Homework 20 Solutions

Problems

1. (a) What does Fermat's Theorem say about powers $(\bmod 53)$?
(b) Compute $3^{109}(\bmod 53)$.
(c) Compute $2^{270}(\bmod 53)$.

If $a \not \equiv 0(\bmod 53)$ then $a^{52} \equiv 1(\bmod 53)$.
$3^{52} \equiv 1(\bmod 53)$ so $3^{109} \equiv 3^{5} \equiv 243 \equiv 31(\bmod 53)$
$2^{52} \equiv 1(\bmod 53)$ so $2^{270} \equiv 2^{10} \equiv 17(\bmod 53)$
2. (a) What is the last digit of 3^{991} ?
(b) Compute $3^{991}(\bmod 11)$.
(c) Compute $26^{991}(\bmod 13)$.

We compute $(\bmod 10)$. Note that $3^{4} \equiv 81 \equiv 1(\bmod 10)$.
So $3^{991} \equiv 3^{3} \equiv 7(\bmod 10)$. Hence the last digit is 7 .
By Fermat we know that $3^{10} \equiv 1(\bmod 11)$. So $3^{991} \equiv 3^{1} \equiv 3(\bmod 11)$.
$26 \equiv 0(\bmod 13)$, so $26^{991} \equiv 0(\bmod 13)$.
3. (a) Create a power table for arithmetic $(\bmod 13)$. This will be a table whose rows correspond to numbers in arithmetic (mod 13) (that is, the numbers $\{0,1,2, \ldots, 12\}$), and whose entries are their various powers. Compute the powers from the 1st up to the 13th power for each number. (Remember, for example, that $10 \equiv-3(\bmod 13)$ and you can use this to avoid doing the computations for 10 once you've done them for 3.)
(b) Compute $2^{742}(\bmod 13)$.

The zeroth and first row are easy:
$0,0,0,0,0,0,0,0,0,0,0,0,0$
$1,1,1,1,1,1,1,1,1,1,1,1,1$
and row 12 is just
$12,1,12,1,12,1,12,1,12,1,12,1,12$
We can just compute powers of 2 by repeatedly doubling until we get 12 , and then negate the first half:

$2,4,8,3,6,12,11,9,5,10,7,1,2$

The third row just has every 4 th power of 2 , since $2^{4} \equiv 3$, but this is just $3,9,1$ repeating:
$3,9,1,3,9,1,3,9,1,3,9,1,3$
Likewise powers of 4 are the even powers of 2 :
$4,3,12,9,10,1,4,3,12,9,10,1,4$
and similarly powers of 8 are the threeven powers of 2 :
$8,12,5,1,8,12,5,1,8,12,5,1,8$
We get most of the remaining rows from reading backwards, as we know their inverses from the 11th column of the above:
$5,12,8,1,5,12,8,1,5,12,8,1,5$
$7,10,5,9,11,12,6,3,8,4,2,1,7$

9, 3, 1, 9, 3, 1, 9, 3, 1, 9, 3, 1, 9
$10,9,12,3,4,1,10,9,12,3,4,1,10$
Row 6 is row 7 with the odd terms switched in sign:
$6,10,8,9,2,12,7,3,5,4,11,1,6$
and row 11 is row 6 reversed:
$11,4,5,3,7,12,2,9,8,10,6,1,11$
$2^{742} \equiv 2^{61 \times 12+10} \equiv 2^{10} \equiv 10(\bmod 13)$

