose thatE is a ring spectrum. Then

(i) E∗(CPn) � π∗(E)[x]/(xn+1),
(ii) E∗(CP∞) � π∗(E)~x�,

(iii) E∗(CPn × CPm) � π∗(E)[x1, x2]/(xn+1
1 , xm+1

2 ),
(iv) E∗(CP∞ × CP∞) � π∗(E)~x1, x2�.

We know thatCP∞ is anH-space (by [3, p. 282] for example), and its product mapm: CP∞ ×
CPi→ CP∞ is associative, commutative and with an identity element.

Definition 4.3. DefineµE(x1, x2) = m∗(x) ∈ E∗(CP∞ × CP∞) � π∗(E)~x1, x2�.

Lemma 4.4. The power seriesµE defined above gives a commutative formal group law.

Proof. The required associativity, identity and commutativity axioms follow from the correspond-
ing properties ofm. �

This formal group law allows us to define a homomorphismθMU : L → π∗(MU ). Recall from
Section 2.4 thatR = Z[b1, b2, . . .] and that we have a formal group lawµR and thus a homomor-
phismθR: L→ R. In order to connect these maps, we need the following result.

Lemma 4.5. (i) TheE-homology ofMU is given by

E∗(MU ) � π∗(E)[b1, b2, . . .].

(ii) Moreover, the following diagram commutes:

L
θMU//

θR

��

π∗(MU )

h
��

R H∗(MU )

This commutative diagram constitutes the central part of this proof. We know from Theorem
2.9 thatθR is injective, and thus we have thatθMU is also injective. In order to prove thatθMU is
surjective we use the following results.

Lemma 4.6.

Qm(π∗(MU )) =

{

Z for m positive and even,
0 otherwise.
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Lemma 4.7. The image of Q2n(h) : Q2n(π∗(MU )) → Q2n(H∗(MU )) is the same as the image of
Q2n(θR).

These two lemmas allow us to complete the proof of Theorem 4.1. Using Lemma 2 we have that
Q2n(h) is an isomorphism onto its image. SinceQ2n(θR) is also an isomorphism onto its image by
Lemma 2, by the commutativity of the diagram in Lemma 4.5 we know thatQ2n(θMU ) is actually
an isomorphism. ThereforeθMU is surjective, by the same argument that showed thatθR was
surjective given thatQ2n(θR) was an isomorphism. We have already seen thatθMU is injective, so it
is an isomorphism. This concludes the proof of Theorem 4.1. �

Once again there are many details to fill in. We begin with the proof of Lemma 4.2, computing
the cohomology ofCPn, CP∞and their products.

Proof of Lemma 4.2.We have the following spectral sequences from Theorem 3.17:
(i) H∗(CPn; π∗(E))⇒ E∗(CPn),

(ii) H∗(CP∞; π∗(E))⇒ E∗(CP∞),
(iii) H∗(CPn × CPm; π∗(E)) ⇒ E∗(CPn × CPm),
(iv) H∗(CP∞ × CP∞; π∗(E)) ⇒ E∗(CP∞ × CP∞).

The appropriate powersxi andxi
1xj

2 form a basis for theE2 page as aπ∗(E) module. In fact,x is
the image of the orientationxE ∈ E∗(CP∞), and thus by the construction of the Atiyah-Hirzebruch
spectral sequence must survive to theE∞ page. Therefore all differentialsdr vanish onx, and since
these differentials areπ∗(E)-algebra homomorphisms, all differentials vanish and thusE∗(CP∞) �
π∗(E)~x�.

The arguments for the other spectral sequences are analogous. �

In order to prove Lemma 4.5, we need to pursue some preliminaries. In order to compute
E∗(MU ), we first computeE∗(CP∞) = E∗(BU(1)), then proceed toE∗(BU) and finallyE∗(MU ).

The computation of the homology ofCP∞is dual to the computation of its cohomology. Indeed,
we have the following.

Lemma 4.8. (i) E∗(CPn) andE∗(CP∞) are finitely generated free modules overπ∗(E), dual
to E∗(CPn) andE∗(CP∞).

(ii) Letβi be the element ofE∗(CPn) dual to xi, and also writeβi for the image inE∗(CP∞) of
βi. Then{βi : 0 ≤ i ≤ n} forms aπ∗(E) basis forE∗(CPn) and {βi : i ≥ 0} forms aπ∗(E)
basis forE∗(CP∞).

In order to compute theE-homology ofBU, we need to know the ordinary homology ofBU,
which is given in the following lemma (see [4, p. 161] for the proof of the dual statement).

Lemma 4.9. The homology H∗(BU) is given by

H∗(BU) = Z[β1, β2, . . .],

whereβi is the image in H∗(BU) of the corresponding element of H∗(CP∞) under the inclusion
CP∞ = BU(1) ֒→ BU.

The Atiyah-Hirzebruch spectral sequence is trivial since all differentials vanish on the monomi-
als in theβi. This gives us the following:

Lemma 4.10.
E∗(BU) = π∗(E)[β1, β2, . . .].
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Proof of Lemma 4.5.Cupping with the Thom class gives an isomorphismE∗(BU) � E∗(MU ) (see
[4, p. 206]). We want to use slightly different generators forE∗(MU ) though, in order to make the
diagram in Lemma 4.5 commute. In particular, we have thatBU(1) = MU(1) and the “inclusion”
of MU(1) in MU induces a homomorphism

Ep(MU(1))→ Ep−2(MU ).

Write bi for the image ofuEβi+1 in E∗(MU ). SinceuE is a unit inπ∗(E) andb0 = 1, this gives
Lemma 1.

We now need to prove the commutativity of the diagram in Lemma4.5. Recall from Section
3.5 that the maph: π∗(MU ) = [S,MU ] → [S,H ∧ MU ] = H∗(MU ) is induced from the map
MU → H ∧ MU . We need to understand the pushforward ofµMU , which has coefficients in
π∗(MU ), under this map.

The orientationsxMU ∈ MU ∗(CP∞) and xH ∈ H∗(CP∞) map to orientationsyMU and yH in
(H ∧MU )∗(CP∞). I claim thatyMU

=
∑

i≥0 bH
i (yH)i+1. Note thatbH

i ∈ H∗(MU ) = [S,H ∧MU ] →
[S,H ∧MU ∧ CP∞]. The proof of this claim is given in [1, p. 60] and consists mostly of chasing
down definitions.

Recall that the power series expH(x) ∈ π∗(H ∧MU )~x� is defined by

expH(x) =
∑

i≥0

bH
i xi+1.

Then we’ve shown that, tracing around the top and right of thecommutative diagram, we have

h∗µ
MU (x1, x2) = expH(logH(x1) + logH(x2)).

But this is exactly the the definition ofµR. �

The only remaining task is to controlQm(π∗(MU )) andQ2n(h). We sketch the proofs of Lemmas
4.6 and 4.7; for more details see [1, pp. 75-79].

Sketch for Lemma 4.6.The proof that

Qm(π∗(MU )) =

{

Z for m positive and even,
0 otherwise

rests on the Adams spectral sequence. IfA is the mod-p Steenrod algebra, then

Exts,tA (H∗(MU ;Z/pZ),Z/pZ)⇒ πt−s(MU ).

We prove that, for anyp,

Qm(π∗(MU )) ⊗ Z/pZ =

{

Z/pZ for m positive and even,
0 otherwise.

SinceH∗(MU ) is concentrated in even degrees, this result is easy for oddor non-positivem. In
order to prove that the dimension ofQm(π∗(MU )) ⊗ Z/pZ is at least one, we can use the fact that
the Hurewicz map is an isomorphism after tensoring withQ and note that

Q2n(π∗(MU )) ⊗ Q � Q2nH∗(MU )) ⊗ Q � Q.

So it remains to prove thatQ2n(π∗(MU ))⊗Z/pZ has dimension at most 1 overZ/pZ. At this point
I will defer to the treatment in Adams [1] and the papers that he references. �
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Sketch for Lemma 4.7.We need to prove that the image ofQ2n(h) is the same as the image of
Q2n(θR). The inclusion im(Q2n(θR)) ⊂ im(Q2n(h)) is clear from the commutativity of the diagram
in Lemma 4.5. Since im(Q2n(θR)) = Q2n(R) for n+ 1 , pf by Lemma 2, we need to prove that for
n+ 1 = pf , the inclusion im(Q2n(h)) ⊂ p〈bn〉 holds.

Set G = Z/pZ. There is a canonical mapMU → H (see Adams [1, p. 52]) and another
H → HG. Call the compositiong, and the induced map

q∗ : H∗(MU ) = [S,H ∧MU ] → [S,HG ∧ HG] = HG∗(HG).

Adams argues that the image ofq∗(bn) in Q2n(HG∗(HG)) � Z/pZ is nonzero, but thatq∗ annihilates
h(π∗(MU )) [1, p. 79]. This implies the inclusion im(Q2n(h)) ⊂ p〈bn〉. �

R
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