Homework 24 Solutions

Problems

- 1. Compute the following:
 - (a) $\phi(29)$. (Here $\phi(n)$ is Euler's phi function, as discussed in lecture.)
 - **(b)** $\phi(116)$.
 - (c) $\phi(6615)$.

 $\phi(29) = 28$ since 29 is prime.

 $\phi(116) = (1/2)(28/29)116 = \boxed{56}$.

 $6615 = 3^3 \times 5 \times 7^2$ so $\phi(6615) = (2/3)(4/5)(6/7)6615 = 3024$

2. $3^{28} = 1 \pmod{29}$ by Fermat's Little Theorem (since 29 is prime).

Compute $3^{56} \pmod{116}$ using the Chinese Remainder Theorem.

Since $116 = 29 \cdot 4$, it suffices to figure out $3^{56} \pmod{29}$ and $3^{56} \pmod{4}$.

Since $3^{28} \equiv 1 \pmod{29}$ we also have $3^{56} \equiv 1 \pmod{29}$.

Since $3^2 \equiv 1 \pmod{4}$, we have $3^{56} \equiv 1 \pmod{4}$.

By the Chinese Remainder Theorem, $3^{56} \equiv \boxed{1} \pmod{116}$.

Note that $\phi(116) = 56$. We now know that this is an example of Euler's Theorem at work.