Homework 30 Solutions

Problems

1. (a) Find a generator for arithmetic mod 13.

Let's start by trying 2. We have

$$
\begin{aligned}
& 2^{2} \equiv 4 \\
& 2^{3} \equiv 8 \\
& 2^{4} \equiv 16 \equiv 3 \\
& 2^{5} \equiv 6 \\
& 2^{6} \equiv 12 \equiv-1
\end{aligned}
$$

where all of these equivalences are $(\bmod 13)$. At this point, we can conclude that 2 is a generator since we know that the remaining numbers in the sequence are just the negatives of the numbers we've already computed $\left(\operatorname{eg} 2^{10}=2^{6} \times 2^{4}=-2^{4}=-3(\bmod 13)\right)$. See part (c) for other possibilities.
(b) Find a square root of $-1(\bmod 13)$.
$2^{6}=-1(\bmod 13)$ so that $2^{3}=8$ is a square root of $-1(\bmod 13)$. The other square root is $-8 \equiv 5$.
(c) Find all other generators for arithmetic mod 13. How many are there? (Does your answer agree with the general formula you learnt today?)
Every generator is of the form 2^{r} where r is relatively prime to 12 , so the generators are $2^{1} \equiv 2,2^{5} \equiv 6,2^{7} \equiv 11,2^{11} \equiv 7$ where we are working (mod 13$)$.
(d) For each non-zero number $a \bmod 13$, find its period (i.e., the smallest number $k>0$ such that $\left.a^{k} \equiv 1(\bmod 13)\right)$.

a	1	2	3	4	5	6	7	8	9	10	11	12
period	1	12	3	6	4	12	12	4	3	6	12	2

We know that 1 has period 1 and $12 \equiv-1$ has period 2 . Also, the four generators $(2,6$, 7 , and 11) have period 12. The two square roots of -1 (5 and 8) have period 4 . We can see that $2^{4} \equiv 3$ and $2^{8} \equiv 9$ have period 3 (as 3 is the least k for which 12 divides $4 k$ and for which 12 divides $8 k$). Similarly, $2^{2} \equiv 4$ and $2^{-2} \equiv 10$ have period 6 .
Congrats on completing the last homework, and good luck on the final!

