Homework 22 Solutions

Problems

1. The goal of this problem is to find the 11 th root of $5(\bmod 29)$.
(a) Find a number k such that $11 k \equiv 1(\bmod 28)$. (Caution: for this part, we are working $(\bmod 28))$.
Since $k \equiv 1 / 11(\bmod 28)$, we run the Euclidean algorithm.

$$
\begin{aligned}
28 & =2 \cdot 11+6 \\
11 & =6+5 \\
6 & =5+1 .
\end{aligned}
$$

Doing it backwards gives

$$
\begin{aligned}
& 1=6-5 \\
& 1=6-(11-6)=-11+2 \cdot 6 \\
& 1=-11+2(28-2 \cdot 11)=2 \cdot 28-5 \cdot 11
\end{aligned}
$$

We conclude that $k \equiv-5 \equiv 23(\bmod 28)$.
(b) Compute $5^{k}(\bmod 29)$. Why is this number the 11 th root of $5(\bmod 29)$?

We wish to compute $5^{23}(\bmod 29)$. We have

$$
\begin{aligned}
5^{2} & \equiv 25 \equiv-4 \\
5^{4} & \equiv 16 \equiv-13 \\
5^{8} & \equiv 169 \equiv 24 \equiv-5 \\
5^{16} & \equiv 25 \equiv-4
\end{aligned}
$$

Using this, we see that
$5^{23} \equiv 5^{16} \cdot 5^{4} \cdot 5^{2} \cdot 5 \equiv-4 \cdot(-13) \cdot(-4) \cdot 5 \equiv 52 \cdot(-20) \equiv-6 \cdot 9 \equiv-54 \equiv \boxed{4} \quad(\bmod 29)$.
Alternatively, we could use that $5^{23} \equiv 5^{-5} \equiv(1 / 5)^{5}(\bmod 29)$. Since it's easy to see that $1 / 5 \equiv 6(\bmod 29)$, it suffices to compute $6^{5}(\bmod 29)$. We have

$$
\begin{aligned}
& 6^{2} \equiv 36 \equiv 7 \\
& 6^{4} \equiv 49 \equiv 20 \equiv-9 \\
& 6^{5} \equiv-9 \cdot 6 \equiv-54 \equiv 4 .
\end{aligned}
$$

Why is 5^{23} the 11 th root of $5(\bmod 29)$? Well, we know that

$$
\left(5^{23}\right)^{11} \equiv 5^{-5} \equiv 5^{1-2 \cdot 28} \equiv 5 \quad(\bmod 29)
$$

where we've used the results of our Euclidean algorithm from part (a) and Fermat's theorem. Since $\left(5^{23}\right)^{11} \equiv 5(\bmod 29)$, it follows that $5^{1 / 11} \equiv 23(\bmod 29)$.
(c) Check that your answer to part (b) is correct by raising it to the 11th power and seeing if you get 5 .
We want to compute $4^{11}(\bmod 29)$. We have

$$
\begin{aligned}
& 4^{2} \equiv 16 \equiv-13 \\
& 4^{4} \equiv 169 \equiv 24 \equiv-5 \\
& 4^{8} \equiv 25 \equiv-4
\end{aligned}
$$

Using this, we have

$$
4^{11} \equiv 4^{8} \cdot 4^{2} \cdot 4 \equiv-4 \cdot(-13) \cdot 4 \equiv-16 \cdot(-13) \equiv 13 \cdot(-13) \equiv-169 \equiv 5 \quad(\bmod 29)
$$

So we do get 5, confirming that we did the previous parts correctly.
2. The method we know for computing roots $(\bmod p)$ can be applied to only 2 of the following 4 problems. Say which 2 can be solved by this method, and solve them. Also, explain why our method fails in the other 2 cases.
(a) The 5 th root of $3(\bmod 23)$;
(b) The 5 th root of $7(\bmod 31)$;
(c) The 5 th root of $6(\bmod 33)$;
(d) The 5 th root of $4(\bmod 37)$.

33 is not prime. 5 is not relatively prime to $30=31-1$
$1 / 5=9(\bmod 22)$ So $3^{1 / 5}=3^{9}(\bmod 23)$ and you can compute this by the repeated squaring method. The answer is $3^{1 / 5} \equiv 18(\bmod 23)$.
$1 / 5=29(\bmod 36)$. So $4^{1 / 5}=4^{29}(\bmod 37)$ and you can compute this by the repeated squaring method. The answer is $4^{1 / 5} \equiv 21(\bmod 37)$.

3. Compute the following roots:

(a) The 3 rd root of $7(\bmod 11)$
$1 / 3=7(\bmod 10)$. So $7^{1 / 3}=7^{7}(\bmod 11)$ and you can compute this by doubling to find that $7^{7} \equiv 6(\bmod 11)$.
(b) The 7 th root of $3(\bmod 17)$
$1 / 7=7(\bmod 16)$. So $3^{1 / 7}=3^{7}(\bmod 17)$ and now use doubling to find that $3^{7} \equiv 11$ $(\bmod 17)$.

