Homework 10 Solutions

Problems

1. Use the Euclidean algorithm to find the greatest common divisor of 154 and 374.

$$374 = 2 \times 154$$
 +66
 $154 = 2 \times 66$ +22
 $66 = 3 \times \boxed{22}$

Therefore gcd(154, 374) = 22.

2. Use the Euclidean algorithm to find the greatest common divisor of 2377 and 1284.

$2377 = 1 \times 1284$	+1093
$1284 = 1 \times 1093$	+191
$1093 = 5 \times 191$	+138
$191 = 1 \times 138$	+53
$138 = 2 \times 53$	+32
$53 = 1 \times 32$	+21
$32 = 1 \times 21$	+11
$21 = 1 \times 11$	+10
$11 = 1 \times 10$	+1
$10 = 10 \times \boxed{1}$	

Therefore gcd(2377, 1284) = 1.

3. (a) Use the Euclidean algorithm to find the greatest common divisor of 13 and 31.

$$31 = 2 \times 13$$
 +5
 $13 = 2 \times 5$ +3
 $5 = 1 \times 3$ +2
 $3 = 1 \times 2$ +1
 $2 = 2 \times \boxed{1}$

Therefore gcd(13,31)=1.

(b) Express 1 as a combination of 13 and 31.

$$1 = 3 - 2$$

$$= 3 - (5 - 3)$$

$$= 2 \times (13 - 2 \times 5) - 5$$

$$= 2 \times 13 - 5 \times (31 - 2 \times 13)$$

$$= 2 \times 3 - 5$$

$$= 2 \times 13 - 5 \times 5$$

$$= [12 \times 13 - 5 \times 31]$$

(c) Express 2 as a combination of 13 and 31.

$$2 = 2 \times (12 \times 13 - 5 \times 31)$$
$$= 24 \times 13 - 10 \times 31$$

 $4. \ \ \, (a)$ Use the Euclidean algorithm to find the greatest common divisor of 57 and 87.

$$87 = 1 \times 57 + 30$$

 $57 = 1 \times 30 + 27$
 $30 = 1 \times 27 + 3$
 $27 = 9 \times \boxed{3}$

Therefore gcd(57, 87) = 3.

(b) Express 3 as a combination of 57 and 87.

$$3 = 30 - 27$$

$$= 30 - (57 - 1 \times 30)$$

$$= 2 \times (87 - 57) - 57 = 2 \times 87 - 3 \times 57$$

$$= 2 \times 30 - 57$$

(c) Can 1 be expressed as a combination of 57 and 87? Why or why not?

No, because any whole number that is a combination of 57 and 87 is a multiple of their GCD, 3.