Homework 15 Solutions

Problems

1. Note that in this question you do not need to find the full prime factorization of the number!
(a) What is the largest prime number that divides $\binom{26}{8}$?
(b) What is the largest prime number that divides $\binom{26}{8}$ twice (i.e., whose square divides it)?

$$
\binom{26}{8}=\frac{26 \times 25 \times 24 \times 23 \times 22 \times 21 \times 20 \times 19}{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2}
$$

We see that the largest prime dividing the top line is 23 and this doesn't divide the bottom. Hence the largest prime dividing $\binom{26}{7}$ is 23 .
The largest prime dividing the top line at least twice is 5 . 5 divides the top line 3 times and the bottom line once. Hence 5^{2} divides $\binom{26}{7}$ so the largest prime dividing $\binom{26}{7}$ twice is 5 .
2. Find the prime factorization of

$$
\begin{aligned}
& \left(3^{13} \times 5^{24} \times 11\right)-\left(3^{11} \times 5^{22} \times 11^{3}\right) \\
& \left(3^{13} \times 5^{24} \times 11\right)-\left(3^{11} \times 5^{22} \times 11^{3}\right) \\
& =\left(3^{11} \times 5^{22} \times 11\right)\left(3^{2} \times 5^{2}-11^{2}\right)
\end{aligned}
$$

Now, $3^{2} \times 5^{2}-11^{2}=225-121=104=4 \times 26=8 \times 13$, so the prime factorization is $\left(3^{11} \times 5^{22} \times 11\right) \times(8 \times 13)=2^{3} \times 3^{11} \times 5^{22} \times 11 \times 13$.
3. Let a be such that $\binom{21}{10}=2^{a} \times 3 \times 7 \times 13 \times 17 \times 19$. Find a.

We have

$$
\binom{1}{10}=\frac{21 \times 20 \times 19 \times 18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 65 \times 4 \times 3 \times 2 \times 1}{11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}
$$

Writing out just the even terms gives us

$$
\frac{\ldots \times 20 \times \ldots \times 18 \times \ldots \times 16 \times \ldots \times 14 \times \ldots \times 12 \times \ldots \times 10 \times \ldots \times 8 \times \ldots \times 6 \ldots \times 4 \times \ldots \times 2 \times \ldots}{\ldots \times 10 \times \ldots \times 8 \times \ldots \times 6 \times \ldots \times 4 \times \ldots \times 2 \times \ldots \times 10 \times \ldots \times 8 \times \ldots \times 6 \times \ldots \times 4 \times \ldots \times 2 \times \ldots}
$$

Now we consider the powers of two contained in these terms:

$$
\frac{4 \times 2 \times 16 \times 2 \times 4 \times 2 \times 8 \times 2 \times 4 \times 2 \times}{2 \times 8 \times 2 \times 4 \times 2 \times 2 \times 8 \times 2 \times 4 \times 2}=\frac{2^{2+1+4+1+2+1+3+1+2+1}}{2^{1+3+1+2+1+1+3+1+2+1}}=\frac{2^{18}}{2^{16}}=22^{2}
$$

