Homework 25 Solutions

Problems

1. (a) Compute $3^{917}(\bmod 140)$.
(b) Compute $4^{1125}(\bmod 105)$.
$\phi(140)=(1 / 2)(4 / 5)(6 / 7) 140=48$. So $3^{48}=1(\bmod 140)$. So $3^{917}=3^{5}=243=103$ $(\bmod 140)$.
$\phi(105)=(2 / 3)(4 / 5)(6 / 7) 105=48$. So $4^{48}=1(\bmod 105)$. So $4^{1} 125=4^{21}(\bmod 105)$ and this can be figured out by doubling to be $64(\bmod 105)$.
2. The method we have used for computing roots $(\bmod n)$ can be applied to only part (c) of the following three problems. Explain why it fails for the first two problems, and solve the third.
(a) The 4 th root of $4(\bmod 77)$;
(b) The 7 th root of $7(\bmod 77)$;
(c) The 13 th root of $13(\bmod 77)$.

4 and $\phi(77)=60$ are not relatively prime so we can't take 4 th roots.
7 and 77 are not relatively prime so we can't find roots of 7 .
$1 / 13=37(\bmod 60)$. So $13^{1 / 13}=13^{37}(\bmod 77)$ and this can be figured out by doubling to be $62(\bmod 77)$.
3. (a) Compute the 11 th root of $2(\bmod 105)$.
(b) Compute the 5 th root of $4(\bmod 39)$.

First observe that $105=3 \times 5 \times 7$ so that $\phi(105)=48$. This is a problem modulo 105 , so this means that we work modulo 48 in the exponent. We wish to compute $2^{1 / 11}(\bmod 105)$. First we figure out (using Euclid's algorithm backwards) that $1 / 11=35(\bmod 48)$. So the answer will be $2^{35}(\bmod 105)$, which we can compute using doubling to be $53(\bmod 105)$.
Note that $39=3 \cdot 13$ so $\phi(39)=2 \cdot 12=24$ and we work modulo 24 in the exponent. We determine that $1 / 5=5(\bmod 24)$ so $4^{1 / 5} \equiv 4^{5} \equiv 10(\bmod 39)$.

