Homework 28 Solutions

Problems

1. Estimate how many primes there are less than a billion $\left(10^{9}\right)$. Your answer will be considered correct if it is within 20%.
The actual number of primes less than a billion is 50847534 . The rough estimate of $\frac{10^{9}}{\log \left(10^{9}\right)}=$ 48254942 is easily within 20%. The better estimate using a logarithmic integral is given by 50849234 , which is quite good.
The lower bound on the correct answer is 40678028, while the upper bound is 61017036 .
2. A number b between 1 and $n-1$ is called a witness for the fact that n is composite if $b^{n-1} \not \equiv 1(\bmod n)$. (remember: if n were prime, Fermat's little theorem would say that $b^{n-1} \equiv 1(\bmod n)$. So n has to be composite if it has any witness).
(a) Show that 3 fails to be a witness for 91 to be composite.

We compute (using doubling) that $3^{90} \equiv 1(\bmod 91)$, hence 3 is not a witness to the fact that 91 is composite.
(b) Show that 2 is a witness for 255 to be composite.

We compute (using doubling) that $2^{254} \equiv 64(\bmod 255)$ hence 2 is a witness to the fact that 255 is composite.

