Homework 14 Solutions

Problems

1. (a) Is $\binom{19}{7}$ divisible by $\mathbf{1 0}$?
(b) Is $\binom{19}{7}$ divisible by $6 ?$

$$
\binom{19}{7}=\frac{19 \times 18 \times 17 \times 16 \times 15 \times 14 \times 13}{7 \times 6 \times 5 \times 4 \times 3 \times 2}
$$

5 divides the top once and the bottom once, hence 5 (and so 10) does not divide ($\left.\begin{array}{c}19 \\ 7\end{array}\right)$.
2 divides the top 6 times, and the bottom 4 times, hence 2 divides $\binom{19}{7}$. 3 divides the top 3 times, and the bottom twice, hence 3 divides $\binom{19}{7}$. So both 2 and 3 divide $\binom{19}{7}$ so 6 divides $\binom{19}{7}$.
2. Find the gcd of 18000 and 10935 by factoring these numbers.

$$
\begin{gathered}
18000=2^{4} \times 3^{2} \times 5^{3} \\
10935=3^{7} \times 5
\end{gathered}
$$

Hence $\operatorname{gcd}(18000,10935)=3^{2} \times 5=45$.
3. Let $a=2^{3} \times 3^{4} \times 11^{2}$ and $b=2^{2} \times 3^{2} \times 5$.
(a) Compute $\operatorname{gcd}(a, b)$.
(b) Compute $\operatorname{lcm}(a, b)$.
$\operatorname{gcd}(a, b)=2^{\min (3,2)} \times 3^{\min (4,2)} \times 5^{\min (0,1)} \times 11^{\min (2,0)}=2^{2} \times 3^{2}$.
$\operatorname{lcm}(a, b)=2^{\max (3,2)} \times 3^{\max (4,2)} \times 5^{\max (0,1)} \times 11^{\max (2,0)}=2^{3} \times 3^{4} \times 5 \times 11^{2}$.

