Homework 17 Solutions

Problems

- 1. Do the following computations in the given modulus.
 - (a) $6-4 \pmod{7}$.
 - **(b)** $80 + 21 \pmod{101}$.
 - (c) $3-12 \pmod{15}$.
 - (d) $456 \times 450 \pmod{457}$.
 - $\boxed{2}$, $\boxed{0}$, $\boxed{6}$, $-1 \times -7 \equiv \boxed{7}$
- 2. Do the following computations in the given modulus.
 - (a) $457 \times 458 \pmod{459}$.
 - (b) $13 \times 44 \pmod{5}$.
 - (c) $13 \times 44 \pmod{15}$.

In all three cases, we have $(-2) \times (-1) \equiv \boxed{2}$ in the given modulus.

- 3. This problem concerns a divisibility rule for 4, ie a way of telling if a number is divisible by 4 easily.
 - (a) Show why the following divisibility rule for 4 works:

Add the last digit to twice the second to last digit. If the sum is a multiple of four, then the number is a multiple of 4.

For example, 16 is a multiple of 4 since $6 + 2 \cdot 1 = 8$ is a multiple of 4.

[Hint: We can write 538 as $5 \cdot 10^2 + 3 \cdot 10 + 8$. What does considering this expression modulo 4 tell us?]

- (b) Is 2736 divisible by 4? Why or why not?
- (c) Is 293847102938470192834701928374 divisible by 4? Why or why not?

We write out a general number $a_n a_{n-1} \cdots a_2 a_1 a_0$ as

$$a_n \cdot 10^n + a_{n-1} \cdot 10^{n-1} + \dots + a_2 \cdot 100 + a_1 \cdot 10 + a_0.$$

Now note that 100 is divisible by 4, and so is 1000, etc. Rephrasing this using modular arithmetic, we have $100 \equiv 0 \pmod{4}$, $1000 \equiv 0 \pmod{4}$, etc. Moreover, $10 \equiv 2 \pmod{4}$. Thus

$$a_n \cdot 10^n + a_{n-1} \cdot 10^{n-1} + \dots + a_2 \cdot 100 + a_1 \cdot 10 + a_0 \equiv a_n \cdot 0 + a_{n-1} \cdot 0 + \dots + a_2 \cdot 0 + a_1 \cdot 10 + a_0$$
$$\equiv a_1 \cdot 10 + a_0$$
$$\equiv a_1 \cdot 2 + a_0$$

But if two numbers are congruent modulo 4, then one is divisible by 4 if and only if the other one is. So our original number is a multiple of 4 if and only if the sum of its last digit plus twice the second to last digit is a multiple of 4.

We now apply the rule.

- (a) 2736 is a multiple of 4, since $3 \cdot 2 + 6 = 12$ is.
- (b) 293847102938470192834701928374 is not a multiple of 4 since $7 \cdot 2 + 4 = 18$ is not.

1