Homework 17 Solutions

Problems

1. Do the following computations in the given modulus.
(a) $6-4(\bmod 7)$.
(b) $80+21(\bmod 101)$.
(c) $3-12(\bmod 15)$.
(d) $456 \times 450(\bmod 457)$.
$2,0,6,-1 \times-7 \equiv 7$
2. Do the following computations in the given modulus.
(a) $457 \times 458(\bmod 459)$.
(b) $13 \times 44(\bmod 5)$.
(c) $13 \times 44(\bmod 15)$.

In all three cases, we have $(-2) \times(-1) \equiv 2$ in the given modulus.
3 . This problem concerns a divisibility rule for 4 , ie a way of telling if a number is divisible by 4 easily.
(a) Show why the following divisibility rule for 4 works:

Add the last digit to twice the second to last digit. If the sum is a multiple of four, then the number is a multiple of 4 .
For example, $\mathbf{1 6}$ is a multiple of $\mathbf{4}$ since $6+2 \cdot 1=8$ is a multiple of 4 .
[Hint: We can write 538 as $5 \cdot 10^{2}+3 \cdot 10+8$. What does considering this expression modulo 4 tell us?]
(b) Is 2736 divisible by 4 ? Why or why not?
(c) Is 293847102938470192834701928374 divisible by 4 ? Why or why not?

We write out a general number $a_{n} a_{n-1} \cdots a_{2} a_{1} a_{0}$ as

$$
a_{n} \cdot 10^{n}+a_{n-1} \cdot 10^{n-1}+\cdots+a_{2} \cdot 100+a_{1} \cdot 10+a_{0} .
$$

Now note that 100 is divisible by 4 , and so is 1000 , etc. Rephrasing this using modular arithmetic, we have $100 \equiv 0(\bmod 4), 1000 \equiv 0(\bmod 4)$, etc. Moreover, $10 \equiv 2(\bmod 4)$. Thus

$$
\begin{aligned}
a_{n} \cdot 10^{n}+a_{n-1} \cdot 10^{n-1}+\cdots+a_{2} \cdot 100+a_{1} \cdot 10+a_{0} & \equiv a_{n} \cdot 0+a_{n-1} \cdot 0+\cdots+a_{2} \cdot 0+a_{1} \cdot 10+a_{0} \\
& \equiv a_{1} \cdot 10+a_{0} \\
& \equiv a_{1} \cdot 2+a_{0}
\end{aligned}
$$

But if two numbers are congruent modulo 4 , then one is divisible by 4 if and only if the other one is. So our original number is a multiple of 4 if and only if the sum of its last digit plus twice the second to last digit is a multiple of 4 .
We now apply the rule.
(a) 2736 is a multiple of 4 , since $3 \cdot 2+6=12$ is.
(b) 293847102938470192834701928374 is not a multiple of 4 since $7 \cdot 2+4=18$ is not.

