## Homework 21 Solutions

## Problems

Here is the table of powers modulo 13 that you computed on HW 20:

| $x$ | $x^{2}$ | $x^{3}$ | $x^{4}$ | $x^{5}$ | $x^{6}$ | $x^{7}$ | $x^{8}$ | $x^{9}$ | $x^{10}$ | $x^{11}$ | $x^{12}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 4 | 8 | 3 | 6 | 12 | 11 | 9 | 5 | 10 | 7 | 1 |
| 3 | 9 | 1 | 3 | 9 | 1 | 3 | 9 | 1 | 3 | 9 | 1 |
| 4 | 3 | 12 | 9 | 10 | 1 | 4 | 3 | 12 | 9 | 10 | 1 |
| 5 | 12 | 8 | 1 | 5 | 12 | 8 | 1 | 5 | 12 | 8 | 1 |
| 6 | 10 | 8 | 9 | 2 | 12 | 7 | 3 | 5 | 4 | 11 | 1 |
| 7 | 10 | 5 | 9 | 11 | 12 | 6 | 3 | 8 | 4 | 2 | 1 |
| 8 | 12 | 5 | 1 | 8 | 12 | 5 | 1 | 8 | 12 | 5 | 1 |
| 9 | 3 | 1 | 9 | 3 | 1 | 9 | 3 | 1 | 9 | 3 | 1 |
| 10 | 9 | 12 | 3 | 4 | 1 | 10 | 9 | 12 | 3 | 4 | 1 |
| 11 | 4 | 5 | 3 | 7 | 12 | 2 | 9 | 8 | 10 | 6 | 1 |
| 12 | 1 | 12 | 1 | 12 | 1 | 12 | 1 | 12 | 1 | 12 | 1 |

1. Use the table of powers $(\bmod 13)$ to compute the following:
(a) What is the 5 th root of $4(\bmod 13)$ ?
(b) What is the 11 th root of $9(\bmod 13)$ ?
(c) What is the 7 th root of $3(\bmod 13)$ ?

We find the 4 in the 5 th column of the table. It appears in row 10 , so

$$
4^{1 / 5} \equiv 10 \quad(\bmod 13)
$$

We find the 9 in the 11th column of the table. It appears in row 3, so

$$
9^{1 / 11} \equiv 3 \quad(\bmod 13)
$$

We find the 3 in the 7 th column of the table. It appears in row 3 , so

$$
3^{1 / 7} \equiv 3 \quad(\bmod 13)
$$

2. (a) How many 8 th roots does 9 have $(\bmod 13)$ ? How many 8 th roots does 3 have $(\bmod 13)$ ? How many 8 th roots does 7 have $(\bmod 13)$ ?
(b) How many 9th roots does 8 have (mod 13)? How many 9th roots does 6 have $(\bmod 13)$ ? How many 9 th roots does 5 have $(\bmod 13)$ ?
(c) What is the greatest common divisor of 8 and $13-1$ ?
(d) What is the greatest common divisor of 9 and $13-1$ ?

We look in the column for $x^{8}$, and find 9 and 3 four times each, and don't find 7 . So 9 has four 8th roots, 3 has four 8th roots, and 7 has zero 8th roots.
Similarly, in the column for $x^{9}, 8$ and 5 appear three times each, while 6 does not appear. So 8 has three 9th roots, 6 has zero 9th roots and 5 has three 9th roots.
The gcd of 8 and 12 is 4 , corresponding to the fact that one quarter of nonzero numbers modulo 13 will have an 8 th root, and each one that does will have 4.
The gcd of 9 and 12 is $\boxed{3}$, corresponding to the fact that one third of the nonzero numbers modulo 13 will have a 9 th root, and each one that does will have 3 .
3. Suppose I tell you that 39847418273263 is prime, and that

$$
5441662622048^{19} \equiv 2673482^{19} \quad(\bmod 39847418273263)
$$

Note that $2^{19}=524288$. How many 19th roots of 524288 are there $(\bmod 39847418273263)$, and why?
There are 19 19th roots of 524288 . There is at least one, since 2 is a 19 th root. Moreover, we know that there must be at least two since we've exhibited another number with duplicate 19 th roots. But the number of 19 th roots must be the gcd of 19 and 39847418273262 , which must be either 1 or 19 (since it is a divisor of 19). So there must be 19 19th roots.
4. The goal of this exercise is to compute $5^{82}(\bmod 103)$ using the method outlined in Section 18.2 of the textbook.
(a) Write 82 as a sum of powers of 2 . What is the largest power of 2 appearing? The largest power of 2 less than or equal to 82 is 64 . We write

$$
82=64+18
$$

and then repeat the process with 18. This yields

$$
82=64+16+2 .
$$

The largest power of 2 appearing is 64 .
(b) Compute $5^{2}(\bmod 103)$. Compute $5^{4}(\bmod 103)$. Compute $5^{8}(\bmod 103)$. Keep going until you've computed 5 raised to the largest power of 2 appearing in part (a).

$$
\begin{aligned}
5^{1} & =5 \\
5^{2} & =25 \\
5^{4} & =\left(5^{2}\right)^{2}=25^{2}=625 \equiv 7 \quad(\bmod 103) \\
5^{8} & =\left(5^{4}\right)^{2} \equiv 7^{2}=49 \quad(\bmod 103) \\
5^{16} & =\left(5^{8}\right)^{2} \equiv 49^{2}=2401 \equiv \boxed{32} \quad(\bmod 103) \\
5^{32} & =\left(5^{16}\right)^{2} \equiv 32^{2}=1024 \equiv \boxed{-6} \quad(\bmod 103) \\
5^{64} & =\left(5^{32}\right)^{2} \equiv(-6)^{2}=36 \quad(\bmod 103)
\end{aligned}
$$

(c) Use part (a) to write $5^{82}$ as a product of the numbers you computed in part (b). Multiply these out $(\bmod 103)$ in order to find the final answer. We have

$$
\begin{aligned}
5^{82} & =5^{64+16+2} \\
& =5^{64} \cdot 5^{16} \cdot 5^{2} \\
& \equiv 36 \cdot 32 \cdot 25 \\
& \equiv 63 \quad(\bmod 103)
\end{aligned}
$$

