Homework 18 Solutions

Problems

1. The goal of this problem is to find $5 / 17(\bmod 31)$. Note that 31 is prime, and thus we know that a solution exists.
(a) Use the Euclidean Algorithm to find integers x and y such that $17 x+31 y=1$.
(b) Using part (\mathbf{a}), what is $1 / 17(\bmod 31)$?
(c) Using part (b), find $5 / 17(\bmod 31)$.

Let's apply the Euclidean algorithm:

$$
\begin{aligned}
31 & =17+14 \\
17 & =14+3 \\
14 & =4 \times 3+2 \\
3 & =2+1
\end{aligned}
$$

And now backwards:

$$
\begin{aligned}
1 & =3-2 \\
& =3-(14-4 \times 3)=-14+5 \times 3 \\
& =-14+5(17-14)=5 \times 17-6 \times 14 \\
& =5 \times 17-6(31-17)=-6 \times 31+11 \times 17
\end{aligned}
$$

So we see that $11 \times 17=1$ up to adding on a multiple of 31 . In other words $1 / 17 \equiv 11$ $(\bmod 31)$.
For the last part, then, $5 / 17 \equiv 5 \times 11 \equiv 55 \equiv 24(\bmod 31)$
2. Use the Euclidean algorithm to compute the following.
(a) $1 / 13(\bmod 97)$.
(b) $1 / 73(\bmod 17)$.

We must solve for x in $1=13 x+97 y$. Using the Euclidean algorithm, we find

$$
\begin{aligned}
& 97=7 \times 13+6 \\
& 13=2 \times 6+1
\end{aligned}
$$

and running it backwards,

$$
\begin{aligned}
1 & =13-2 \times 6 \\
& =13-2 \times(97-7 \times 13)=15 \times 13-2 \times 97
\end{aligned}
$$

so $1 / 13 \equiv 15(\bmod 97)$.
Note that $73 \equiv 5(\bmod 17)$. Hence, we solve for x in $1=5 x+17 y$. Using the Euclidean algorithm, we find

$$
\begin{aligned}
17 & =3 \times 5+2 \\
5 & =2 \times 2+1
\end{aligned}
$$

and so

$$
\begin{aligned}
1 & =5-2 \times 2 \\
& =5-2 \times(17-3 \times 5)=7 \times 5-2 \times 17
\end{aligned}
$$

so $1 / 73 \equiv 7(\bmod 17)$.
3. Compute the following divisions:
(a) $7 / 10(\bmod 41)$.
(b) $10 / 2(\bmod 31)$.
(c) $5 / 16(\bmod 17)$.

Euclid for part (a) is short:

$$
41=4 \times 10+1
$$

and backwards:

$$
1=41-4 \times 10
$$

so $1 / 10 \equiv-4 \equiv 37(\bmod 41)$.
Then $7 / 10 \equiv-4 \times 7 \equiv-28 \equiv 13(\bmod 41)$.

No need for any Euclidean messing here, because we know how to divide 10 by $2: 10 / 2 \equiv 5$ $(\bmod 31)$.
$16 \equiv-1(\bmod 17)$. So $5 / 16 \equiv 5 /-1 \equiv-5=12(\bmod 17)$.

