Homework 11 Solutions

Problems

1. (a) Find the greatest common divisor of 161 and 205.
(b) Find whole numbers x and y so that $161 x+205 y=1$.

$$
\begin{gathered}
205=161+44 \\
161=3 \times 44+29 \\
44=29+15 \\
29=15+14 \\
15=14+1
\end{gathered}
$$

Thus $\operatorname{gcd}(161,205)=1$
Running the process in reverse...

$$
\begin{gathered}
1=15-14 \\
1=15-(29-15)=2 \times 15-29 \\
1=2 \times(44-29)-29=2 \times 44-3 \times 29 \\
1=2 \times 44-3 \times(161-3 \times 44)=-3 \times 161+11 \times 44 \\
1=-3 \times 161+11 \times(205-161)=11 \times 205-14 \times 161
\end{gathered}
$$

And we are done.
2. (a) Find the greatest common divisor of 111 and 234.
(b) Find whole numbers x and y so that $111 x+234 y=6$.

$$
\begin{gathered}
234=2 \times 111+12 \\
111=9 \times 12+3 \\
12=4 \times 3
\end{gathered}
$$

So we see $\operatorname{gcd}(234,111)=3$.
Running the process in reverse we get

$$
\begin{gathered}
3=111-9 \times 12 \\
3=111-9 \times(234-2 \times 111)=19 \times 111-9 \times 234
\end{gathered}
$$

So we see that $6=38 \times 111-18 \times 234$.
3. (a) Find the greatest common divisor of 186 and 270.
(b) For which whole numbers m is it possible to find whole numbers x and y so that $186 x+270 y=m$?

$$
\begin{gathered}
270=186+84 \\
186=2 \times 84+18 \\
84=4 \times 18+12 \\
18=12+6 \\
12=2 \times 6
\end{gathered}
$$

Hence $\operatorname{gcd}(270,186)=6$.
We can find x and y to solve the given equation whenever m is a multiple of 6 .

