Homework 19 Solutions

Problems

1. Find all the reciprocals of non-zero values mod 17.

x	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$1 / x$	1	9	6	13	7	3	5	15	2	12	14	10	4	11	8	16

First note that $16 \equiv-1$ so $16^{-1} \equiv 16$.
Then note that $1 \equiv 18 \equiv 35 \equiv 52(\bmod 17)$.
$9 \times 2 \equiv 18 \equiv 1(\bmod 17)$ so 9 and 2 are inverses.
$3 \times 6 \equiv 18 \equiv 1(\bmod 17)$ so 3 and 6 are inverses.
$7 \times 5 \equiv 35 \equiv 1(\bmod 17)$ so 7 and 5 are inverses.
$4 \times 13 \equiv 52 \equiv 1(\bmod 17)$ so 4 and 13 are inverses.
Also, $(-2)^{-1}=-2^{-1}$ so $-2 \equiv 15$ and $-9 \equiv 8$ are inverses.
Similarly, $(-3)^{-1}=-3^{-1}$ so $-3 \equiv 14$ and $-6 \equiv 11$ are inverses.
The remaining pair, 10 and 12 must be inverses (though we can check: $10 \times 12 \equiv 120 \equiv 1$ $(\bmod 17)$.
We could have also done some of these using $(a b)^{-1} \equiv a^{-1} b^{-1}$ or using the Euclidean algorithm.
2. Compute the following powers mod 13.
(a) $2^{0}, 2^{1}, 2^{2}, \ldots, 2^{15}, 2^{16}$.
(b) $3^{0}, 3^{1}, 3^{2}, \ldots, 3^{15}, 3^{16}$.

First note that $2^{0} \equiv 1,2^{1} \equiv 2,2^{2} \equiv 4,2^{3} \equiv 8$, and $2^{4} \equiv 16 \equiv 3(\bmod 13)$.
Then $2^{5} \equiv 2 \times 3 \equiv 6$ and $2^{6} \equiv 2 \times 6 \equiv 12 \equiv-1$, which means that the next 6 values will be negatives of the first:
$2^{7} \equiv-2 \equiv 11,2^{8} \equiv-4 \equiv 9,2^{9} \equiv-8 \equiv 5,2^{10} \equiv-3 \equiv 10,2^{11} \equiv-6 \equiv 7$, and $2^{12} \equiv-(-1) \equiv 1$. Thereafter they repeat, i.e., $2^{13} \equiv 2^{1} \equiv 2,2^{14} \equiv 2^{2} \equiv 4,2^{15} \equiv 2^{3} \equiv 8$, and $2^{16} \equiv 2^{4} \equiv 3$.
$3^{0} \equiv 1,3^{1} \equiv 3,3^{2} \equiv 9,3^{3} \equiv 27 \equiv 1$, and they repeat from here.

